机载激光雷达数据获取技术规范
- 格式:ppt
- 大小:406.00 KB
- 文档页数:58
智慧地球NO.12 202339智能城市 INTELLIGENT CITY 机载LiDAR在山区1∶500地形图测绘中的应用汪家意 王君 田泽海(广州市城市规划勘测设计研究院,广东 广州 510060)摘要:山区1∶500地形图测绘难度较大,植被遮挡严重,倾斜摄影技术无法获取植被覆盖层下的真实高程数据。
文章选定一块区域作为试验区,结合机载激光雷达与倾斜摄影技术,利用机载激光雷达(LiDAR)获取地面点云数据生成山区等高线并采集高程点数据,再利用倾斜摄影的三维模型成果基于eps平台内业采集其他地形要素并最终成图。
结果表明,山区地面点云成果高程中误差为12 cm,山区地形图的高程中误差为14 cm,满足要求。
关键词:机载激光雷达;倾斜摄影;1∶500地形图测绘中图分类号:P217文献标识码:A文章编号:2096-1936(2023)12-0039-03DOI:10.19301/ki.zncs.2023.12.0111∶500地形图测绘是国土空间规划的重要基础数据,精度要求高,测图时需要获取地面精准的高程信息。
以往采用全野外数字化地形图测绘,先进行图根控制测量,再利用全站仪在图根控制点上摆站,施测所有可见的要素,内业计算出碎步点并打印白纸图到外业实地连线并进行属性调查,最后根据成图要求基于成图平台进行内业成图,外业工作量大、作业效率低、可达性不足。
倾斜摄影数字化地形图测绘是近几年兴起的一种作业方法,在地面进行像控点测量,利用无人机搭载五镜头相机获取影像数据,再基于内业处理软件进行空三加密与优化、模型构建、纹理映射、模型修饰与优化等操作,相较于全野外数字化地形图测绘的方法,外业工作量大幅度减少,作业效率显著提升[1-2],但成果精度易受天气、光线等因素影响,同时无法应用于采密集建筑、植被茂密等有遮挡的区域,因此难以应用于山区大比例尺地形图测绘。
倾斜摄影测量与全野外数字化地形图测绘都有各自的优缺点,当前主流的全野外数字化地形图测绘方法是将两种方法结合,在视野开阔的无遮挡区域,如施工地、路面、水系等区域使用倾斜摄影测量的方法作业,在植被遮挡严重和建筑密集区域使用全野外的方法作业。
机载三维激光雷达(LIDAR)扫描测量技术在长输管道测量中的应用摘要:本文论述了机载三维激光雷达扫描测量技术在长输管道测量中的应用,并结合实际论述了该技术的方法和特点,该方法在管道测量中充分体现了其高精度、高密度、高效率、产品丰富等特点,为今后该技术在长输管道勘察设计中的应用提供了有力的技术支持。
关键词:机载激光雷达;激光点云;正射影响;数字高程模型1机载LIDAR技术简介机载三维激光雷达扫描测量(以下简称机载LIDAR- Light Detection and Ranger)技术是继GPS以来在测绘遥感领域的又一场技术革命。
LIDAR是一种集激光、全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。
机载激光扫描可以获取更小的目标信息,如高压线,可以穿透植被等覆盖物获得地面点数据,而且可实时得到地表大范围内目标点的三维坐标,同时它也是目前唯一能测定森林覆盖地区地面高程的可行技术,可以快速、低成本、高精度地获取三维地形地貌、航空数码影像及其它方面的海量信息。
特别是对长输管网工程地处山区密林、植被茂密、无人进入的区域,传统的测量技术无法满足工期的要求,而且人员进入测区非常困难,因此,本项目的测绘工作,采用了机载三维激光雷达扫描测量。
2技术内容2.1获取数据的方法和原理机载激光雷达测量系统设备主要包括三大部件:机载激光扫描仪、航空数码相机、定向定位系统POS(包括全球定位系统GPS和惯性导航仪IMU)。
其中机载激光扫描仪部件采集三维激光点云数据,测量地形同时记录回波强度及波形;航空数码相机部件拍摄采集航空影像数据;定向定位系统POS部件测量设备在每一瞬间的空间位置与姿态,由GPS确定空间位置,由IMU测量仰俯角、侧滚角和航向角数据。
激光雷达工作原理图LIDAR系统包括一个单束窄带激光器和一个接收系统。
激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。
基于机载LiDAR点云数据的建筑物提取方法研究目录1. 内容概要 (2)1.1 研究背景 (2)1.2 研究目的 (3)1.3 研究意义 (4)1.4 国内外研究现状 (5)2. 数据预处理 (7)2.1 数据获取与格式转换 (8)2.2 数据清洗与降采样 (9)2.3 数据配准与融合 (12)3. 特征提取 (13)3.1 LiDAR点云数据分类 (14)3.2 建筑物几何信息提取 (15)3.3 建筑物表面纹理信息提取 (16)3.4 建筑物语义信息提取 (17)4. 建筑物提取方法 (19)4.1 基于区域生长的建筑物提取方法 (20)4.2 基于边缘检测的建筑物提取方法 (22)4.3 基于深度学习的建筑物提取方法 (23)5. 实验与分析 (24)5.1 实验数据集介绍 (25)5.2 实验结果对比分析 (26)5.3 结果可视化展示 (27)6. 结论与展望 (28)6.1 主要研究成果总结 (30)6.2 存在问题与不足之处 (30)6.3 进一步研究方向建议 (31)1. 内容概要本文针对基于机载LiDAR点云数据提取建筑物的研究问题,深入探讨了高效、准确的建筑物提取方法。
简要概述了建筑物特征及其在LiDAR数据中的体现,并分析了目前常用的建筑物提取方法的优缺点。
介绍了本文采用的基于多尺度融合特征的建筑物提取方法,包括数据预处理、特征提取、分割算法和后处理环节。
详细阐述了融合不同层级特征的策略、算法选择及其原理。
通过实际案例验证了所提方法的有效性,并对提取结果的精度和效率进行了评估,分析了方法的局限性以及未来展望。
1.1 研究背景随着城市化进程的加快和高精度测绘技术的发展,对于城市三维信息的获取与应用需求日益增加。
尤其在高密度城市区域,传统平面地图已不能满足现代城市规划、应急响应和环境保护等需求,转而需要三维精细化模型来全面反映建筑地貌的复杂细节。
机载激光雷达(LiDAR)技术由于其高分辨率、高密度的数据采集能力,成为了获取城市三维结构的关键手段之一。
《机载激光雷达数据获取成果质量检验技术规程》摘要:机载激光雷达技术在测绘、地理信息、环境监测等领域发挥着重要作用,为确保机载激光雷达数据获取成果的质量,制定科学合理的质量检验技术规程至关重要。
本文详细阐述了机载激光雷达数据获取成果质量检验的各个方面,包括数据完整性、准确性、精度、分辨率等检验指标的定义、检验方法和技术要求,旨在为相关从业人员提供全面、系统的质量检验指导,保障机载激光雷达数据的可靠性和有效性,推动该技术在各领域的更广泛应用和发展。
一、概述机载激光雷达技术凭借其高效、高精度、高分辨率等独特优势,近年来在测绘、地理信息、城市规划、资源勘查、环境监测等众多领域取得了广泛的应用和显著的成果。
然而,高质量的数据是实现机载激光雷达技术应用价值的基础,因此对机载激光雷达数据获取成果进行严格的质量检验是必不可少的环节。
制定科学、规范的质量检验技术规程,能够有效地评估数据的质量状况,及时发现并解决存在的问题,确保数据的可靠性和准确性,为后续的数据分析、处理和应用提供坚实的保障。
二、数据完整性检验(一)检验指标定义数据完整性检验主要是检查机载激光雷达数据是否存在缺失、遗漏或不完整的情况。
包括激光点云数据的密度是否均匀,是否存在大面积的空洞区域;回波数据是否完整,是否有缺失的回波信息等。
(二)检验方法1. 数据可视化检查通过专业的数据处理软件对激光点云数据进行可视化展示,观察数据的分布情况、密度均匀性以及是否存在明显的缺失或不连续区域。
检查回波数据的完整性,查看是否有缺失的回波信息。
2. 统计分析对激光点云数据的密度进行统计分析,计算不同区域的点云密度平均值、标准差等指标,判断数据密度的均匀性。
对于回波数据,可以统计回波强度的分布情况,分析是否存在异常的回波缺失区域。
3. 数据量统计统计激光点云数据的总点数、回波点数等数据量指标,与预期的数据量进行对比,检查数据是否符合要求。
(三)技术要求1. 数据可视化检查要求操作人员具备专业的视觉判断能力,能够准确识别数据中的异常情况。
机载激光雷达数据制作技术规程1. 引言1.1 背景介绍机载激光雷达是一种先进的遥感技术,通过搭载在飞行器或卫星上的激光雷达设备,可以对地表进行高精度三维测绘。
随着航空航天技术的不断发展,机载激光雷达在地质勘探、地形测绘、城市规划等领域有着广泛的应用。
在遥感领域,激光雷达技术的应用越来越普遍,但是其数据处理和制作技术依然是一个重要的研究方向。
在这个背景下,本文将围绕机载激光雷达数据的获取、处理、制作等方面展开研究,旨在总结相关技术规程,提高数据处理效率和数据质量,推动激光雷达技术的应用与发展。
1.2 研究目的1. 系统总结机载激光雷达数据获取、处理和制作过程中的关键技术和方法,建立标准化的操作流程,提高数据质量和准确性;2. 探索数据处理流程和制作方法中存在的问题和挑战,寻求相应的解决方案,提升技术水平和应用效果;3. 推动机载激光雷达数据制作技术的创新和进步,为相关领域的应用提供更加可靠、高效的支持,助力科学研究和生产实践的发展。
1.3 研究意义机载激光雷达数据制作技术在遥感领域具有重要的应用价值和广阔的发展前景。
其研究意义主要体现在以下几个方面:机载激光雷达技术在地理信息领域具有广泛的应用,可以实现高精度的地形测量和地物识别。
通过对机载激光雷达数据进行有效的处理和制作,可以为城市规划、土地利用、资源调查等领域提供重要的数据支持。
机载激光雷达数据制作技术对于环境监测和灾害预警具有重要意义。
利用机载激光雷达数据获取的三维地理信息,可以有效监测城市环境的变化,及时预警地质灾害等自然灾害,为相关部门提供决策支持。
机载激光雷达数据制作技术在国防领域也具有重要作用。
可以利用机载激光雷达数据获取的高分辨率地理信息进行军事目标识别和态势分析,提高军事作战效率和战略规划能力。
研究机载激光雷达数据制作技术具有重要的意义,不仅可以推动地理信息领域的发展,还可以为环境监测、国防安全等领域提供技术支持,具有广泛的应用前景和社会意义。
机载LiDAR在1:1000地形图测图中的应用发布时间:2021-05-28T11:28:00.157Z 来源:《基层建设》2021年第3期作者:苏晨阳[导读] 摘要:随着无人机技术的飞速发展,测绘行业近几年发生了翻天覆地的变化,现如今,无人机结合机载LiDAR技术成为了高效采集数据的一种方法。
广东省核工业地质局测绘院广东省广州市 510400摘要:随着无人机技术的飞速发展,测绘行业近几年发生了翻天覆地的变化,现如今,无人机结合机载LiDAR技术成为了高效采集数据的一种方法。
机载LiDAR系统集合了激光雷达,GPS导航系统和惯性导航系统三种系统,可以快速、大面积获取测区内的高密度点云数据,为DEM,DSM,DLG等成果生产提供了快速、可靠的数据依据。
本文以惠东某县的开发区地形测量为例,利用机载LiDAR结合航空摄影测量,对该开发区进行线划图的生产,并进行成果检测,结果表明,LiDAR技术可以满足1:1000比例尺地形图生产的需求。
关键词:LiDAR;无人机;线划图;测绘;Application of airborne LiDAR in 1:1000 topographic mappingSU Chenyang(Surveying and Mapping Institute of Guangdong Province Nuclear Industry Geological Bureau,GuangZhou Guangdong 510400)ABSTRACT:With the rapid development of UA V technology,great changes have taken place in the surveying and mapping industry in recent years.Nowadays,the combination of UA V and airborne LiDAR technology has become an efficient method to collect data.The airborne LiDAR system combines three systems:lidar,GPS navigation system and inertial navigation system.It can quickly and widely acquire high-density point cloud data in the measuring area.It provides fast and reliable data basis for production of DEM,DSM and DLG.Taking the topographic survey of a development area in Huidong as an example,this paper uses airborne LiDAR combined with aerial photogrammetry to produce the DLG of the development area and to test the results.The results show that the LiDAR technology can meet the requirements of 1:1000 scale topographic map production.Keywords:LiDAR;UA V;DLG;Surveying and mapping1引言激光雷达技术简称为LiDAR,是一种集激光雷达,GPS和惯性导航系统三种系统于一体的测量系统,为快速、精确的获取空间信息提供了简单有效手段。
禅思L1数据采集操作操作指南关于如何使用禅思L1,本文整理了数据采集操作建议参数。
其中数据采集注意事项包含作业前注意事项、精度验证、手动数据采集建议参数、地形测绘场景、河道/交通道路测绘场景、电力线场景等内容。
内容基于列表所示固件版本编写,如后续固件更新,请以最新内容为准。
作业中使用RTK定位、惯导预热、惯导校准,作业前的这三个动作能大幅提升作业精度,一定要掌握。
一、RTK定位L1点云数据处理需要获取厘米级定位精度数据才能解算,在进行作业前必连接网络RTK并确保作业时RTK全程FIX。
如不能保证连接,请架设基站并进行后处理。
获取厘米级定位数据的方法如下:1、自架基站方案(D-RTK2)首先,将D-RTK2基站架设到已知点上,并确保测量杆稳固地放置在地面上。
接下来,在M300RTK的设置页面中选择D-RTK2作为GNSS模块,并将D-RTK2的工作模式切换为模式5。
随后,通过适当的对频步骤,将飞行器与D-RTK2基站进行连接。
进入APP的高级模式(默认密码通常为123456),在相应的设置项中,将D-RTK2的坐标修改为已知点的精确坐标。
注意,高程值需要在已知点的高程基础上增加1.8米,以考虑D-RTK2基站的仪器高度。
完成上述设置后,当D-RTK2基站架设并连接妥当,且飞行器在飞行过程中全程保持RTK固定解状态时,L1成果文件中将自动包含基站的相关数据。
若需在不使用RTK模式的情况下进行飞行任务,可以在遥控器的RTK设置中将其设置为“无”,并切换至相应的GNSS模式进行飞行。
任务完成后,使用Type-C线连接D-RTK2基站,将对应时间段内生成的后缀为.DAT的基站数据文件拷贝出来,并放置在与点云原始数据相同的文件夹中。
最后,在大疆智图(DJITerra)软件中进行数据处理时,系统将自动识别并加载这些基站数据文件,从而自动进行后RTK解算,以提高定位精度和数据的准确性。
2、自架基站方案(第三方RTK设备)在面临网络RTK信号不稳定或中断的情况下,可以采取以下优化措施来确保飞行数据的准确性和完整性:1.架设第三方RTK基站:将一台可靠的第三方RTK基站设备精确架设于测区内的已知点上。