第五章 假设检验(1)
- 格式:ppt
- 大小:149.51 KB
- 文档页数:22
第五章假设检验本章介绍假设检验的基本概念以及参数检验与非参数检验的主要方法。
通过学习,要求:1.掌握统计检验的基本概念,理解该检验犯两类错误的可能;2.熟练掌握总体均值与总体成数指标的各种检验方法;包括:z 检验、t 检验和p-值检验;4.掌握基本的非参数检验方法,包括:符号检验、秩和检验与游程检验;5.能利用Excel 进行假设检验。
第一节假设检验概述一、假设检验的基本概念假设检验是统计推断的另一种方式,它与区间估计的差别主要在于:区间估计是用给定的大概率推断出总体参数的范围,而假设检验是以小概率为标准,对总体的状况所做出的假设进行判断。
假设检验与区间估计结合起来,构成完整的统计推断内容。
假设检验分为两类:一类是参数假设检验,另一类是非参数假设检验。
本章分别讨论这两类检验方法。
进行假设检验,首先要对总体的分布函数形式或分布的某些参数做出假设,然后再根据样本数据和“小概率原理”,对假设的正确性做出判断。
这种思维方法与数学里的“反证法”很相似,“反证法”先将要证明的结论假设为不正确的,作为进一步推论的条件之一使用,最后推出矛盾的结果,以此否定事先所作的假设。
反证法所认为矛盾的结论,也就是不可能发生的事件,这种事件发生的概率为零,该事件是不能接受的现实。
其实,我们在日常生活中,不仅不肯接受概率为0的事件,而且对小概率事件,也持否定态度。
比如,虽然偶尔也有媒体报导陨石降落的消息,但人们不必担心天空降落的陨石会砸伤自己。
所谓小概率原理,即指概率很小的事件在一次试验中实际上不可能出现。
这种事件称为“实际不可能事件”。
小概率的标准是多大?这并没有绝对的标准,一般我们以一个所谓显著性水平α(0<α<1)作为小概率的界限,α的取值与实际问题的性质有关。
所以,统计检验又称显著性检验。
下面通过一个具体例子说明假设检验是怎样进行的。
【例5-1】消费者协会接到消费者投诉,指控品牌纸包装饮料存在容量不足,有欺骗消费者之嫌。