第五章 假设检验概述
- 格式:ppt
- 大小:1.01 MB
- 文档页数:38
假设检验课件假设检验课件假设检验是统计学中一种常用的推断方法,用于验证关于总体参数的假设。
在实际应用中,假设检验被广泛用于医学、经济、社会科学等领域。
本文将对假设检验的基本概念、步骤和常见方法进行介绍,并探讨其在实际问题中的应用。
一、假设检验的基本概念1.1 假设在假设检验中,我们需要对总体参数提出一个假设,并通过收集样本数据来判断这个假设是否成立。
一般来说,我们会提出一个原假设(H0)和一个备择假设(H1)。
原假设是我们需要进行检验的假设,备择假设则是对原假设的否定。
1.2 检验统计量检验统计量是用来衡量样本数据与原假设之间的差异程度的统计量。
常见的检验统计量有t值、F值、卡方值等。
通过计算检验统计量,我们可以得到一个观察到的差异程度,并据此进行假设检验。
1.3 显著性水平显著性水平是在假设检验中设定的一个临界值,用于判断原假设是否成立。
一般来说,我们将显著性水平设定为0.05或0.01。
如果计算得到的p值小于显著性水平,则拒绝原假设,否则接受原假设。
二、假设检验的步骤2.1 确定假设在进行假设检验之前,我们需要明确原假设和备择假设。
原假设通常是我们希望进行检验的假设,备择假设则是对原假设的否定。
2.2 选择适当的检验统计量根据问题的具体情况,选择适当的检验统计量进行计算。
不同的问题可能需要使用不同的统计量,例如,对两个总体均值的比较可以使用t检验,对多个总体均值的比较可以使用方差分析等。
2.3 计算检验统计量的值根据样本数据计算出检验统计量的值。
这一步需要根据具体的统计方法进行计算,例如,对于t检验,需要计算出样本均值、标准差和样本容量等。
2.4 计算p值根据检验统计量的值,计算出p值。
p值表示在原假设成立的情况下,观察到与之相差程度或更极端程度的结果出现的概率。
p值越小,说明观察到的差异越显著。
2.5 判断是否拒绝原假设根据显著性水平和计算得到的p值,判断是否拒绝原假设。
如果p值小于显著性水平,我们可以拒绝原假设,认为观察到的差异是显著的;如果p值大于显著性水平,我们则接受原假设,认为观察到的差异不是显著的。
第五章假设检验本章介绍假设检验的基本概念以及参数检验与非参数检验的主要方法。
通过学习,要求:1.掌握统计检验的基本概念,理解该检验犯两类错误的可能;2.熟练掌握总体均值与总体成数指标的各种检验方法;包括:z 检验、t 检验和p-值检验;4.掌握基本的非参数检验方法,包括:符号检验、秩和检验与游程检验;5.能利用Excel 进行假设检验。
第一节假设检验概述一、假设检验的基本概念假设检验是统计推断的另一种方式,它与区间估计的差别主要在于:区间估计是用给定的大概率推断出总体参数的范围,而假设检验是以小概率为标准,对总体的状况所做出的假设进行判断。
假设检验与区间估计结合起来,构成完整的统计推断内容。
假设检验分为两类:一类是参数假设检验,另一类是非参数假设检验。
本章分别讨论这两类检验方法。
进行假设检验,首先要对总体的分布函数形式或分布的某些参数做出假设,然后再根据样本数据和“小概率原理”,对假设的正确性做出判断。
这种思维方法与数学里的“反证法”很相似,“反证法”先将要证明的结论假设为不正确的,作为进一步推论的条件之一使用,最后推出矛盾的结果,以此否定事先所作的假设。
反证法所认为矛盾的结论,也就是不可能发生的事件,这种事件发生的概率为零,该事件是不能接受的现实。
其实,我们在日常生活中,不仅不肯接受概率为0的事件,而且对小概率事件,也持否定态度。
比如,虽然偶尔也有媒体报导陨石降落的消息,但人们不必担心天空降落的陨石会砸伤自己。
所谓小概率原理,即指概率很小的事件在一次试验中实际上不可能出现。
这种事件称为“实际不可能事件”。
小概率的标准是多大?这并没有绝对的标准,一般我们以一个所谓显著性水平α(0<α<1)作为小概率的界限,α的取值与实际问题的性质有关。
所以,统计检验又称显著性检验。
下面通过一个具体例子说明假设检验是怎样进行的。
【例5-1】消费者协会接到消费者投诉,指控品牌纸包装饮料存在容量不足,有欺骗消费者之嫌。
假设检验的基本概念及其应用假设检验是统计学中重要的推断方法之一,用于对统计推断的结果进行判断。
它通过对样本数据进行分析,进行统计推断,并对研究假设进行验证。
本文将介绍假设检验的基本概念,并探讨其在实际应用中的重要性。
一、基本概念1.1 假设检验的定义假设检验是通过对样本数据进行统计分析,对研究假设进行评估的一种方法。
它的基本思想是通过对比样本数据和假设的理论值之间的差异,判断这种差异是否达到了显著水平,从而对研究假设的真实性进行推断。
1.2 假设检验的步骤假设检验通常包括以下步骤:(1)提出假设:根据研究问题和目标,提出原假设(H0)和备择假设(H1);(2)选择检验统计量:根据假设的具体内容,选择适当的检验统计量;(3)确定显著水平:根据研究的具体要求,确定显著水平α;(4)计算检验统计量的值:根据样本数据和所选择的检验统计量,计算出检验统计量的值;(5)做出决策:根据检验统计量的值与临界值或拒绝域的比较结果,对原假设进行接受或拒绝的决策;(6)得出结论:根据所做出的决策,对研究问题进行结论的推断。
二、应用案例为了更好地理解假设检验的应用,我们以医学领域为例进行说明。
2.1 研究背景假设有一种新型药物声称可以显著降低患者的血压水平。
为了验证这一假设,我们进行了一项实验,将患者随机分为两组,一组接受新药治疗,另一组接受安慰剂治疗。
我们希望通过假设检验来判断新药物是否真的具有降低血压的效果。
2.2 假设的建立在这个案例中,我们可以建立以下假设:原假设(H0):新药物对血压水平没有显著影响;备择假设(H1):新药物对血压水平有显著影响。
2.3 检验统计量的选择针对这个案例,我们可以选择相关的检验统计量,如t检验、F检验等。
根据实验设计的不同,选择合适的检验统计量进行分析。
2.4 显著水平的确定在进行假设检验时,我们需要确定显著水平α的大小。
一般情况下,我们选择显著水平为0.05,即α=0.05。
2.5 计算检验统计量的值根据实验数据和所选择的检验统计量,计算出检验统计量的值。