蓄热式陶瓷燃烧器
- 格式:pdf
- 大小:294.83 KB
- 文档页数:4
蓄热式焚烧炉原理
蓄热式焚烧炉是一种利用高温燃烧废物的设备,其原理是通过将废物投入炉内进行燃烧,释放高温热量,并将炉体内的热量储存起来,以在需要时再次利用。
蓄热式焚烧炉的主要组成部分包括燃烧炉膛、燃烧器、炉膛内壁、蓄热体和烟气尾气处理系统。
废物被投入燃烧炉膛中,燃烧炉膛中的燃烧器会在适当的空气供给下点火,并使废物燃烧成灰渣和烟气。
燃烧废物释放出的高温热量会被燃烧膛内壁的蓄热体吸收。
蓄热体通常由高热容量和热导率的材料制成,例如陶瓷或金属。
当蓄热体吸收和储存热量时,它会慢慢释放储存的热能,以保持燃烧炉内的高温。
这使得炉膛能够连续进行燃烧,即使在废物输入量不稳定或间断的情况下也能保持高效运行。
燃烧过程结束后,蓄热体中的热量可以通过烟气尾气处理系统进一步利用。
烟气尾气处理系统常常包括余热回收装置,用于回收和利用烟气中的热能。
通过将余热用于预热气体或水,可以降低能源消耗和减少环境污染。
蓄热式焚烧炉的原理使其能够高效利用废物燃烧所产生的热能,帮助降低废物处理的能耗和污染排放。
同时,由于炉膛内的高温可以持续维持,蓄热式焚烧炉也适用于处理具有高湿度或可燃性低的废物。
蓄热式燃烧技术在有机废气处理项目的应用发布时间:2022-01-04T05:53:31.061Z 来源:《新型城镇化》2021年23期作者:巩向帅[导读] 本文对蓄热式燃烧技术在有机废气处理项目的应用进行分析,以供参考。
山东典图生态环境工程有限公司山东淄博 255000摘要:根据世界卫生组织(WHO)的定义,挥发性有机化合物(VOCs)是指常压下沸点为50~260℃的各种有机化合物的总称。
因此VOCs所包含的化合物比较广泛,有醇类、醛类、酮类、脂肪酸、苯及其衍生物、酚及其衍生物等。
在石化、冶金、医药合成等行业的生产中会产生大量的有机废气。
本文对蓄热式燃烧技术在有机废气处理项目的应用进行分析,以供参考。
关键词:蓄热式燃烧;有机废气处理;应用引言随着科学技术的进步、工业生产的发展和人民生活水平的提高,产品和工业设备的质量也发生了变化。
产品不仅需要具备耐腐蚀性和耐久性,而且还需要有易清洁、富有美感的外观。
因此,目前喷涂和印刷技术已广泛应用于各种制造业,但在喷涂和印刷生产过程中都会释放大量的挥发性有机物。
挥发性有机物会引发严重的大气光化学污染,造成极大的环境危害,对人体健康会造成严重损害。
因此,挥发性有机物的处理已经迫在眉睫。
1 RTO70年代初,REECO首次推出了再生热氧化炉。
蓄热系统是一种高热容量陶瓷蓄热系统,燃烧后的热量通过直接换热积累到蓄热系统中,换热效率可达95%以上。
处理有机废气的RTO设备可分为阀门开关类型和转台类型。
阀门开关型包括第一代双室RTO技术和第二代三室RTO技术。
其特点是有两个或两个以上的陶瓷蓄热室,通过开关阀改变气流方向,实现VOCs预热的目的。
2 RTO处理含二氯甲烷有机废气工程 2.1论述二氯甲烷沸点为39.8℃,室温下易挥发。
二氯甲烷由于毒性低、不可燃,是一种广泛使用的溶剂。
二氯甲烷虽然毒性较低,但吸入人体后可分解为盐酸、一氧化碳,其对人体健康的二次危害不容忽视,已列入《有毒有害大气污染物名录》、《有毒有害水污染物名录(第一批)》。
rto蓄热式焚烧炉工作原理RTO(Regenerative Thermal Oxidizer,蓄热式焚烧炉)是一种在工业过程中用于处理有机废气的设备。
它具有高效能、低能耗和环保的特点。
工作原理是通过废气的氧化燃烧来使废气中的有害物质得到彻底分解和减少。
RTO主要由两个或多个热交换器组成,每个热交换器包含了一定数量的蓄热体,通常是陶瓷块。
蓄热体具有良好的热传导能力和热稳定性,能够在高温下储存和释放热能。
下面是RTO的工作原理:1.启动阶段:当废气从工业过程中产生时,它首先被引导到炉体中的第一个热交换器。
在该热交换器中,废气通过与陶瓷蓄热体的接触,将废气中的热能传递给陶瓷块,并在过程中被冷却。
2.过渡阶段:当陶瓷块逐渐加热至一定温度时,系统会自动进行切换。
此时,废气的进入口关闭,而新鲜空气的进入口打开。
新鲜空气通过热交换器,在陶瓷块中储存的热能的作用下,被加热并预热到接近废气温度的水平。
3.燃烧阶段:当新鲜空气被预热后,系统将打开燃烧器并将预热的空气引导至炉体中的第二个热交换器。
在该热交换器中,燃烧器将空气与废气混合,并引发燃烧反应。
废气中的有机物质在高温条件下进行氧化燃烧,以产生水蒸气和二氧化碳。
4.冷却阶段:经过燃烧的废气通过第一个热交换器,并在陶瓷块中释放其余的热能。
同时,冷却的新鲜空气从第二个热交换器中流出,将热能传递给陶瓷块,以储存热能以供后续使用。
以上是RTO的一个循环。
RTO通过交替利用废气中的热能和新鲜空气之间的热交换,实现了高效率的热能利用,从而降低了能耗并节省了运行成本。
RTO同样也能有效地处理低浓度的有机废气,并通过废气处理的过程中产生的副产物进行排放控制,实现了环境友好。
此外,RTO还可以通过自动控制系统来监测和调节设备的运行状态,提高了设备的稳定性和安全性。
总而言之,RTO蓄热式焚烧炉通过利用陶瓷块的热储存和释放特性,实现了高效能、低能耗和环保的有机废气处理。
其工作原理有助于减少有机废气的排放量,改善环境质量,并提高工业过程的能源利用效率。
RTO蓄热式燃烧炉:排放自工艺含VOCs的废气进入双槽RTO,三向切换风阀(POPPET VALVE)将此废气导入RTO的蓄热槽(Energy Recovery Chamber)而预热此废气,含污染的废气被蓄热陶块渐渐地加热后进入燃烧室(Combustion Chamber),VOCs在燃烧室被氧化而放出热能于第二蓄热槽中之陶块,用以减少辅助燃料的消耗. 陶块被加热,燃烧氧化后的干净气体逐渐降低温度, 因此出口温度略高于RTO入口温度. 三向切换风阀切换改变RTO出口/入口温度. 如果VOCs浓度够高,所放出的热能足够时, RTO即不需燃料. 例如RTO热回收效率为95%时,RTO出口仅较入口温度高25℃而已.蓄热式催化剂燃烧炉(RCO)排放自工艺含VOCs的废气进入双槽RCO,三向切换风阀(POPPET VALVE)将此废气导入RCO的蓄热槽(Energy Recovery Chamber)而预热此废气,含污染的废气被蓄热陶块渐渐地加热后进入催化床(Catalyst Bed), VOCs在经催化剂分解被氧化而放出热能于第二蓄热槽中之陶块,用以减少辅助燃料的消耗. 陶块被加热,燃烧氧化后的干净气体逐渐降低温度, 因此出口温度略高于RCO入口温度. 三向切换风阀切换改变RCO出口/入口温度. 如果VOCs浓度够高,所放出的热能足够时, RCO即不需燃料. 例如RCO热回收效率为95%时,RCO出口仅较入口温度高25℃而已.催化剂燃烧炉( Catalytic Oxidizer )换热器,废气经由换热换热器之壳侧(shell side)将管侧(tube side)未经处理的VOC废气加热,此换热器会减少能源的消耗,最后,净化后的气体从烟囱排到大气中.直燃式燃烧炉( Thermal Oxidizer )换热器,废气经由换热器管侧(Tube side)而被加热后,再通过燃烧器,这时废气已被加热至催化分解温度(650~1000℃换热器之壳侧(shell side)将管侧(tube side)未经处理的VOC废气加热,此换热器会减少能源的消耗(甚至于某ㄧ适当的VOCs浓度以上时便不需额外的燃料),最后,净化后的气体从烟囱排到大气中.直接燃烧燃烧炉( Direct Fired Thermal Oxidizer-DFTO )有时直接燃烧燃烧炉源于后燃烧器(After-Burner), 直接燃烧燃烧炉使用经特别设计的燃烧器以加热高浓度的废气到ㄧ预先设的温度,于运转时废气被导入燃烧室(Burner Chamber). 燃烧器将VOCs及有毒空气污染物分解为无毒的物质(二氧化碳及水)并放出热,净化后的气体可再由一热回收系统以达节能的需求. 恩国直接燃烧燃烧炉可达99%碳氢化合物破坏去除率,为达此去除率,高温的废气区在炉内保持一定的滞留时间.在入口处也须让废气有足够的扰流和氧产生充分的混合,充分的扰流不只提高去除破坏率,更是为平安考虑. 恩国的设计将爆炸风险降至最低以及最小的能源消耗.浓缩转轮/燃烧炉( Rotor Concentrator / Oxidizer )恩国浓缩转轮/燃烧炉系统吸附大风量低浓度挥发性有机化合物(VOCs). 再把脱附后小风量高浓度废气导入燃烧炉予以分解净化。
蓄热燃烧技术的应用蓄热燃烧技术是基于蓄热室的概念回收废气的余热,实现余热极限回收和助燃空气的高温预热,达到节能效果。
蓄热室最早发明于1858年,主要用在玻璃熔炉、平炉、熔铝炉等工业路上。
自20世纪70年代能源危机后,节能降耗得到各个国家的重视,蓄热式燃烧技术由于能够最大限度地回收出炉烟气的热量,大幅度地节约燃料、降低成本,同时还能减少CO2和NO x的排放量。
因此,该技术在国际上被称为二十一世纪的关键技术之一。
1.蓄热式燃烧器九十年代至今, 美、日、英等国开发出蓄热式燃烧器,并不断加以发展完善,实现了高效节能与低污染排放,现已成功地应用于加热炉、热处理炉、锻造炉等工业炉上。
蓄热式燃烧器是一种集燃烧器、换热器、排烟功能为一体的新型燃烧器,主要通过蓄热体,利用烟气热量将空气预热至高温,很大地提高热能利用率;同时又采用了分级燃烧和烟气回流技术,减少了燃烧污染的排放量。
蓄热式燃烧器主要有陶瓷蓄热室、燃料喷口、高温空气喷口、绝热管道、换向阀等组成。
燃烧器喷口既是火焰入口又是烟气排出口。
蓄热室大多紧靠在燃烧器上,蓄热体材料的主要成分是氧化铝,一般采用直径为十几毫米的陶瓷球。
近来已发展采用蜂窝陶瓷体作为蓄热体,蜂窝陶瓷蓄热体比陶瓷球蓄热体具有更大的比表面,蓄热效率更高。
蓄热式燃烧器必须成对安装,两个为一组。
其中包括两个相同的燃烧器,两个蓄热器、一套换向阀门和配套控制系统。
如图1所示。
A烧嘴工作时,燃料和空气由A 烧嘴喷入,燃烧生成的火焰加热物料,高温烟气进入B烧嘴,并通过辐射、对流传热将热量传给蓄热体,烟气温度降低到200℃以下经过换向阀排出。
然后换向工作,冷空气通过B烧嘴的蓄热室后,已含热量的蓄热体再以对流换热为主的方式将空气预热至高温(一般空气预热温度与排烟入口温度仅差50~150 ℃),而使传热蓄热体被冷却。
换向阀一般以30~200s的频率进行切换,使两个蓄热体处于蓄热与放热交替工作状态,周而复始地运行。
蓄热式燃烧器多种结构设计及蓄热体情况北京佳德昌科技有限责任公司010-********蓄热式燃烧器⼀.概述⼋⼗年代初,国际上第⼀套蓄热式燃烧系统成功地在⼯业炉上使⽤。
由于其在燃烧及余热回收⽅⾯的⾼性能,⽬前这种燃烧技术已在⼯业化国家得到⼴泛的推⼴应⽤。
北京佳德昌科技有限责任公司近年来⼀直致⼒于对蓄热式⾼温空⽓燃烧技术(简称HTAC技术)的研究。
⽬前已成功地开发出了各种型式的蓄热式烧嘴。
⼆.⼯作原理蓄热式烧嘴其⼯作原理是从⿎风机出来的常温空⽓由换向阀切换进⼊蓄热式燃烧器B后,在经过蓄热式烧嘴B陶瓷球时被加热,在极短的时间内常温空⽓被加热到接近炉膛温度(⼀般⽐炉温低50-100℃),被加热的⾼温热空⽓进⼊炉膛后,卷吸周围炉内的烟⽓形成⼀股含氧量⼤⼤低于21%的稀薄贫氧⾼温⽓流,同时往稀薄⾼温空⽓附近注⼊燃油,燃油在贫氧(2-20%)状态下实现燃烧;与此同时,炉膛内燃烧后的热烟⽓经过另⼀个蓄热式烧嘴A排⼊⼤⽓,炉膛内⾼温热烟⽓通过蓄热式烧嘴A时,将显热储存在蓄热式烧嘴内,然后以低于150℃的低温烟⽓经过换向阀排出。
⼯作温度不⾼的换向阀以⼀定的频率进⾏切换,使两个蓄热式燃烧器处于蓄热与放热交替⼯作状态,从⽽达到节能和降低NO x排放量等⽬的,常⽤的切换周期为30-200秒。
如此周⽽复始变换,通过蓄热体这⼀媒介,排出的烟⽓余热绝⼤部分转换成燃烧介质的物理热,被充分回收利⽤。
三.结构与形式蓄热式燃烧器有壳体、烧嘴砖、装球⼝,格栅、保温层、陶瓷球、卸球⼝、纤维板、纤维棉、连接件、观⽕孔、点⽕长明灯及油枪等部分组成,其内腔装填蓄热陶瓷球。
详见烧嘴安装⽰意图。
四.蓄热体1:蓄热体形状:蓄热体形状有:蜂窝状、球状、⽚状、短圆柱状、空⼼圆柱状、算盘珠状、枣状、空⼼球状等。
经过实际使⽤性能⽐选,⽬前常⽤的形状有蜂窝状和⼩球状两类。
2(c)导热性好;(d)抗热震性好;(e)耐腐蚀。
●蓄热体的材质分为⾼温、中温、低温三种,相应的材质是:(a)刚⽟莫来⽯:含Al2O3﹥90%(b)⾼铝莫来⽯:矿物相化学式3 Al2O3·2SiO2(c)堇青⽯:矿物相化学式2MgO·2Al2O3·5SiO2五.技术特点1.其结构型式类似普通烧嘴,能直接安装在炉⼦侧墙上,因此新建炉⼦炉墙厚度与普通加热炉⼀样,更便于旧炉改造。
RTO英文全称:Regenerative Thermal Oxidize,再生热氧化分解器,又称蓄热式焚烧器。
1、待处理的低温废气经引风机进入蓄热式的陶瓷蓄热体,陶瓷蓄热体释放热量温度较低,有机废气受热升至较高的温度后进入氧化(燃烧)室;废气升温温度的高地取决于陶瓷蓄热体数量、废气流速以及陶瓷蓄热体几何结构。
2、在氧化始终燃烧器补燃,是废气升至设定的氧化温度(800℃),废气中的有机成分被分解成水和二氧化碳。
由于废气再蓄热室内已被预热至500℃左右,所以外加燃料消耗较少。
氧化室有两个作用:一是保证废气能达到设定的氧化温度,二是保证废气有足够的停留时间,从而使其中的VOCs充分氧化。
3、净化后的高温废气离开氧化室,进入蓄热室2,释放热量,温度降低后经烟囱向空排放;而蓄热室2的陶瓷蓄热体吸热,“贮存”大量的热量;一般情况下,RTO设备的排气温度比进气温度高出30~40℃。
4、一个循环完成后,进气与出气阀门进行一次切换,进入下一循环,废气由蓄热室2进入升温,净化后的气体由蓄热室1降温排放。
如此不断的交替进行。
在阀门切换过程中,净化气经清扫室反吹蓄热室中的残存废气,从而提高VOCs去除率;RTO的设备净化率一般可达到95%以上。
一、装置优点1、操作费用低,超低燃料费。
有机废气浓度在2000PPM以上时,RTO装置基本不需添加辅助燃料。
2、净化率高,净化率一般在98%以上。
3、可实现全自动化控制,操作简单,运行稳定,安全可靠性高。
4、不存在因压力变化产生的脉冲现象。
5、蓄热室内温度均匀分级增加,加强了炉内传热,换热效果更佳,炉膛容积小,降低了设备的造价。
6、采用分级燃烧技术,延缓状燃烧下释出热能;炉内升温匀,烧损低,加热效果好,不存在传统燃烧过程中出现的局部高温高氧区,抑制了热力型氮氧化物(NOX)的生成,无二次污染。
7、废气进口设置惰性氧化铝瓷球,对蓄热陶瓷起到保护、缓冲、过滤的作用,延长蓄热陶瓷的使用寿命。
rco蓄热式催化燃烧设备的燃烧值【原创实用版】目录一、RCO 蓄热式催化燃烧设备概述二、RCO 蓄热式催化燃烧设备的燃烧值三、RCO 蓄热式催化燃烧设备的特点与优势四、RCO 蓄热式催化燃烧设备在废气处理中的应用五、RCO 蓄热式催化燃烧设备的未来发展趋势正文一、RCO 蓄热式催化燃烧设备概述RCO 蓄热式催化燃烧设备(简称:RCO)是将低温催化氧化与蓄热技术相结合的一种有机废气处理设备,应用于处理中、高浓度有机废气净化的环保设备。
RCO 催化燃烧设备是在 RTO 蓄热式焚烧设备的基础上发展而来,在蓄热设备的蓄热陶瓷层上布置一层催化剂,使进入的废气在200-400 度下进行催化燃烧分解成二氧化碳和水,从而达到净化废气的目的。
二、RCO 蓄热式催化燃烧设备的燃烧值RCO 蓄热式催化燃烧设备的燃烧值通常取决于处理废气的有机物含量、废气流量、催化剂的活性等因素。
在实际应用中,RCO 设备的燃烧值往往需要根据具体情况进行实验测定,以确保设备达到最佳的净化效果。
三、RCO 蓄热式催化燃烧设备的特点与优势1.中低温氧化分解:RCO 催化燃烧设备采用催化剂,使废气在中低温度下进行催化燃烧,降低了能耗,同时避免了高温对设备和废气的影响。
2.燃烧值高:由于 RCO 设备采用了蓄热技术,热回收率高达 95%,使得燃烧值相对较高,有利于降低运行成本。
3.适应性强:RCO 蓄热式催化燃烧设备适用于各种中、高浓度有机废气净化,净化效果好,操作简便。
4.无二次污染:经反应后的废气转化为无毒的二氧化碳和水,避免了二次污染。
四、RCO 蓄热式催化燃烧设备在废气处理中的应用RCO 蓄热式催化燃烧设备广泛应用于化工、涂装、印刷、电子、制药等行业的有机废气净化处理。
在实际应用中,RCO 设备能够有效地降低废气排放浓度,减少环境污染,同时提高企业环保形象。
五、RCO 蓄热式催化燃烧设备的未来发展趋势随着环保法规的日益严格,以及企业对环保意识的不断提高,RCO 蓄热式催化燃烧设备在未来将有更广泛的应用前景。
蓄热式燃烧,又称作RTO,是一种高效有机废气治理设备。
原理是在高温下将可燃废气氧化成对应的氧化物和水,从而净化废气,并回收废气分解时所释放出来的热量,废气分解效率达到99%以上,热回收效率达到95%以上。
RTO 主体结构由燃烧室、陶瓷填料床和切换阀等组成。
根据客户实际需求,选择不同的热能回收方式和切换阀方式,本文将具体为您进行说明,希望能够对您有所帮助。
一、工作原理在开工时先用新鲜空气代替有机废气,借燃烧器将蓄热室加热到一定温度。
由于蓄热体具有极高的储热性能,所以从一个冷的RTO加热到800-850℃,并且还要达到正常的温度分布,一般要经过几天时间(目前也有缩短到以小时计)。
在正常操作时,比如蓄热室A已在前一个操作循环(或称周期)中存储了热量,有机废气首先从底部进人蓄热室A,废气通过蓄热体床层被预热到接近燃烧室温度,而蓄热体同时逐渐被冷却;接着,预热后的废气进人顶部燃烧室(即主反应区,气体在燃烧室中的停留时间约为1s),在燃烧室中有机化合物被氧化后,即作为高温净化气进人蓄热室B。
此时,净化气将热量传给蓄热体,蓄热体床层逐渐被加热,而净化气则被冷却后排出。
当蓄热室A冷却到尚可允许的温度水平时,就应切换气流的流向,即完成1个循环。
切换流向后,有机废气进入已被加热过的蓄热室B,反应后的净化气则将热量传给已冷却的蓄热室A,如上所述一样,完成第2个循环。
这样通过不断反复循环操作来实现废气的净化和热量的充分利用。
一个循环时间,即切换时间大约为30-120s (两个切换时间就是一个全周期时间)。
如果废气中可燃物浓度达到自供热操作的水平,那么燃烧器只需在开工时使用,在正常运转时可以关闭。
若对有机废气的净化率要求很高,则可采用两种方法:一种是延长循环时间的操作方法,但这样会使热效率降低;另一种常用的方法是增加一台冲洗用蓄热室,即采用三室RTO装置。
二、优点1.几乎可以处理所有含有机化合物的废气;2.可以处理风量大、浓度低的有机废气;3.处理有机废气流量的弹性很大(从气体名义流量的20%-120%);4.可以适应废气中voc的组成和浓度的变化、波动;5.对废气中夹带少量灰尘、固体颗粒不敏感;6.在所有热力燃烧净化法中热效率最高(>95%);7.在合适的废气浓度条件下(一般>2-3g/m3,视VOC的热值而定)无需添加辅助燃料而实现自供热操作;8.净化率较高(三室>99%,两室95%-98%);9.维护工作量少、操作安全可靠;10.有机沉积物可周期性地清除,蓄热体可更换;11.整个装置的压力损失较小(RTO装置系统总压力损失一般<3000Pa,随所用蓄热体的结构类型、气体速度而变);12.装置使用寿命较长。
蓄热式燃烧器的工作原理
嘿,咱今儿就来唠唠蓄热式燃烧器的工作原理。
你说这蓄热式燃烧器啊,就像是一个特别会过日子的巧媳妇!
它的工作呢,其实挺神奇的。
就好比是一场接力赛,这边烧热了,赶紧把热量存起来,然后传给下一波。
想象一下,有两个房间,一个房间在加热,等热得差不多了,就把热气赶紧转移到另一个房间去,同时这边又开始新一轮的加热,周而复始,多高效啊!
它里面有个关键的东西叫蓄热体,这玩意儿就像是个超级大热水袋,能把热量给攒起来。
当燃烧的火焰在这边使劲烧的时候,蓄热体就把热量吸得满满的。
等火焰跑到另一边去了,这边的蓄热体就开始释放热量,把周围的空气啊啥的都给加热了。
这一来一回的,不就把能量充分利用起来了嘛!
你说这是不是很有意思?这可不像有些东西,热了就热了,白白浪费好多热量。
蓄热式燃烧器可不会干这种傻事儿!它就这么聪明地把热量玩得团团转。
而且啊,它还特别节能呢!你想想,要是热量都浪费掉了多可惜啊,这蓄热式燃烧器就把这些要跑掉的热量都给抓住了,让它们继续发挥作用。
这就好比你买了个大西瓜,吃完瓜瓤,那瓜皮也不能浪费啊,还能炒个菜啥的,多划算!
它在好多地方都大显身手呢!比如一些工厂里,有了它,那能源利用率蹭蹭往上涨。
这可给工厂省了不少钱呢,老板们能不喜欢嘛!
你再想想,要是没有蓄热式燃烧器,那得浪费多少能源啊,环境不也得受影响嘛!它这可是为环保也出了一份力呢。
总之啊,蓄热式燃烧器这东西,真的是个宝!它的工作原理虽然不复杂,但是作用可大了去了。
咱得好好珍惜它,让它更好地为我们服务呀!你说是不是这个理儿?。
蓄热陶瓷是RTO中非常重要的一种材料。
它也被称为蓄热体,或者蓄热填充物,我们可以把它当做一个换热器,就是蓄热式换热器。
其工作原理就是:当冷气通过热的蓄热体的时候,蓄热体将存储的热量释放,使得废气加热到所需的预热温度而蓄热体本身被冷却(冷周期),预热后的气体进入燃烧室,经反应后热的净化气通过冷的蓄热体时,蓄热体吸收净化气体的热量,使气体冷却而蓄热体本身被加热(热周期)。
作为有机废气净化装置的RTO来讲,对蓄热体的要求主要包括:蓄热体材质的物理、化学性能,蓄热体结构的机械性能,以及蓄热体几何结构的流体力学和换热性能。
一、那么它有什么特点呢(1)耐高温 RTO装置的操温度一般为750~950℃,因此要选用能耐温度1200℃左右的材质作为蓄热体,通常用陶瓷材料。
(2)具有较高的热容量蓄热体蓄热能力的大小主要取决于其质量及其材料的密度和比热容。
密度与比热容之积越大,则表示其单位容积的蓄热能力也大,即在达到同样的蓄热量情况下,装置的容积可以做得小些。
因此,蓄热体的材料应具有高密度和高比热容的特性。
(3)具有良好的热传性能和优良的导热和热辐射性能即在冷周期时能将热量迅速传递给较冷的废气;而在热周期时又能迅速吸收净化气的热量。
(4)具有良好的抗热震性能因为蓄热体是处于周期性的冷却和加热状态,所以必须能抵抗经常冷、热交替的温度变化。
若蓄热体不能经受反复的温度变化,则蓄热体就会破碎而堵塞气流通道,从而使床层压降升高,甚至不能操作。
(5)在高温下具有足够的机械强度陶瓷材料自身很重,不允许受压而破裂,否则会增加床层的阻力。
(6)抗高温氧化和耐化学腐蚀例如能耐废气燃烧后产生的SO2、HCl等腐蚀性气体。
(7)蓄热体的几何结构应具有足够的流通截面积,并使气体分布均匀、阻力低等特性,并尽可能具有较大的比表面积,以确保蓄热体具有较大的有效传热面积。
(8)价格应尽可能低廉,而使用寿命又要长。
就目前RTO装置常用的蓄热体而言,陶瓷矩鞍环的寿命要求达到5年,而陶瓷蜂窝填料的寿命要求达到10年,但前者的价格仅为后者的1/5左右。
rto陶瓷标准RTO(蓄热式焚烧炉)陶瓷蓄热体作为一种重要的环保设备部件,具有优良的耐高温、抗氧化、耐腐蚀等性能。
在选择和应用RTO陶瓷蓄热体时,需要遵循一定的标准和原则。
以下是一些建议:1. 材料选择:陶瓷蓄热体材料应具有高耐火度、良好的抗热震性、高机械强度和良好的性价比。
常用的陶瓷蓄热体材料包括刚玉、莫来石、堇青石等。
在同一蓄热室内,建议采用两种材料,由炉内方向至炉外方向依次采用刚玉、莫来石、堇青石质(或相近材质),以达到抗热震性和耐火度的最佳优化。
2. 结构设计:陶瓷蓄热体应具有合适的比表面积、阻力损失小、热胀冷缩系数小等特点。
常见的结构形式包括散堆材料(如颗粒填料,如矩鞍环)和规整填料(如蜂窝填料和板波纹填料)。
为降低床层阻力,建议采用规整填料,尤其是蜂窝状陶瓷蓄热体。
3. 尺寸和形状:陶瓷蓄热体尺寸应根据RTO设备的具体需求和工艺条件进行设计。
常见的尺寸包括150mm×150mm×150mm或150mm×150mm×300mm的柱状蓄热体。
在实际应用中,可根据空燃比、气体流量、蓄热体间距等因素进行调整。
4. 质量检测:在选择陶瓷蓄热体时,应进行相关质量检测,确保其性能满足RTO设备的要求。
检测项目包括耐火度、抗热震性、机械强度、氧化性等。
5. 应用注意事项:- 严格控制空燃比,减小钢坯的氧化烧损,控制氧化亚铁的生成量,防止氧化亚铁被吸入蓄热烧嘴内,造成蜂窝体的损坏。
- 确保天然气的不完全燃烧,避免在蓄热体内产生污染物。
- 在安装和维修过程中,注意防止陶瓷蓄热体的破损,以免影响设备性能。
总之,在选择和应用RTO陶瓷蓄热体时,应根据实际工艺需求和条件,综合考虑材料、结构、尺寸、质量等因素,确保陶瓷蓄热体在RTO设备中发挥良好的蓄热效果。
同时,遵循相关标准和注意事项,确保设备的安全、稳定和高效运行。
rco蓄热式催化燃烧设备原理RCO蓄热式催化燃烧设备是一种高效的废气治理设备,主要用于处理有机废气和挥发性有机物(VOCs)。
它通过利用催化剂催化氧化废气中的有害物质,将有害物质转化为无害物质,并将热能储存起来,用于后续的废气处理。
RCO蓄热式催化燃烧设备的原理如下:1.蓄热RCO设备中通常包含一层或多层层间填充物,例如陶瓷球、陶瓷网等。
当废气通过填充层时,填充物会吸收并蓄热。
这样,废气中的热能就会被存储在填充物中。
2.催化氧化在废气通过填充层的同时,废气中的有机物质将与催化剂相互作用。
催化剂可以是金属氧化物、贵金属等,它们可以提供活性中心,促进有机物质的氧化反应。
通过催化剂作用,废气中的有机物质被催化氧化为二氧化碳和水蒸气等无害物质。
3.废气处理经过蓄热和催化氧化处理后,废气中的有害物质已被转化为无害物质。
此时,废气通过排风系统排出,进行进一步的处理或直接释放到大气中。
蓄热过程中储存的热能也可以用于提供其他设备的热能需求。
RCO蓄热式催化燃烧设备具有以下优点:1.高效RCO设备可以高效地催化氧化有机废气,转化率高,能够将有害物质完全转化为无害物质。
2.节能设备中的储热填料可以储存热能,使之不被浪费。
这些热能可以用于提供其他设备的热能需求,降低额外能源的消耗。
3.环保通过催化氧化转化,RCO设备能够将有机废气中的有害物质彻底转化为无害物质,减少对环境的污染。
4.稳定性好RCO设备运行稳定,对废气组成和流量变化具有较好的适应性。
总之,RCO蓄热式催化燃烧设备的工作原理是通过蓄热和催化氧化两个步骤实现废气中有机物质的转化,具有高效、节能和环保的特点,广泛应用于各个领域的废气治理中。
一,设备简介蓄热式燃烧器是在极短期内把常温空气加热,被加热的高温空气进入炉膛后,卷吸周围炉内的烟气形成一股含氧量大大低于的稀薄贫氧高温气流,同时往稀薄高温空气附近注入燃料,燃料在贫氧( )状态下实现燃烧。
同时,炉膛内燃烧后的热烟气经过另一个蓄热式燃烧器排空,将高温烟气显热储存在另一个蓄热式燃烧器内。
工作温度不高的换向阀以一定的频率进行切换,常用的切换周期为秒。
两个蓄热式燃烧器处于蓄热与放热交替工作状态,从而达到节能目的。
1.实现了蓄热体温度效率、热回收率和炉子热效率三高作为一个回收烟气余热的燃烧系统,温度效率、热回收率和炉子热效率可以说是衡量它热工性能优劣的主要指标。
国内外大量生产实际的测试数据表明,在适当的换向周期下,经过蓄热体后的高温空气温度和进入蓄热体的烟气温度十分接近,仅差100℃摆布,温度效率高达95%摆布,热回收率为80%摆布。
炉子热效率得到了较大的提高。
2.加热质量好,氧化烧损小由于高温空气燃烧技术是属于低氧空气燃烧范畴,而且助燃空气的切入点和燃料切入点与传统的燃烧方法不一样,从而避免了高温火焰过分集中造成的炉内各区域温差大的弊病,同时也减少了高温氧化烧损的可能性。
由于炉温的均匀程度大大提高,被冶炼的物料加热质量得到了充分保证。
3.节能效果显著蓄热式燃烧系统与传统燃烧系统比,热回收率大大提高,节能效果特殊明显,其节能率往往达到40~50%。
这对于传统燃烧系统来说几乎是不可能的。
4.合用性较强,能用于多种不同工艺要求的工业炉由于蓄热式燃烧系统的炉温均匀性好,炉温波动小,不存在高温区过分集中及火焰对工件的冲刷等问题,所以它的合用范畴较宽。
目前己在大中型推钢式及步进式轧钢加热炉、均热炉、罩式热处理炉、辐射管气体渗碳炉、钢包烘烤炉、玻璃熔化炉、熔铝炉、锻造炉等工业炉上使用。
不管是采用蓄热式燃烧器的炉子或者蓄热式工业炉,在实际运行中都比较稳定可靠,取得了比较好的经济效益和社会效益。
5.建设投资相对不高,投资回收期短从全国冶金行业已经改造或者新建的二十余座蓄热式工业炉情况来看,将传统燃烧方式的工业炉改造为蓄热式工业炉的投资比仍采用传统燃烧方式的炉子要高,但是在同等要求下新建蓄热式工业炉与新建传统燃烧方式的工业炉投资基本相当或者略有上升。
蓄热式陶瓷燃烧器
蓄热式陶瓷燃烧器的系统主要包括:用蜂窝陶瓷或蓄热小球等做成的蓄热体,燃烧器,空气和烟气的切换装置(换向阀)及其相应的控制系统,如下图所示:
一个蓄热式燃烧单元至少有两个燃烧器本体、两个体积紧凑的蓄热室、换向阀和与之配套的控制系统组成,即应用蓄热式(高温空气)燃烧技术的炉子燃烧器需成对安装,可在同一侧,亦可相对放置。
当燃烧器A工作时,产生的大量高温烟气经由燃烧器B排出,与蓄热体换热后,可将排烟温度降到200℃以下,一定时间间隔后,切换阀使助燃空气通过B的蓄热体,空气将立刻被预热到烟气温度的80%~95%以上。
燃烧器B启动的同时,燃烧器A停止工作,转为排烟和蓄热装置。
通过这种交替运行方式,实现“烟气余热的极限回收”和“助燃空气的高温预热”。
如上图所示,高效蓄热体材料特性、燃烧器、换向阀的质量及换向时间的长短是保证高温空气燃烧的关键。
(1)蓄热体
蓄热体是高温空气燃烧技术中最关键的部件。
在与燃烧空气或高温燃烧废气进行直接接触的过程中,蓄热体就是一个热交换器,因此,要求蓄热体具有较大的传热面积和持久的传热性能。
此外,尽可能选用报废后不会污染环境的材料。
目前蓄热体一般采用陶瓷小球或蜂窝陶瓷。
(2)燃烧器
蓄热式陶瓷燃烧器(RCB)好比均热炉的一个燃烧通道,结构简单也可做成燃烧器。
煤气喷嘴从燃烧器后部插入,此时由于燃烧器中温度很高,在排烟状态下,需对煤气喷嘴进行冷却,由于空气(或煤气)已被预热到很高的温度,故空气与煤气间不需要布置混合装置就能很好的燃烧。
在实际使用过程中,一个燃烧器配一个蓄热室,也可多个燃烧器共用一个蓄热室。
如上图所示,模式A表示燃烧器A处于燃烧状态,燃烧器B处于排烟状态。
燃烧所需空气经过换向阀,再通过燃烧室A,被其预热后在燃烧器A中与燃料混合,燃烧生成的火焰加热物料,高温废气通过燃烧器B进入蓄热室(B处于排烟状态),将其中的蓄热球加热,
再经过换向阀后排往大气。
持续一定时间(如30s)后,控制系统发出换向指令,操作进入模式B所示的状态,此时燃烧器B处于燃烧状态,燃烧器A处于排烟状态:燃烧空气进入蓄热室B时被预热,在燃烧器B中与燃料混合,废气经蓄热室A,将其中蓄热球加热后排往大气。
持续与A过程相同的时间后,又转换到模式A过程,如此交替循环进行。
(3)换向阀
根据文献的报道,在HTAC技术中,由于必须在一定的时间间隔内实现空气与烟气的频繁切换,因此,换向阀是其关键部件之一。
目前使用的换向阀主要有:五通换向阀、直通式四通换向阀和旋转式四通换向阀等。
传统的二位五通换向阀阀位变换是靠空气或电力驱动,一根阀杆有两块阀板,交替开闭不同气体通道,达到换向目的。
这种阀体积庞大,采用集中换向,管路系统复杂,如下图所示:
旋转式四通换向阀是角位移阀,不管管道直径多大,阀杆旋转90°就能达到换向目的,所以此阀体积小,动作十分灵活;另外,此阀的特殊密封结构,大大改善了其密封性能,使用寿命比较长。
直通式(升降开闭式)四通换向阀用一只阀代替了四只阀,使整个换向系统集中简洁。
该阀共有4个气体通道,换向时靠气缸或液压缸带动两根阀杆升降,阀杆上的阀板用以开闭不同气体通道,完成空气(燃气)烟气的换向。
这种阀相对较小,采用分散控制方式,使操作更加灵活,从而实现对炉温的精确控制,并可达到均衡的炉温。