提高高碳当量灰铸铁刹车盘机械性能的方法
- 格式:doc
- 大小:76.50 KB
- 文档页数:4
提高灰铸铁性能的途径为提高灰铸铁的性能,常采取下列几种措施:选择合理的化学成分;改变炉料组成,过热处理铁液;孕育处理;微量或低合金化。
采取何种措施取决于所要求的性能及生产条件,往往同时采取两种以上措施。
1、化学成分的合理选配(1)碳、硅及硅碳比灰铸铁的含碳量大多在2.6%~3.6%,含硅量在1.2%~3.0%,碳硅都是强烈地促进石墨化的元素,可用碳当量CE来说明它们对灰铸铁金相组织和力学性能的影响.提高碳当量促使石墨化变粗,数量增多,强度和硬度下降.降低碳当量可减少石墨数量,细化石墨,增加初析奥氏体枝晶,从而是提高灰铸铁力学性能时常采取的措施.但降低碳当量会导致铸造性能降低,铸件断面敏感性增大,铸件内应力增加,硬度上升加工困难等问题,因此必须辅以其它的措施. 在碳当量保持不变的条件下,适当提高Si/C比(一般由0.5左右提高至0.7左右),在凝固特性,组织结构与材质性能方面有以下变化:a 组织中初析奥氏体数量增多,有加固基体的作用;b 由于总碳量的降低,石墨量相应减少,减轻了石墨片对基体的切割作用;c 固溶于铁素体中的硅量增多,强化了铁素体(包括珠光体中的铁素体);d 提高了共析转变温度,珠光体在较高温度下生成,易粗化,会降低强度;e 降低了奥氏体的含碳量,使奥氏体在共析转变时易生成铁素体;f 硅高碳低情况下,易使铸件表层产生过冷石墨并伴随有大量铁素体,有利于切削加工,但不加工面的性能有所削弱;g 提高了液相线凝固温度,降低了共晶温度,扩大了凝固范围,降低了铁液流动性,增大了缩松渗漏倾向。
综合以上各种固素的利弊,在碳当量较低时,适当提高Si/C,强度性能会有所提高,切削性能有较大改善,但要注意缩松渗漏倾向的增加和珠光体数量的减少。
在较高碳当量时(具体取决于生产条件)提高Si/C反而使抗拉强度下降。
此时提高硅碳比仍能有减少白口倾向的优点,适用于性能要求不高的薄壁铸件的铸造。
(2)锰和硫锰和硫本身都是稳定碳化物、阻碍石墨化的元素。
高强度灰铸铁实用技术铸造工业网2022-08-16 19:01发表于河南一、电炉熔炼高强度灰铸铁,做好这几点才能保障质量!1.高强度合金灰铸铁成分的设计以壳体为例,其材质为灰铸铁250,硬度大于200,要求易切削加工,进行油压试验不渗漏,在铸铁中添加微量多元合金成分,选择合理的工艺参数,使铸件具有一定的化学成分和冷却速度,获得理想的金相组织和力学性能。
要保证力学性能,就必须控制好基体组织和石墨形态高强度低合金化孕育铸铁的成分设计,首先要考虑铁液碳当量与冷却速度的影响作用。
碳当量过高,铸件厚壁处冷却速度缓慢,铸件厚壁处易产生晶粒粗大、组织疏松,油压试验易产生渗漏;若碳当量过低,铸件薄壁处易形成硬点或局部硬区,导致切削性能变差。
将碳当量控制在3.95%~4.05%,即可保证材质的力学性能,又接近共晶点,其铁液的凝固温度范围较窄,为铁液实现“低温”浇注创造了条件;而且有利于削除铸件的气孔、缩孔缺陷。
其次要考虑合金元素的作用,铬、铜元素在共晶转变中,铬阻碍石墨化,促成碳化物、促进白口;而铜则促进石墨化作用,减少断面白口。
两元素相互作用在一定程度上得到中和,避免在共晶转变中产生渗碳体而导致铸件薄壁处形成白口或硬度提高;而在共析转变中,铬和铜都可以起到稳定和细化珠光体的复合作用,但各自的作用又不尽相同。
以恰当比例配合,能更好发挥两者各自的作用。
在含铬=0.2%灰铸铁中加入大于2.0%的铜,不仅能促进珠光体转变,提高并稳定珠光体量和细化珠光体,促进A型石墨产生和均化石墨形态;还能在铬r小于0.2%灰铸铁中提高铁水的流动性,这尤其对壳体薄壁累铸件有利。
复合加入铬、铜可使铸件致密性进一步提高,因此对于要求耐渗漏的铸件。
加入适量的铬、铜、有利于改善材质本身的致密性,提高其抗渗漏能力。
珠光体基本是高强度灰铸铁生产中希望获得的组织,因为只有以珠光体为基础的铸铁强度高、耐磨性好。
锡能有效增加基体组织中珠光体含量,并促进和稳定珠光体形成,我们生产实践的结论是把锡含量控制在0.7%~0.9%. 2.严把原辅料质量关入厂原辅材料须进行取样分析,做到心中有数,不合格的原辅材料绝不投入使用。
综合实验论文——高碳当量高强度灰铸铁组织性能研究指导老师:王鑫铸造学生:0803041 雷小波高碳当量高强度灰铸铁组织性能研究雷小波李沙沙闫雅雪摘要:灰铸铁良好的铸造性能、良好的减振性、良好的耐磨性能、良好的切削加工性能、低的缺口敏感性,在很多领域得到了很好的应用,但由于在很多情况下很难达到高的强度,使其应用受到了很大的限制,文章力求在碳当量CE≥4.0%情况下,形成石墨形态为A型或D型的灰铸铁,抗拉强度σb≥300MPa。
但实验结果表明,在这种情况下,获得符合要求的灰铸铁是很难达到的,本实验以失败告终。
关键字:高碳当量高强度灰铸铁1前言:灰铸铁良好的铸造性能、良好的减振性、良好的耐磨性能、良好的切削加工性能、低的缺口敏感性。
但由于灰铸铁中的片状石墨对基体的割裂严重,在石墨尖角处易造成应力集中,使灰铸铁的抗拉强度、塑性和韧性远低于钢,但抗压强度与钢相当,也是常用铸铁件中力学性能最差的铸铁。
同时,基体组织对灰铸铁的力学性能也有一定的影响,铁素体基体灰铸铁的石墨片粗大,强度和硬度最低,故应用较少;珠光体基体灰铸铁的石墨片细小,有较高的强度和硬度,主要用来制造较重要铸件;铁素体一珠光体基体灰铸铁的石墨片较珠光体灰铸铁稍粗大,性能不如珠光体灰铸铁。
故工业上较多使用的是珠光体基体的灰铸铁。
而灰铸铁的力学性能与基体的组织和石墨的形态有非常密切关系,在六种石墨形态中,以D型石墨的性能最佳,本文在前人的研究基础上,主要通过提高碳当量,添加合金元素来改变基体组织,以及石墨形态,来实现高强度灰铸铁的要求。
2.试验方法2.1 配料依据由于在碳当量不变的条件下,适当提高硅碳比可以使初析奥氏体量增加,有加固基体的作用,同时硅的提高,使铁液的白口倾向有所降低。
在高碳当量时,冷却速度一定的情况下,随着碳量的提高,初期奥氏体枝晶得到细化。
因此选择高硅高碳,较高的硅碳Si/C=0.7。
由于D型石墨性能比较好,但其成分为亚共晶成分,又因碳当量大于4.0%,且碳当量小于4.3%,取碳当量等于4.0%。
开题报告题目:高碳当量高强灰铸铁组织性能的研究2、强度低。
同样的铁水化学成分生产出来的铸件,强度比国外低1~2牌号。
3、耐磨性差、寿命低。
4、断面敏感性大,加工性能差[1]。
其次,与国外的差距还有就是孕育技术落后。
国外非常重视方法的研究,发展了各种品种。
然而国内品种单一,缺乏质量要求等。
1.3灰铸铁的性能及特点灰铸铁的力学性能与基体的组织和石墨的形态有关。
灰铸铁中的片状石墨对基体的割裂严重,在石墨尖角处易造成应力集中,使灰铸铁的抗拉强度、塑性和韧性远低于钢,但抗压强度与钢相当,也是常用铸铁件中力学性能最差的铸铁。
同时,基体组织对灰铸铁的力学性能也有一定的影响,铁素体基体灰铸铁的石墨片粗大,强度和硬度最低,故应用较少;珠光体基体灰铸铁的石墨片细小,有较高的强度和硬度,主要用来制造较重要铸件;铁素体一珠光体基体灰铸铁的石墨片较珠光体灰铸铁稍粗大,性能不如珠光体灰铸铁。
故工业上较多使用的是珠光体基体的灰铸铁。
良好的铸造性能、良好的减振性、良好的耐磨性能、良好的切削加工性能、低的缺口敏感性[2]。
特点:(1)可获得比铸钢更薄而复杂的铸件,铸件中残余内应力及翘曲变形较铸钢小。
(2)对冷却速度敏感性大,因此薄截面容易形成白口和裂纹,而厚截面又易形成琉松,故灰铸铁件当壁厚超过其临界值时,随着壁厚的增加其力学性能反而显著降低。
(3)表面光洁,因而加工余量比铸钢小,表面加工质量不高对疲劳极限不利影响小。
(4)消振性高,常用来做承受振动的机座。
(5)不允许用于长时间在250度温度下工作的零件。
(6)不同截面上性能较均匀。
适于做要求高、而截面不一的较厚(大型)铸件。
(7)成本低廉[3-4]。
1.4灰铸铁的应用灰铸铁得到广泛的应用,具有良好的铸造性能、良好的减振性、良好的耐磨性能、良好的切削加工性能、低的缺口敏感性。
同时,与其他合金相比具有熔点低、充型性好、加工性好、生产设施和成型过程简单以及成本低廉的优越性。
如何提高灰铸铁的碳当量和强度是我们研究的内容,加入不同的合金元素能提高灰铸铁的碳当量和强度,应用范围更广了,工件的性能得到很高的提升,所以高碳当量高强度合成灰铸铁成为比较有前景的与铸造有关的材料[5-7]。
毕业论文设计题目刹车盘用高碳当量灰铸铁组织和性能的研究学生姓名学号专业班级指导教师院系名称材料科学与工程学院年月日目录中文摘要 (1)英文摘要 (2)1 引言 (3)1.1 制动器的介绍及研究意义 (3)1.1.1 制动器的介绍 (3)1.1.2 研究意义 (4)1.2 刹车盘的失效分析 (4)1.3 刹车盘的组织要求 (5)1.4 国内外研究现状 (6)1.4.1 国外研究现状 (6)1.4.2 国内研究现状 (7)2 改善高碳当量灰铸铁性能的途径 (8)2.1 调整铁液化学成分 (8)2.1.1 碳和碳当量CE的选择 (8)2.1.2 硅和Si∕C值的选择 (9)2.1.3 硫的选择 (10)2.1.4 锰的选择 (10)2.1.5 磷的选择 (11)2.2 微合金化 (11)2.2.1 钼 (12)2.2.2 铬 (12)2.2.3 铜 (13)2.2.4 锡 (13)2.3 优化熔炼工艺 (13)2.4 孕育处理 (14)3 试验研究的内容及方法 (15)3.1 成分设计及原材料选择 (15)3.2 试样制备 (15)3.3 机械性能测试 (15)3.3.1 抗拉强度测试 (15)3.3.2 硬度测试 (16)3.4 金相组织的观察 (17)4 试验结果与分析 (18)4.1 成分测定结果 (18)4.2 机械性能测试结果与分析 (18)4.3 高碳当量灰铸铁组织分析 (19)4.3.1 石墨的分析 (19)4.3.2 基体组织的分析 (21)结论 (24)致谢 (25)参考文献 (26)刹车盘用高碳当量灰铸铁组织和性能的研究摘要:灰铸铁一直是刹车盘常用的材料。
作为刹车盘材料的灰铸铁应具有高的强度、良好的导热性和耐磨性。
高碳当量灰铸铁具有优良的导热性和铸造性能,是刹车盘材料的发展方向。
但是,高碳当量灰铸铁因组织中有较多粗大的石墨强度通常很低。
本文分析了改善高碳当量灰铸铁性能的途径,其中包括调整铁液化学成分、微合金化、优化熔炼工艺和孕育处理等。
高碳当量高强度灰铸铁的研究第24卷增刊石油机械1996阜高碳当量高强度灰铸铁的研究多/一q-垄篮童潘保胜』'棚丽丽摘要提高灰铸铁碳当量和锰量,并分别加入与不加入台金,研究它们对灰铸铁组织和性能的影响.不加入台金时,在高碳当量(CF=3.9%一4.2%)高锰量(Mn=1.8%一2.4%)条件下,可使抗拉强度稳定达到250MPa.当加入0.2%一0.4%Cr和0.2%一O.8%Cu时,在高碳当量高锰量条件下,可使抗拉强度稳定达到300MPa.除作常规的机械性能检测外,还对其成熟度嬲,相对硬度R//,品质系数&,共晶度&和弹性模量E等进行了检测,表明高碳当量高强度灰铸铁是一种低收缩,低应力,品质优良的灰铸铁.工业发达国家十分重视对灰铸铁的研究,其着眼点是提高碳当量,在保证良好铸造性能的同时获得强度高,性能稳定,品质单一的铸铁件.目前对高强度灰铸铁除作常规机械性能检测外,还提出了成熟度RG(相对强度昭),硬化度ltG(相对硬度RIt),品质系数&,共晶度&,弹性模量五等柱强I指标.关于这些指标的意义及计算公式可参见文献[1].研究的理论出发点我们的研究着眼于两个方面:一是使其具有整体优良的铸造性能,即收缩量小,铁水流动性良好,铸造残余应力低,自口化倾向小;二是使其具有良好的金相组织和机械性能,即奥氏体枝晶多,石墨细小,珠光体量多,共晶团和枝晶内外显徽硬度相对均匀.平均度高,抗拉强度高,硬度值适宜于切削加工.根据金属学原理,铸铁碳当量越接近共晶点其铸造性能越好.即碳当量越接近4.28%铸造性能越好.因高强度铸铁均为亚共晶铸铁,故提高灰铸铁的铸造性能实质就是提高碳当量.提高碳当量的不利影响是使石墨化倾向增大,降低基体珠光体含量和分散度,从而降低灰铸铁的强度和硬度.-李健章.高级工程师,生于1963年.1984年毕业于天津大学铸造专业.现从事熔炼拄术管理.地址}(062552)河北省任丘市.电话:(∞圩)2726928.(收稿日期;1996-06-041修改稿收到日期:1906-10-09)石油机械1996点灰铸铁的金相组织由金属基体和片状石墨组成.基体的强度随珠光体含量和分散度的增加而提高.减少石墨数量,细化石墨片,使石墨片均匀弥散分布能显着减小对基体的割裂作用.在灰铸铁的基本成分中提高锰量能使珠光体含量和分散度显着增加;同时提高锰量能阻碍石墨的析出并使铁水激冷倾向增大而使石墨细化.这样,提高锰量能使灰铸铁强度显着提高.锰是弱的碳化物形成元素,在显着提高强度的同时,白口化倾向无显着增加,对铁水流动性,收缩性,残余铸造应力几乎无影响.碳当量和锰量同时提高的结果,使各自的不利影响相互抵消.而在铸造性能方面,碳当量的有利影响占优势;在强度性能方面,锰的有利影响占优势.这样,高碳当量高锰铁就可成为兼有优良铸造性能和高强度的铸铁材料.根据上述观点,我们查阅了大量的技术资料,参照国外的发展趋势和国内的前沿性研究结果,确定了灰铸铁的化学成分:C=3.9%一4.2%;C=3.2%一3.5%;Si=1.6%一2.1%;Mn:1_8%一2.4%;~hSi=1.12—1.23.试验研究结果及分析华北石油管理局第二机械厂生产的抽油机曲柄采用HT250灰铸铁.1992年以前,一直沿用传统的化学成分控制熔炼灰铸铁的成分.传统成分的灰铸铁牌号越高其碳当量就控制得越低.碳当量越低,铸造生产时收缩倾向和白口倾向就越大,铁水流动性就越差,铸造残余应力就越大.这样,由于收缩引起的表面大面积缩凹缺陷和由于铁水流动性差引起的齿部冷隔缺陷,就造成很多废品和次品;在成品中由于形成硬度高的表面及局部白口,使切削加工性能变差;由于收缩造成的残余铸造应力很大,必须经过很好的消除应力退火才能使用.在实际生产中,为获得较好的铸造性能,不得不将强度降低一些.这样,曲柄实际铸铁性能只能达到HT200号灰铸铁的指标,达不到设计要求的HT250号灰铸铁的性能.自1992年1月开始进行这项研究工作.在抽油机曲柄生产中进行了9炉生产性试验,生产曲柄18块,总重63t.熔炼设备为3t/h冲天炉.9炉的单铸试棒直径为30mm,单铸试棒化学成分,抗拉强度,金相组织和布氏硬度检测结果见表1.表1试验灰铸铁单铸试棒的化学成分%炉敬123456789平均C3.3O3.403.563.603643493.523.393.403.48化1.69I.凹178l_78l_921.761.792062.06184学Mn2.041.982.1l2.04I.932092192.402.372.13成分P0068O.06800880.084O.0820.O.0690.1∞O.I2O0085S0.∞30.014O.OO056O.054OO65O.∞9O.O"O.00o6l(MPa)掰2912.50弼336拍0258蜕27OHB邶194I8lI841781l84193192l88盘相基体组錾l%一99%殊光体.石墨呈A型均匀分布.从表1中可以看出.高碳当量高锰量灰铸铁抗拉强度在250MPa以上,是一种高强度灰第24卷增刊李健章等:高碳当量高强度灰毒寺轶的研究铸铁,其硬度适中,适合切削加工,生产的曲柄外观良好.根据单铸试棒的检测数据,利用文献[1]中公式计算了成熟度,相对硬度,品质系数, 弹性模量和共晶度,计算结果见表2.从表2中看出,高碳当量高强度灰铸铁的品质相当或接近国外水平.表2试验灰铸铁单铸试棒的性能试验结果炉欢123456789平均船0.991.0911O1.121.241豫1.I】1.031.04111J州0.900.850860.890.84O750.860.900.9l086&1.101281.281261.481.841291.141.141290.12O.120.120.11012O.130.120.120.120.12&0.88O.9】0.960970990.940.950930.940.94高碳当量高强度灰铸铁的试验成功,不但很好地解决了上述难题,也对随后的研究工作给予了强有力的支持.从试验成功时起,华北石油管理局第二机械厂生产的抽油机曲柄全部采用了高碳当量高强度灰铸铁.在随后的研究工作中,严格控镧灰铸铁的化学成分,从而保证了抗拉强度稳定在250MPa以上,平均值在270MPa.此外,我们还分析研究了高碳当量高强度灰铸铁的收缩性,铸造残余应力,白口倾向,断面敏感性,微量台金化等,研究结果如下.1.收缩性一般设备所用灰铸铁是亚共晶铸铁,即c目值为3.2%一4.3%的铸铁.从铁水浇注到完全凝固,体积变化可分为三个阶段,即熔液收缩,奥氏体枝晶初晶收缩,共晶凝固膨胀.根据文献[2]可得:熔液收缩量%式中:为浇注温度.奥氏体枝晶初晶收缩量','一,'A=3.5×—暑%P—式中:为共晶碳量;为奥氏体最大固溶碳量.共晶奥氏体收缩量=(1-Q/]oo)×等等曷s%共晶石墨膨胀量F=(1一Q/]OO)340%这些结果加在一起就得到了从浇注到凝固整个过程的体积变化.表3是浇注温度为1350~C时高碳当量高强度灰铸铁与传统HT250灰铸铁的计算结果.从计算结粜看,高碳当量高强度灰铸铁比传统瑚50的收缩小得多.在实际生产中,由于高碳当量高强度灰铸铁具有更高的流动性,浇注温度可降低,故其收缩还要小.2.断面敏感性我们浇注了壁厚相差7倍阶梯形试样,在每个阶梯的中部锯断,并在断面中心处测定其石油机械1996卑布氏硬度值.结果表明,断面硬度值差只有HB8.这说明高碳当量高强度灰铸铁对壁厚不敏感,断面敏感性小,薄壁处与厚壁处基本组织均匀.因此,此种灰铸铁能适应壁厚悬殊铸件,薄壁件,厚大件生产的需要.苎鐾苎苎经苎籼多炉次的炉前三角试片检验,自::::::::=:::::::::===::::.::口宽度均不超过l,说明其白璺!l兰墨璺苎堡垦l堕竺n倾向小.查阅传统HT250灰:l;..4848l-铸铁炉前记录,其白口宽度为3共晶磺量cl3.73l383~7irma.用高碳当量高强度灰铸奥氏体量太固涪碳量l-56l?66铁生产的曲柄切削加工性能良奥嚣il::l瑚,34好,束出现过从前用传统}玎f250共晶奥氏体收靖量l2.96l2.07灰铸铁生产时因齿部白口化而造共晶石墨膨胀量I6.48l53成的难加工和崩齿现象.塑翌型匕_二垒二二盟_L———旦兰———』—苎4.铸造残余应力采用应力框法测定了铸态和去应力退火后的铸造残余应力.应力框用同包铁水浇注.结果表明,铸态平均值为32~Pa,退火态平均值为31.5咖,退火后铸造残余应力没有显着下降,证明高碳当量高强度灰铸铁是一种低应力灰铸铁.5.微量合金化在高碳当量高强度灰铸铁的基本成分中,加入0.2%一O.4%铬和0.2%O.8%铜,测试其抗拉强度.结果表明抗拉强度可提高20~50MPa,在选择较高台金量时可使抗拉强度稳定达到3o0加以上.采用铬铜微量合金化,其铸造性能无显着变化.结论华北石油管理局第二机械厂自1992年开始用高碳当量高强度灰铸铁生产抽油机曲柄,共生产曲柄250块,总重875t.用高碳当量高强度灰铸铁生产抽油机曲柄的优越性有:1保证了曲柄的强度性能,稳定了生产.2,高碳当量高强度灰铸铁的铸态应力低,自1993年起取消了去应力退火,大大节约了能源,减少了生产工序.3,白口倾向小,硬度适宜,提高了切削加工效率,防止了因断齿而使曲柄报废的生产事故.4.铁水流动性好,避免了齿部冷隔缺陷,减少了大量焊补工作和节省了贵重铸铁焊条.5.收缩性小,从而减小或取消了冒口,控制浇注温度使工艺出品率从70%提高到90%.参考文献1杨国杰.灰铸铁的成熟度与相对强度,硬化度与相对硬度,品质系数或质量指数(2):382真毁统.灰铸铁的凝固与产生缩孔的条件.铸造,1988,(11):42—43铸造技术,1992,(奉文蝙辑蒋新源)。
调整孕育剂及其加入量改善灰铸铁制动盘缩松汽车制动盘是汽车制动系统中重要的安全部件之一,质量要求高,基本不允许存在任何缩松缺陷,但实际生产中很难做到铸件内部无缩松缺陷,尤其是在铸件结构壁厚差异过大的情况下。
常见缩松缺陷就是在铸件断面上出现的分散而细小的缩孔,这是在金属凝固收缩时,由于金属液未对铸件有效补缩而产生的缺陷。
解决缩松缺陷一般从化学成分、冒口补缩、孕育处理、孕育剂加入量、铸型刚度大小等几个方面分析。
但实际生产中必要时需要借助有效的问题分析方法,笔者采用鱼骨图的方法进行问题分析,最终从孕育剂特性极其加入量方面进行研究,简单有效地解决了某种制动盘产品铸件缩松问题,并进行了大批量生产实践。
1 问题描述1.1 产品结构制动盘结构如图1所示,内浇口开设在最大直径处,铸件壁厚随着与内浇口距离的增加而逐渐变厚。
从结构上来看,铸件从最大外圆处开始逐渐凝固,不利于浇注系统补缩。
实际生产过程采用无冒口工艺,但在图示位置上存在轻微的缩松缺陷。
1.2 化学成分产品质牌号为HT250,化学成分如表1所示。
孕育剂为0.43%的75%FeSi包底孕育, 0.05%的75%FeSi随流孕育,加入量根据铁液重量精准称量计算加入。
从表1的化学成分来看,碳当量较高,反石墨化的合金元素也较少,不易产生缩松缺陷。
图1 产品尺寸结构Fig.1 Product structure表1 化学成分(质量分数,%)Tab.1 Chemical composition (mass fraction, %)元素 C Si Mn P原铁液 3.36 1.760.650.03孕育后 3.34 2.100.650.03元素 S Cr Cu原铁液0.080.260.23孕育后0.080.260.231.3 缩松缺陷产品在精加工之后可见密密麻麻的小孔洞分布在较大范围内(见图2a),从外观初步判断可能是缩松缺陷。
为进一步确定,采用扫描电镜观察,该缺陷在截面上具有一定的深度,缺陷部位较为疏松、不密实(见图2b),且能够清晰看到孔洞内部形状不规则(见图2c),明显可以见到相当发达的树枝状晶的末梢,是铸铁凝固过程中,因液态收缩和凝固收缩不均匀,在最后凝固的部位形成的典型缩松、缩孔缺陷特征[1]。
合理地使用增碳剂半个世纪以来,铸铁件的生产技术有了长足的进步,如在球铁生产中,ADI技术的成熟和高硅固溶强化铁素体球铁的推广,,给球铁生产技术的发展注入了新的动力,而在灰铸铁的生产技术方面,我认为采用合成铸铁技术,应当是一个很大的技术进步,它与我们生产高强度高碳当量的铸铁件找到一条正确的途径,缩短了与国外先进国家的技术差距。
合成铸铁生产技术就是改变了过去长期以来一直用生铁作为主要炉料成分的配料方法,而是不用生铁,或只用少量的生铁,主要采用废钢做主要炉料,配以增碳剂增碳来达到指定的化学成分和新的配料方法。
新的配料方法与老方法相比,主要有一下三个方面优点:1、避免了新生铁遗传性2、增碳剂增加了外来的石墨核心3、是废钢中的氮及从增碳剂中带进来的更多氮促进了珠光体和改变了石墨形态,但众多的介绍合成铸铁经验文献中,基本上都推荐要采用低氮低硫的幼稚石墨型增碳剂,其原因就是石墨型增碳剂能直溶增碳达度块,回收率高,因而在采用增碳剂时,只注意了石墨形态,含碳量,灰分和粒度,而不去关注增碳剂含氮量高低,常常把其中的氮作为影响铸件的气孔缺陷的原因而拒绝利用氮能增加铸件强度的有利条件,从而对利用增碳剂中的氮的有利作用。
做了理论上的肯定,而实际上的否定,但在实际运用中增碳剂的生产厂家一改不进行氮含量的分析,在采用的技术条件上也没有对氮含量的分析,因而在增碳剂的含氮量及生产出的灰铸铁件中的氮处于一个失控的状态,因此尽管许多铸造厂也采取了高比例的废钢配比,也加入了2%左右的增碳剂,但所得结果,有的厂铸铁件中含氮量超高,产生氮气孔而使铸件报废,而大多数工厂生产出来的铸件性能仍然不高,本体强度难以稳定地满足HT250的要求,仍要采用低碳当量来提高强度。
百铸网在近三年来,一直在宣传要利用增碳剂中的氮有利作用,并且帮助了很多厂,在时间中利用增碳剂中氮和硫,稳定地成批生产了HT250,HT300的铸铁件,合理地选用增碳剂。
掌控好其中的氮和硫就能稳定地生产出高强度高碳当量的铸铁件,根据资料和我们的实验室数据,氮在铸铁中最明显的作用就是稳定珠光体,而保证95%以上的珠光体是生产高强度的基本要求,氮在50-120ppm时能有效地抑制铁素体的生成,而当含量过高时有产生氮气孔的危险,我们控制厚大件的氮含量不超过80ppm,中小件不超过120ppm作为控制界限。
使用锰铁孕育提高高碳当量灰铸铁力学性能研究(上海烟草机械有限责任公司,上海201314)以孕育的方式将锰铁加入,研究了在高碳当量灰铸铁炉前加入锰铁进行孕育处理以提高铸铁力学性能的方法,获得了力学性能优异的高碳当量灰铸铁,并进行了抗拉强度、布氏硬度和金相组织的观察。
标签:高强度灰铸铁;锰铁孕育;碳当量;力学性能灰铸铁作为一种应用广泛的结构材料,具有优良的减震性、耐磨性和切削加工性,同时,与其他合金相比,具有成本低、生产设施和成型过程简单等优点,因此,长期以来,灰铸铁在铸件中所占的比重非常大。
长期以来,国内外汽车生产厂商一般采用较低的碳当量(CE3.8%左右)来得到较高强度的灰铸铁。
然而低碳当量灰铸铁的白口、热裂以及收缩倾向都比较严重,铸造性能相对较差。
高碳当量灰铸铁是指碳当量在共晶点附近的灰铸铁,高碳当量使得这类灰铸铁在具有更好的铸造性能的同时,也降低了自身的强度。
因此,提高高碳当量灰铸铁的强度成为当前灰铸铁研究领域的一个热点问题。
众所周知,锰元素对改善铁碳合金的力学性能具有良好的效果,可以提高强度、减少收缩及铸造应力。
但以往的研究大多是基于含锰量较大的合金铸铁,而在高碳当量灰铸铁中锰含量较低,因此有必要研究在此种条件下提高铸铁的力学性能的方法。
1 实验材料及实验方法本实验采用的高碳当量灰铸铁炉料包括:生铁、废钢、75硅铁、锰铁等,各种炉料的成分如表1所示。
在实际熔炼浇注中,按照HT250的成分范围进行称重配料。
表1 炉料成分表(%)在实验中,在保证Mn含量不变的条件下,采取两种不同的加入锰铁的方式,分别是将锰铁全部随炉料加入和以孕育方式在炉前加入,加入量分别为0.3%、0.4%和0.5%,在中频感应电炉中进行熔炼,其工艺流程为:a)熔炼温度为1550℃以上时出炉;b)出炉时,在需要孕育的炉中进行随流孕育,并进行搅拌扒渣;c)铁水温度为1330-1380℃时进行浇注;d)浇注出的试样降至室温后开箱,清理铸件,并加工试样。
提高机床铸件质量的关键技术目前机床铸件大部分仍为灰铸铁,实践证明,高碳当量、高强度是灰铸铁的发展方向,它是灰铸铁在高强度下获得低的铸造应力,良好的加工性、铸造性的重要途径,是这三方面到达综合平衡的重要措施。
但是,在高碳当量下获得高强度不是一个简单的成分调整,而是要控制好熔炼与孕育环节, 尤其是提高灰铸铁的冶金质量,它是生产高碳当量、高强度铸铁的根底。
1、熔炼环节(1)碳当量的控制。
机床铸件碳当量比照,可以看出,国内机床铸件的碳当量比的低。
(2)硅碳比的控制。
硅碳比的比照,可以看出,国内机床铸件的硅碳比也比的低。
建议好将硅碳比控制在O. 55~0∙ 62 O(3)合金化的控制。
铁液中参加合金元素能增加奥氏体枝晶数量,增加并细化珠光体,强化铁素体,细化石墨,细化共晶团,截面敏感性。
主要机床件参加合金已规范化,一般为w (Cu) O. 4%~0. 6%或w (Cr) O. 2%~0∙ 4%。
国内20 世纪80年代曾公布过机床合金铸铁规范,但执行一段时间后,未再继续。
目前各厂机床铸件合金化各异,未纳入规范,生产中对参加合金元素的作用认识也缺陷。
在高碳当量下参加某些稳定珠光体的合金元素以增加其强度与硬度,减少截面敏感性。
低合金化是高碳当量,高强度灰铸铁不可缺少的措施。
常加的合金元素有Cu、Cr. Sb、Sn,并常用CU与Cr、Cu与Sb、Cu与Sn开展组合,参加合金元素的质量分数推荐如下组合:0.4%~0.6%Cu 与0. 2%"0. 4%Cr. 0. 4%"θ. 6%Cu 与O. 02%"0. 04%Sb、0. 4%~0. 6%Cu 与0. 02%"0. 04%Sn o2、配料在冲天炉熔炼条件下,机床铸件废钢配比方,可以看出,废钢参加的比例要比国内高。
在电炉熔炼条件下,国内废钢参加量少,生铁参加量多,石墨品质差。
而生铁参加量一般低于10%,同时采用高废钢、高渗碳工艺,石墨品质好。
一、如何提高灰铸铁的硬度1、炉料配比炉料配比用生铁+废钢+回炉料+增碳剂的方法,利用增碳剂里的氮改变石墨的形态和长度来提高灰铁铸件的硬度。
2、控制化学成分(1)许多熔炼公司认为硫元素有害,硫在铁液中的含量越低越好,其实也不是这样,在灰铁铸件中应考虑〃硅碳化〃和〃镒硫比"。
即Mn=1.71S+(0.2~0.5)oHT250化学成分表C Si Mn P S Ti3-3.3 1.65-2.050.7-1.1≤0.12≤0.12<0.05(2)低合金化,加去一两种合金元素,加入时,应考虑碳元素的含量,不要盲目追求硬度。
3、铁液过热对于灰铁铸件,在一定范围内提高铁液温度能使石墨细化,基体组织致密,铸铁的抗拉强度和布氏硬度有所提高。
铁液过热温度控制在150O-1530o C l 过热时间控制在IOmin之内为好。
4、孕育剂和孕育方式灰铸铁的孕育处理是通常在出炉后的铁水中缓缓加入孕育剂(最常用的75Si-Fe),孕育处理之后的灰铸铁,硬度会趋于均匀,改善了机械加工的性能,也增加了灰铸铁的强度。
灰铁铸件的硬度的标准时HB170-240之间。
二、如何通过铜提高灰铸铁材料的强度泥与碳极强的亲和力使其在铸铁及相似的高碳熔池中的回收变得复杂化。
在铁合金或熔炼界面快速形成一层锯的碳化物,其溶解情况决定了锯在熔池中的回收率。
通过对锯铁溶解过程的研究,进一步确定铜在铸铁中的行为。
根据制动盘性能以及铸造工艺要求,实验用锯铁纯度为65%的标准锯铁,锯铁的熔点范围为1580~163CTC(固相线和液相线温度),远高于铸铁,略高于铸钢。
铝与铁不发生放热反应。
因此,锯铁在铁水中不是熔化过程,而是一个以界面扩散为基础的溶解过程。
这个溶解过程需要一定时间,根据实验条件,将锯铁块加工为大小为①5mmχ30mm的圆柱型。
实验设备包括IOkg中频感应电炉,每次试验熔炼量为7kg,①35mmχ150mm砂铸型,实验前砂型预热到200℃z铁水过热到1500。
高强度灰铸铁生产中不可忽视的技术问题摘要灰铸铁作为一种重要的材料,在工业生产中得到广泛应用。
然而,在高强度灰铸铁生产过程中存在一些不可忽视的技术问题,这些问题不仅会影响产品质量,还可能导致生产效率低下。
本文将重点探讨高强度灰铸铁生产中的技术问题和解决方法,以期为相关领域的研究提供参考。
引言灰铸铁是一种常见的铸造材料,具有良好的流动性、耐磨性和抗压性能,因此在汽车、机械制造、建筑等领域得到广泛应用。
然而,在高强度灰铸铁生产过程中,存在一些技术问题需要引起重视,如铁液的凝固缩孔、热裂纹等。
这些问题如果不加以解决,将会严重影响产品质量和生产效率。
高强度灰铸铁生产中的技术问题1. 铁液凝固缩孔在高强度灰铸铁生产过程中,铁液凝固时会产生缩孔,影响产品性能。
凝固缩孔的主要原因包括过高的凝固浸温、合金元素成分不均匀等。
为解决这一问题,可以采取控制凝固速度、优化合金配比等措施。
同时,还可以通过调整铁液浇注温度和时间,增加压力等方式来避免凝固缩孔的产生。
2. 热裂纹热裂纹是高强度灰铸铁生产中常见的问题之一,特别是在铸件冷却过程中容易发生。
热裂纹的产生与合金元素间的互相作用、组织结构不均匀等因素相关。
为减少热裂纹的发生,可以采用合适的浇注温度和机械剔除应力等方法来控制铁液凝固过程中的温度变化,从而避免热裂纹的产生。
3. 碳化物析出在高强度灰铸铁生产中,碳化物的析出也是一个需要解决的技术问题。
过多的碳化物会导致铸件的脆性增加,从而降低其强度和韧性。
为解决这一问题,可以通过合适的合金调整和热处理方法来控制碳化物的析出。
调整合金元素的含量和比例,可以有效减少碳化物的形成,从而提高铸件的综合性能。
4. 灰铸铁中夹杂物在高强度灰铸铁生产中,夹杂物的存在也是一个无法忽视的问题。
夹杂物对灰铸铁的性能有着重要影响,因此有必要采取措施来有效控制夹杂物的生成。
常见的夹杂物包括氧化物、砂眼等。
通过精细的砂芯设计、优化浇注工艺等方式可以减少夹杂物的产生。
FM刹车盘优化铸造工艺的工作指导书范围:这个工作指导书适用于为FM生产的所有刹车盘毛坯。
根据大量的由FM要求的刹车盘毛坯质量稳定性和确保硬度和拉力的高工艺水准的优化工艺研究,碳当量被认为是一个非常关键的参数,和毛坯重量有紧密的联系。
FM所有刹车盘和刹车鼓毛坯都应因此划分为不同的重量组,不同特定的关键化学成分会影响到机械性能。
根据毛坯重量组不同,建议的关键化学元素和熔炼浇注温度如下:对于所有重量组的其他化学元素目标%是相同的,请看如下:锰: 0.62 – 0.68磷: ≤0.15硫: 0.06 – 0.10钼: ≤0.1镍: 0.02 – 0.15钛: ≤0.03注:碳和硅是根据炉前化学分析,对于最终浇包和毛坯化学成分是由LECO分析仪来确定。
所有其他的化学元素是根据光谱仪的读数。
电炉配料:铁屑:60%回炉铁:15%废钢:10%原生铁:15%SiC(含硅:55%,碳:38%) : 0.2%铬铁和铜:在重量组中根据平均目标值计算硅铁和锰铁:根据原材料中和炉料配比中的含量,来定量。
硅钡孕育剂:0.4%(包内)+0.03%的锑(Sb)注:每包的重量应该为150kg±10kg铁屑、回炉铁、废钢、原生铁的总重量为750Kg/炉,要求炉料完全干燥无水份。
注:所有型内所用的芯都应该在烤箱中预热到80-100℃,放入型中的温度至少要40℃。
炉料称重:频率:100%,废铁,回炉铁,废钢和原生铁称重设备:TGT-1000型台秤;鉻铁,碳化硅,铜和孕育剂称重设备:ACS-30电子台秤;硅铁和锰铁称重设备:TGT-100型台秤。
反应计划:调整,再重新称重。
1. 熔化及浇注:① 投料顺序及操作规程:●首先在电炉里加入所有的铁屑和废钢,盖上原生铁总量的50%,和回炉料总量的50%;然后加热至1100℃,再加入称好重量的铬铁,锰铁,铜,硅铁,碳化硅;加入剩余的50%原生铁和回炉料;然后加热至1380℃-1400℃,进行炉前铁水化学成分分析(C以炉前分析仪为准,Si、Mn、P、S、Cr、Cu等其他元素根据GS1000光谱仪为准),当化学成分跟目标要求的成分一致,然后迅速猛加热至1500℃-1540℃(具体温度根据上面图表中标识温度)出炉(猛加热必须在铁水成分完全达到目标成分要求后才能操作)●若铁水成分不合格,不允许迅速加热,需把炉内温度调整至1380℃-1400℃,重新检测,直到合格。