第五章 假设检验
- 格式:ppt
- 大小:964.50 KB
- 文档页数:40
第五章 假设检验的功效与样本量∙ 当假设检验不拒绝H 0时,推断正确的概率称为检验功效。
∙ 临床科研中不时遇到假设检验无统计学意义,此时,很有必要对检验功效作出评价。
5.1 两类错误与功效1. 两类错误的概率H 0: μ=μ0, H 1: μ>μ0 (5.1) (略) Z =n X σμ0-(5.2) (略) ∙ 任何假设检验都可能出现两类错误,用两个概率来度量 第Ⅰ类错误概率=P(拒绝H 0|H 0为真)≤α (5.3) 第Ⅱ类错误概率=P(不拒绝H 0|H 1为真)≤β (5.4a) 也可以理解为第Ⅱ类错误概率=P(不拒绝H 0|H 0为假)≤β (5.4b) ∙ 如果将诊断是否患有某病也视为一个假设检验问题: H 0:无病, H 1:有病第Ⅰ类错误:假阳性∕误诊,概率 P(阳性|无病) (α) 第Ⅱ类错误:假阴性∕漏诊,概率 P(阴性|有病) (β) ∙ 两类错误的背景:拒绝H 0时可能犯第Ⅰ类错误不拒绝H 0时可能犯第Ⅱ类错误∙ 两类错误的后果:第Ⅰ类错误可能将“真实无效误作有效”∕误诊 第Ⅱ类错误可能将“真实有效误作无效”∕漏诊 ∙ 一般α, β的数值要在科研设计时事先确定2. 功效 (power)∙ 假设检验发现真实差异的功效就不低于1-β,即 检验功效=P(拒绝H 0|H 1为真)≥1-β(5.5) 检验功效=P(拒绝H 0|H 0为假)≥1-β(5.5) ∙ 功效就是真实有效的药物被发现的概率∕疾病被诊断出来的概率5.2 影响功效的四要素∙ 假设检验的功效至少受四个要素的影响,参看(5.2)式 n X σμ0- ≥Z α (5.6) ∙ 功效的影响因素为:δ=0μ-x ,σ,n ,αX ≥μ0+Z αn σ (5.7) (略) ∙ 现用X 分布图形来定性地讨论四要素对功效的影响1. 客观差异越大,功效越大X ~N(μ,σ2/n) (5.8) (略)若H 0为真,X ~N(μ0,σ2/n) (5.9) (略)若H 1为真,X ~N(μ0+δ,σ2/n) (5.10) (略)2. 个体间标准差越小, 功效越大。
第五章假设检验与回归分析本章主要介绍了假设检验和回归分析两种统计方法。
一、假设检验假设检验是通过收集样本数据来对总体参数的假设进行推断的一种统计方法。
假设检验的步骤如下:1.建立原假设和备择假设:原假设是需要进行检验的参数的假设值,备择假设是对原假设的一种否定或补充。
通常将备择假设设置为我们要验证的假设。
2.收集样本数据:根据样本数据进行统计分析,并计算出检验统计量。
3.确定显著性水平:显著性水平是拒绝原假设的最大错误概率,通常取0.05或0.014.计算拒绝域的临界值:根据显著性水平和自由度,在统计表中查找检验统计量的临界值。
5.比较检验统计量和临界值:如果检验统计量落在拒绝域内,则拒绝原假设,否则接受原假设。
二、回归分析回归分析是一种用于研究两个或多个变量之间关系的统计方法。
它可以用来建立一个变量对另一个变量的预测模型。
回归分析的步骤如下:1.收集数据:根据需要收集自变量和因变量的数据。
2.建立模型:选择适当的回归模型,将自变量和因变量进行数学表达。
3.估计参数:使用最小二乘法等方法,对模型参数进行估计。
4.检验模型:通过检验模型的显著性水平,确定模型是否合理。
5.利用模型:使用估计的模型来进行预测和分析。
回归分析可以分为简单线性回归和多元线性回归两种。
简单线性回归是指只有一个自变量和一个因变量之间的关系,多元线性回归是指有多个自变量和一个因变量之间的关系。
回归分析的应用非常广泛,可以用于市场营销、财务管理、经济预测等领域。
通过回归分析,可以找到影响因变量的主要因素,并对未来的变化进行预测。
总之,假设检验和回归分析是统计学中两种重要的方法。
假设检验用于对总体参数的假设进行验证,回归分析用于研究变量之间的关系。
这两种方法在实际应用中具有广泛的价值。
第五章假设检验本章介绍假设检验的基本概念以及参数检验与非参数检验的主要方法。
通过学习,要求:1.掌握统计检验的基本概念,理解该检验犯两类错误的可能;2.熟练掌握总体均值与总体成数指标的各种检验方法;包括:z 检验、t 检验和p-值检验;4.掌握基本的非参数检验方法,包括:符号检验、秩和检验与游程检验;5.能利用Excel 进行假设检验。
第一节假设检验概述一、假设检验的基本概念假设检验是统计推断的另一种方式,它与区间估计的差别主要在于:区间估计是用给定的大概率推断出总体参数的范围,而假设检验是以小概率为标准,对总体的状况所做出的假设进行判断。
假设检验与区间估计结合起来,构成完整的统计推断内容。
假设检验分为两类:一类是参数假设检验,另一类是非参数假设检验。
本章分别讨论这两类检验方法。
进行假设检验,首先要对总体的分布函数形式或分布的某些参数做出假设,然后再根据样本数据和“小概率原理”,对假设的正确性做出判断。
这种思维方法与数学里的“反证法”很相似,“反证法”先将要证明的结论假设为不正确的,作为进一步推论的条件之一使用,最后推出矛盾的结果,以此否定事先所作的假设。
反证法所认为矛盾的结论,也就是不可能发生的事件,这种事件发生的概率为零,该事件是不能接受的现实。
其实,我们在日常生活中,不仅不肯接受概率为0的事件,而且对小概率事件,也持否定态度。
比如,虽然偶尔也有媒体报导陨石降落的消息,但人们不必担心天空降落的陨石会砸伤自己。
所谓小概率原理,即指概率很小的事件在一次试验中实际上不可能出现。
这种事件称为“实际不可能事件”。
小概率的标准是多大?这并没有绝对的标准,一般我们以一个所谓显著性水平α(0<α<1)作为小概率的界限,α的取值与实际问题的性质有关。
所以,统计检验又称显著性检验。
下面通过一个具体例子说明假设检验是怎样进行的。
【例5-1】消费者协会接到消费者投诉,指控品牌纸包装饮料存在容量不足,有欺骗消费者之嫌。
第五章假设检验5.1 现实中的统计案例一:时下不少大学生在一边学习的同时也不断寻找一些机会打些零工以赚点钱弥补学习和生活之需,这已经是学生们之间人所共知的事情。
这没有丝毫的让人好奇之处,让人好奇的是这些打工的学生究竟一个月平均能赚多少钱?假设有人说:这个数据是500元,你觉得信不信它呢?当然,你首先需要收集证据,没有证据是肯定说明不了任何问题的。
又假设有人通过组织调查取得过如下数据(调查到一共30人,单位:元):350 500 900 100 100 200 240 300 100 320450 260 650 380 290 400 800 400 250 400290 870 540 320 140 160 300 400 500 340 这时你该做何结论?就算是你得到以上数据的平均数等于423元,你是否就可以作出“是”或“不是”的回答?因为你要作出的回答是针对整个总体的,根据却又只是来自部分总体——即样本,所以事实上不论你最终作出的是“是”还是“不是”的回答,其实都存在犯错误的可能。
那么,如何以样本的数据去对总体参数下结论才最科学?才最不容易犯错误呢?这就是一个属于单个总体参数假设检验的问题了,是本章需要解决的问题。
案例二:你可能认为每一个美国人都知道像这样一些简单历史问题的答案“在美国国旗上有多少颗星?有多少条条纹?星代表什么?条纹又代表什么?”。
非常有意思的是,并非每一个人都知道问题的答案,而且当你知道问题的答案时,你也许会大吃一惊的。
1998年美国杂志《Today’s America》就确实做过这么一个调查,所得到的数据肯定多多少少会出乎很多人的意料之外。
下面就是按性别和美国地区列出的知道星的数目的成年人的百分比:男士女士大城市小城镇农村n(知道)72 72 57 56 31n(不知道)22 34 25 16 15在纽约的伊利县里200个成人被问及在美国国旗上有多少颗星。
上面的表现是属于每一类的成人的数目。