新课标人教版小学五年级下册数学各单元知识点整理
- 格式:doc
- 大小:52.50 KB
- 文档页数:6
8宽是6。
练习:例如:【知识点6】单位换算长度单位:mm、cm、dm、m面积单位:mm2、cm2、dm2、m2 体积单位:mm3、cm3、dm3、m3 容积单位:ml、l三、长方体和正方体的体积【知识点1】容积与体积基本概念体积是指所占空间的大小;容积是指所容纳物体的体积;一个物体的容积一般都比它的体积小。
当容器壁厚度忽略不计时体积=容积;否则体积<容积。
比如说,一个洗发液的瓶子里面所能装下的洗发液的体积就是它的容积。
(容器壁忽略不计)体积计算方法:长方体的体积=长×宽×高正方体的体积=棱长×棱长×棱长长方体和正方体的体积=底面积×高=右面面积×长=前面面积×宽体积相等的两个长方体或者一个长方体与一个正方体,表面积不一定相等,棱长和也不一定相等。
体积相等的两个正方体,表面积一定相等,棱长和也一定相等。
体积相等的情况下正方体的表面积比长方体的小;表面积相等的情况下正方体的体积比长方体的体积大。
【知识点2】体积大小的比较对于液体可以直接比较体积的大小,如果液体体积小于容器既可以装得下,如果大于容器体积则装不下。
对于固体而言,在体积小于容器体积的前提下,还需要比较物体的长宽高于容器的长宽高,只有物体的长宽高都小于或等于容器的长宽高时才可以将物体装入容器。
例如:有一个长为8分米,高位5分米,体积为240平方分米的硬纸盒,有一件陶瓷长为7.4分米,高位4分米,宽为6.5分米,是否可以放入该容器?分析:单纯计算容器和陶瓷的体积我们可以发现:陶瓷体积<硬纸盒体积。
但这并不意味着瓷器就可以装进盒子。
我们还需要观察陶瓷长宽高于容器长宽高的大小。
通过计算硬纸盒的长=8分米宽=240÷(8×5)=6分米高=5分米陶瓷的长=7.4分米宽=6.5分米高=4分米我们可以发现陶瓷的宽比盒子的宽大,所以即使在体积小于盒子的前提下,仍然是装不进去的。
;4知识点易错点汇总★知识点归纳一、轴对称1、定义:把一个图形沿着某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点。
2、性质:对称点到对称轴的距离相等。
3、轴对称图形:指具有特殊形状的一个图形,它可以有一条或多条对称轴。
二、旋转1、定义:把一个图形绕某一点(或轴)转动一定的角度的图形变换叫做旋转。
2、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度钟表中指针运动的方向为顺时针方向,与钟表中指针的运动方向相反的方向为逆时针方向。
3、性质:图形绕着某一点旋转一定的度数,图形的对应点、对应线段都旋转了相应的度数,对应点到旋转点的距离相等,对应的线段和对应的角度相等。
图形旋转后,形状、大小都没有发生变化,只有位置变了。
4、旋转90°的方法(1)找出原图行的关键点或关键线段;(2)借助三角板或量角器作原图行关键点或线段与旋转中心所在线段的垂线(3)在所垂线上量出或数出与原线段相等的长度(即找到原图关键点的对应点);(4)顺次连接所找到的对应点,即可得到原图形旋转90°后的图形。
5、时钟上包含12大格,60小格,时钟上相邻两数字间即为一大格,一大格为30°;每一大格又平均分为了五个小格,一小格为6°三、平移1、定义:指在一个平面内,将一个图形上的所有点都按照某个方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
2、性质:平移不改变图形的形状和大小。
3、图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。
(2)找出原图形的各关键点。
(3)根据题目要求将各个点依次平移,找出各个点的对应点。
(4)顺次连接平移后的各点。
◆习题:1、图形的变换包括:、、。
其中只是改变原图形位置的变换是、。
2、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫()图形,那条直线就是()。
五下第二单元因数与倍数因数与倍数2,3,5的倍数特征质数和合数含义:因数倍数找因数的方法表示因数A.列乘法算式B.列除法算式A.列举法B.集合法找倍数的方法表示倍数因数的特征倍数的特征如果a÷b=c(a,b,c是非0自然数),那么a是b,c的倍数,b,c是a的因数。
A.一个数的因数是有限的B.最小的因数是1,最大的因数是本身A.列乘法算式B.列除法算式A.列举法B.集合法A.一个数的倍数是无限的B.最小的倍数是本身,没有最大的倍数2的倍数特征5的倍数特征3的倍数特征A.末位是0,2,4,6,8的数都是2的倍数B.奇数与偶数偶数是2的倍数(包括0)奇数不是2的倍数末位是0或5的数都是5的倍数各个数位数字之和是3的倍数质数合数1既不是质数也不是合数A.一个数除了1和它本身没有其他因数一个数除了1和它本身还有其他因数B.最小的质数是2C.100以内的质数2357和11,13后面是17,19,23,29;31,37,41;43,47,53;59,61,6771,73,79;83,89,97奇偶性探究五下第三单元长方体和正方体1.长方体和正方体的认识2.长方体和正方体的表面积3.长方体和正方体体积棱长之和A.长方体:4x(长+宽+高)B.正方体:12x棱长长方体的侧面展开图(1)长方体(2)正方体(长x宽+长x高+宽x高)x26x棱长x棱长2x(ab+ah+bh)(1)体积含义:物体所占的空间大小(2)体积单位:立方厘米,立方分米,立方米(3)体积计算公式A.长方体B.正方体长x宽x高棱长x棱长x棱长abh4.容积和容积单位5.求不规则物体的体积(1)含义:容器所能容纳物体的体积(2)容积单位:升L,毫升ml(3)进率:1L=1000ml1L=1立方分米1ml=1立方厘米底面积x高底面积x高(1)等积变形法(2)排水法把不规则的物体转变成规则的计算排水的体积正方体的侧面展开图平方数的总结人教版小数五下第四单元分数的意义和性质1.分数的意义2.真分数和假分数3.分数的基本性质4.约分5.通分6.分数与小数的互化(1)单位“1”的意义(2)分数的意义一些物体可以看成一个整体A.把单位“1”平均分成若干份,表示其中的一份,或者几份。
五年级下册数学1到4单元知识点一、观察物体(三)1. 根据从一个方向看到的图形摆几何体。
- 从一个方向看到的图形,可以摆出多种不同的几何体。
例如,从正面看是3个小正方形排成一行,可能是一层3个小正方体排成一行的长方体,也可能是两层,底层2个小正方体,上层1个小正方体靠左边或者靠右边等多种情况。
2. 根据从三个方向看到的图形摆几何体。
- 从三个方向(正面、左面、上面)看到的图形确定几何体的形状时,一般先根据从上面看到的图形确定几何体的底层形状,然后根据从正面和左面看到的图形确定几何体的层数和每层小正方体的个数等。
二、因数与倍数。
1. 因数和倍数的概念。
- 在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
例如,12÷2 = 6,12是2和6的倍数,2和6是12的因数。
- 因数与倍数是相互依存的,不能单独说某个数是因数或倍数。
2. 找一个数的因数和倍数。
- 找一个数的因数:- 从1开始,一对一对地找。
例如,18的因数有1、2、3、6、9、18。
- 一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
- 找一个数的倍数:- 用这个数分别乘1、2、3……例如,3的倍数有3、6、9、12……- 一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
3. 2、3、5的倍数特征。
- 2的倍数特征:个位上是0、2、4、6、8的数都是2的倍数。
是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
- 3的倍数特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
例如,123各位数字之和为1 + 2+3=6,6是3的倍数,所以123是3的倍数。
- 5的倍数特征:个位上是0或5的数是5的倍数。
- 既是2又是5的倍数特征:个位上是0的数既是2的倍数又是5的倍数。
4. 质数和合数。
- 质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
五年级下册重点知识归纳一、数学(人教版五年级下册)1. 因数与倍数。
- 因数和倍数的概念:如果a× b = c(a、b、c都是非0自然数),那么a和b 是c的因数,c是a和b的倍数。
例如3×4 = 12,3和4是12的因数,12是3和4的倍数。
- 一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
- 2、3、5的倍数特征:- 2的倍数特征:个位上是0、2、4、6、8的数是2的倍数。
- 3的倍数特征:一个数各位上的数字之和是3的倍数,这个数就是3的倍数。
- 5的倍数特征:个位上是0或5的数是5的倍数。
- 既是2又是5的倍数特征:个位上是0的数。
- 质数与合数:- 质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
例如2、3、5、7等。
- 合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
例如4、6、8、9等。
- 1既不是质数也不是合数。
2. 长方体和正方体。
- 长方体:- 长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形),相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点。
- 长方体的棱长总和=(长 + 宽+高)×4。
- 长方体的表面积=(长×宽+长×高+宽×高)×2。
- 长方体的体积 = 长×宽×高,用字母表示V = abh。
- 正方体:- 正方体是特殊的长方体,正方体的6个面都是正方形,6个面完全相同;12条棱长度都相等;8个顶点。
- 正方体的棱长总和=棱长×12。
- 正方体的表面积 = 棱长×棱长×6,用字母表示S = 6a^2。
- 正方体的体积=棱长×棱长×棱长,用字母表示V=a^3。
- 体积单位:- 常用的体积单位有立方厘米、立方分米、立方米。
最全面人教版五年级数学下册知识点归纳总结一、图形的变换图形变换的基本方式是平移、对称和旋转。
1、轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。
(2)圆有无数条对称轴。
(3)对称点到对称轴的距离相等。
(4)轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。
3、对称图形包括轴对称图形和中心对称图形。
平行四边形(除棱形)属于中心对称图形。
2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。
(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确绕点,角度和方向。
(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。
等边三角形绕中点旋转120度与原来重合。
旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是唯一不动的点。
3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数二、因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
第一单元小数除法1.小数除法的意义:与整数除法的意义相同,是已知两个因数的积与其中一个因数,求另个因数的运算。
2.小数除法的计算法则:(1)除数是整数:①按照整数除法的法则去除;②商的小数点要和被除数的小数点对齐(重点!)③每一位商都要写在被除数相同数位的上面。
④如果除到末尾仍有余数,在被除数的个位数的右边点上小数点,再在被除数的后面添上“0”继续除,直到除尽为止。
⑤除得的商的哪一数位上不够商,就在那一位上写0占位。
(2)除数是小数:①先看除数中有几位小数,就把除数和被除数的小数点向右移动相同的位置,使除数变成整数,当被除数数位不够时,用0补足;②然后按照除数是整数的小数除法计算。
3、商不变的规律:被除数扩大a倍(或缩小),除数也扩大(或缩小)a倍,商不变。
简言之,被除数和除数同时扩大或者同时缩小相同的倍数,商不变。
4、被除数不变,除数扩大(或缩小)a倍,商缩小(或扩大)a 倍。
被除数扩大(或缩小)a倍,除数不变,商扩大(或缩小)a 倍。
5、被除数比除数大的,商大于1。
被除数比除数小的,商小于1。
6、一个数(0除外)除以1,商等于原来的数。
(一个数除以1,还等于这个数)一个数(0除外)除以大于1的数,商比原来的数小。
一个数(0除外)除以小于1的数,商比原来的数大。
0除以一个非零的数还得0 。
0不能作除数。
7、8、近似值相关知识点:(1)求商的近似值:计算时要比保留的小数多一位。
求积的近似值:计算出整个积的值后再去近似值。
(2)取商的近似值的方法:“四舍五入”法、“进一法”和“去尾法”在解决问题的时候,可以根据实际情况选择“进一法”和“去尾法”取商的近似值。
(3)保留商的近似值,小数末尾的0不能去掉。
9、循环小数相关知识点:(1)小数分类:可以分为无限小数和有限小数。
小数部分的位数是有限的小数,叫做有限小数。
小数部分是无限的小数叫做无限小数。
循环小数就是无限小数中的一种。
(2)循环小数的定义:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
XX五年级数学下册第三单元知识点总结(新人教版)第一篇:XX五年级数学下册第三单元知识点总结(新人教版) XX五年级数学下册第三单元知识点总结(新人教版)课件 第三单元长方体和正方体1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体特点:(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
相同点不同点面棱长方体都有6个面,12条棱,8个顶点。
6个面都是长方形。
(有可能有两个相对的面是正方形)。
相对的棱的长度都相等正方体6个面都是正方形。
12条棱都相等。
3、长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12L=a×12正方体的棱长=棱长总和÷12a=L÷124、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-abS=2(ah+bh)+ab无底又无盖长方体表面积=(长×高+宽×高)×2S=2(ah+bh)贴墙纸正方体的表面积=棱长×棱长×6S=a×a×6用字母表示:S=6a2生活实际:油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。
人教版五年级下册数学重点知识第一单元观察物体1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面。
第二单元:因数与倍数1、一个数因数的个数是有限的,一个数倍数的个数是无限的。
2、一个数的最小因数是1,最大因数是它本身。
一个数的最小倍数是它本身,没有最大倍数。
3、整数中,是2的倍数的数叫做偶数(0也是偶数)。
不是2的倍数的数叫做奇数。
4、2的倍数的特征:个位上是0、2、4、6、8的数。
5的倍数的特征:个位上是0或5的数。
3的倍数的特征:一个数各个数位上的数相加的和是3的倍数。
2和5的倍数的特征:个位上是0的数。
2、3、5的倍数的特征:个位是0并且各个数位上的数字之和能被3整除的数。
5、最小的偶数是0,最小的奇数是1;最小的质数是2,最小的合数是4。
6、奇数偶数的性质(1)奇数+奇数=偶数;偶数+偶数=偶数;偶数+奇数=奇数;(2)奇数-奇数=偶数;偶数-偶数=偶数;偶数-奇数=奇数;奇数-偶数=奇数;(3)奇数×奇数=奇数;偶数×偶数=偶数;奇数×偶数=偶数;质数×质数=合数(4)除2外所有的偶数均为合数;(5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半。
7、1既不是质数,也不是合数。
8、100以内质数表:第三单元:长方体和正方体1、长方体和正方体(立方体)的特征面棱顶点长方体①有6个面;②相对的两个面完全相同;③每个面是长方形(特殊情况下有两个相对的面是正方形)。
①有12条棱;②相对的4条棱长度相等(特殊情况下有8条棱长度相等)。
有8个顶点正方体①有6个面;②6个面完全相同;③每个面是正方形。
①有12条棱;②12条棱全部相等。
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 972、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、正方体是长、宽、高都相等的特殊长方体。
五年级下册数学知识点归纳第一单元:观察物体-站在任意位置,最多只能看到长方体的3个面。
-从不同位置观察物体,看到的形状可能不同。
-从一个或两个方向看到的图形无法确定立体图形的形状。
-从物体的右面观察,看到的不一定和从左面看到的完全相同。
第二单元:因数和倍数-被除数是除数的倍数,商是整数且没有余数。
-因数和倍数相互依存,不能单独存在。
-数的因数个数有限,最小因数是1,最大因数是数本身。
-数的倍数个数无限,最小倍数是数本身,没有最大倍数。
-特定数字的倍数特征,如2的倍数末位为0、2、4、6、8;3的倍数各位数之和是3的倍数等。
-自然数可分为偶数和奇数两类,偶数是2的倍数,奇数不是2的倍数。
第三单元:长方体和正方体-长方体的长、宽、高是相交于一个顶点的三条棱的长度。
-最多有6个面是长方形,最少4个面是长方形,最多有2个面是正方形。
-正方体是长、宽、高都相等的长方体,是特殊的长方体。
-正方体的6个面相同,12条棱相等。
-长方体和正方体都有6个面,8个顶点,12条棱,相对的面完全相同,相对的棱长度相等。
-长方体的棱长总和为4×(长+宽+高),正方体的棱长总和为棱长×12。
-表面积是长方体或正方体6个面的总面积。
-长方体的表面积为(长×宽+长×高+宽×高)×2,正方体的表面积为棱长×棱长×6。
-体积是物体所占空间的大小,长方体的体积为长×宽×高,正方体的体积为棱长×棱长×棱长。
第四单元:分数的意义和性质-分数表示整体中的一份或几份,分子表示份数,分母表示分数单位。
-分数的大小可以通过分子与分母的比较确定。
-分数可以是真分数(小于1)、假分数(大于或等于1)或带分数(整数和真分数组成)。
-分数的分子和分母同时乘或除以相同的数时,分数的大小不变。
-两个数的最大公因数与最小公倍数的积等于这两个数的乘积。
人教版五年级下册数学知识点总结+习题练习(分模块)第一部分知识梳理一、因数和倍数1、如果ab=c(a、b、c都是不为0的整数),那么我们就说a 和b是c的因数,c是a和b的倍数。
因数和倍数是相互依存的。
例如:38=24,3和8是24的因数,24是3和8的倍数。
2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
3、一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
4、一个非零的自然数,既是它本身的倍数,又是它本身的因数。
5、找因数的方法:(1)列乘法算式:例如:要写出18的所有因数,方法如下:118=1829=1836=18所以,18的因数有:1、2、3、6、9、18共6个。
(2)列除法算式:例如:要写出24的所有因数,方法如下:241=24242=12243=8244=6245=4、8(因为4、8不是整数,所以5和4、8不是24的因数)所以,24的因数有:1、2、3、4、6、8、12、24共8个。
6、找倍数的方法:用这个数分别乘1、2、3、4、5…直到所乘的积接近所规定的限制范围为止,所乘得的积就是这个数的倍数。
例如:写出30以内4的倍数。
41=442=843=1244=1645=2046=2447=28 所以,30以内4的倍数有:4、8、12、16、20、24、28。
二、2、5、3的倍数的特征1、个位上是0、2、4、6、8的数都是2的倍数。
2、个位上是0或5的数都是5的倍数。
3、一个数各个数位上的数相加的和是3的倍数,这个数就是3的倍数。
4、同时是2、5的倍数的数末尾必须是0。
最小的两位数是10,最大的两位数是90。
同时是2、5、3的倍数的数末尾必须是0,而且各个数位上的数相加的和是3的倍数。
最小的两位数是30,最大的两位数是90。
三、奇数和偶数1、自然数中,是2的倍数的数叫做偶数,偶数也叫双数。
如:0、2、4、6、8、10、12、14、16…都是偶数。
第三单元《长方体和正方体》知识回顾:1、什么叫长方体?特征?P28:2、什么叫正方体?特征?P30:3、长方体和正方体有哪些相同点?有哪些不同点?P30:4、什么叫容积?容积的单位有哪些?巩固和提高:一、填上适当的单位名称。
1、一瓶汽水约是250()一块橡皮的体积是8()一桶汽油大约有150()数学课本的体积是300()笔记本电脑的体积大约3()货车集装箱的体积40()2、一个正方体的棱长和是36分米,它的占地面积最小是()平方分米,体积是()立方分米,表面积是( )平方分米。
3、把一根长6米的木料沿横截面截成3段后,表面积增加了0.6平方分米,原来这根木料的体积是()立方分米。
4、一个正方体棱长扩大3倍,表面积扩大( )倍,体积扩大()倍。
5、做5节通风管,每节长 2.8米,横截面是边长1分米的正方形,至少需()平方分米铁皮。
6、把一个棱长3厘米的正方体切成两个相等的长方体,增加的两个面的总面积是()二、判断(每题1分,共8分)1.长方体中相交的三条棱分别叫做长、宽、高。
( )2.求一个容器的容积,就是求这个容器的体积。
( )3.一个正方体的棱长之和是12厘米.体积是1立方厘米。
( )4.正方体的棱长扩大5倍,它的表面积也扩大5倍。
( )三、选择:1.用小正方体拼成大正方体至少需要( )个小正方体。
A、2B、10C、4D、82.如果把长方体的长、宽、高都扩大3倍,那么它的体积扩大( )倍.A 、3 B、9 C、27 D、103.加工一个长方体油箱要用多少铁皮,是求这个油箱的( )A、表面积B、体积C、容积4、一个长2米、宽2米、高3米木箱平放在地面上,占地面积至少是( )。
A、6平方米B、6立方米C、4平方米D、4立方米5、至少有()个完全一样的小正方体可以拼成一个大正方体。
A、8个B、4个C、2个D、16个四、计算图形的表面积和体积五、解答应用题1.加工一个长方体铁皮油桶,长2.5分米,宽1.6分米,高3分米,至少要用多少平方分米铁皮?最多能装多少升油?2.学校要挖一个长方形状沙坑,长4米,宽2米,深0.4米,它占地多少平方米?需要挖出多少立方米的黄沙?5.一个长方体机油桶,长8分米,宽2分米,高6分米.如果每升机油重720克,可装机油多少千克?6.在一个长20m,宽8m,深1.6m的长方体蓄水池的底面和四周贴瓷砖,瓷砖是边长为2dm的正方形,贴完共需瓷砖多少块?7.一个底面长和宽都是2分米的长方体玻璃容器,里面装有5升水,将一个铁球浸没在水中,这时水深1.5分米。
新人教版五年级下册数学第二单元除法
与倍数知识点整理
一、除法的定义和性质
- 除法是一种数学运算,用于将一个数分成等份。
- 除数、被除数和商是除法运算的基本概念。
- 除法的性质包括:
- 任何数除以1都等于它本身。
- 零除以任何非零数都等于0。
二、整数的除法
- 整数的除法可以分为整除和不整除两种情况。
- 整除是指被除数可以被除数整除,商是一个整数。
- 不整除是指被除数不能被除数整除,商是一个带余数的分数。
三、余数和余数的性质
- 余数是指除法运算中,被除数除以除数后剩下的数。
- 余数的性质包括:
- 余数小于除数。
- 除数不为0时,余数的符号与被除数相同。
四、倍数和倍数的判断
- 倍数是指一个数可以被另一个数整除,即能够成为另一个数的整数倍。
- 判断一个数是否为另一个数的倍数,可以通过除法或者观察其末位数字是否符合规律来判断。
五、常见除法运算的方法
- 常见的除法运算方法包括:
- 竖式除法:逐位相除,依次得到商和余数。
- 取商法:将被除数除以除数的商结果取整。
- 简便计算法:通过观察各个数位上的数字特征,快速推算出商的近似结果。
以上是新人教版五年级下册数学第二单元除法与倍数的相关知识点整理。
希望能对你有所帮助!。
人教版五年级数学下册知识点归纳总结第一单元观察物体(三)1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。
2、不可能一次看到长方体或正方体相对的面。
注意点1)这里所说的正面、左面和上面,都是相对于观察者而言的。
2)站在任意一个位置,最多只能看到长方体的3个面。
3)从不同的位置观察物体,看到的形状可能是不同的。
4)从一个或两个方向看到的图形是不能确定立体图形的形状的。
5)同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。
6)如果从物体的右面观察,看到的不一定和从左面看到的完全相同。
第二单元因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。
2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3)个位上是0或5的数,是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
3、自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。
叫奇数。
也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
最小的奇数是1,最小的偶数是0.关系:奇数+、- 偶数=奇数奇数+、- 奇数=偶数偶数+、-偶数=偶数。
部编人教版小学五年级数学下册知识点总结五年级下册数学重点知识总结第一单元《因数和倍数》因数和倍数的意义:(1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数数和商的倍数,除数和商是被除数的因数。
(2)如果a×b=c(a、b、c都不为的整数),那么a、b就是c的因数,c就是a、b的倍数。
数与倍数的关系:因数和倍数是相互依存的。
找一个数的因数的方法:用这个数除以1、2、3…..能整除时,所得的商和除数就是这个数的因数。
找一个数的倍数的方法:求一个数的倍数,就是用这个数,依次与1、2、3…..相乘,所得积就是这个数的倍数。
一个数倍数的特征:倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数因数的特征:因数的个数是有限的,最小的因数是1,最大的因数是它本身。
注:一个数最小倍数和最大因数都是它本身2、3、5的倍数的特征2的倍数的特征:个位上是、2、4、6、8的数都是2的倍数。
5的倍数的特征:个位上是或5的数都是5的倍数.。
3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数既是2又是5的倍数的特征:个位上是数都是2、5的倍数.。
同时是2、3、5倍数的特征:(1)个位上是的数,(2)个数各位上的数的和是3的倍数。
按是不是2的倍数可分为:奇数和偶数偶数:是2的倍数的数叫做偶数,(或个位上是、2、4、6、8的数),最小的偶数是。
奇数:不是2的倍数的数叫做奇数。
(或个位上是1、3、5、7、9的数)最小的奇数是1.注:自然数中除了偶数就是奇数。
数的奇偶性:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数(大减小),奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。
质数和合数按因数的个数把自然数(除外)可分为:质数、1、合数三类质数:一个数,假如只要1和它本身两个因数,如许的数叫做质数(或素数);合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
新人教版小学五年级数学下册知识点归纳新人教版小学五年级下册数学知识点归纳第一单元观察物体1.从任意一个位置观察长方体,最多只能看到3个面。
2.从不同的位置观察物体,可能看到的形状不同。
3.从一个或两个方向看到的图形不能确定立体图形的形状。
4.从物体的右面观察和从左面观察看到的不一定完全相同。
第二单元因数和倍数1.在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
2.因数和倍数是相互依存的,不能单独存在。
3.一个数的因数个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数的最大因数与最小倍数都是这个数本身。
4.1是所有非零自然数的因数。
5.2、3、5的倍数特征:1) 个位上是2、4、6、8的数都是2的倍数。
2) 一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3) 个位上是0或5的数是5的倍数。
4) 如果一个数同时是2和5的倍数,那它的个位上的数字一定是0或5.6.自然数可以分为偶数和奇数两类。
偶数:是2的倍数的数叫做偶数,2是最小的偶数。
奇数:不是2的倍数的数叫做奇数,1是最小的奇数。
关系:奇数+偶数=奇数奇数+奇数=偶数偶数+偶数=偶数奇数x奇数=奇数奇数x偶数=偶数偶数x偶数=偶数7.按因数的个数对自然数分类,可以分为质数、合数、1三类。
1) 质数(或素数):一个数,如果只有1和它本身两个因数,这样的数叫质数。
合数:一个数,如果除了1和它本身还有别的因数,至少有三个因数,这样的数叫合数。
2) “1”不是质数,也不是合数。
3) 最小的质数是2,最小的合数是4,连续的两个质数是2和3.4) 20以内的质数有8个:2、3、5、7、11、13、17、195) 关系:质数x质数=合数第三单元长方体和正方体1.长方体有6个面,12条棱,8个顶点。
相交于一个顶点的三条棱分别是长方体的长、宽、高。
2.长方体最多有6个面是长方形,至少4个面是长方形,最多2个面是正方形。
人教版五年级数学下册知识点班级:姓名:第一单元观测物体1、由几种大小相似旳小正方体摆成旳立体图形,从同一种方向观测,看到旳图形也许是相似旳,也也许是不一样旳。
根据一种方向看到旳图形摆立体图形,有多种摆法。
2、从同一种方向观测物体最多只能看到三个面。
几何视图一般是根据三个方向观测到旳形状进行绘制。
3、根据两个方向观测到旳形状能确定所用小正方体旳个数。
根据三个方向观测到旳形状摆小正方体成果只有一种。
第二单元因数和倍数1、在整数除法中,假如商是整数而没有余数,我们就说被除数是除数旳倍数,除数是被除数旳因数。
因数和倍数是互相依存旳,不能单独存在。
)2、注意:为了以便,在研究因数和倍数时候,我们所说旳数指旳是自然数(一般不包括0)3、找因数旳措施:①乘法②除法;找倍数旳措施:逐次乘自然数。
4、①一种数旳最小因数是1,最大因数是它自身。
一种数旳最小倍数是它自身,没有最大旳倍数。
②一种数旳因数旳个数是有限旳,一种数旳倍数旳个数是无限旳。
一种数旳最大因数和最小倍数是相等旳都是它自身。
③1是所有非0自然数旳因数。
也是任一自然数(0除外)旳最小因数。
④一种数旳因数至少有1个,这个数是1。
⑤一种数旳因数都不不小于等于他自身,一种数旳倍数都不小于等于他自身。
5、因数<或=它自身、倍数>或 = 它自身、最大旳因数=最小旳倍数=它自身。
一种数旳倍数一定比它旳因数大这种说法是错误旳。
一种数越大它旳因数个数就越多,一种数越小它旳因数个数就越少。
这种说法是错误旳。
6、2旳倍数特性:个位上是0、2、4、6、8旳数都是2旳倍数。
自然数中,是2旳倍数旳数叫做偶数(0也是偶数),不是2旳倍数旳数叫奇数。
7、5旳倍数特性:个位上是0或5旳数,都是5旳倍数。
8、3旳倍数旳特性:一种数各位上旳数旳和是3旳倍数,这个数就是3旳倍数。
个位上是3、6、9点数都是3旳倍数是错误旳说法。
9、2和5旳倍数特性:个位上是0旳数,既是2旳倍数,也是5旳倍数。
数学五年级下册各章节重点知识点归纳第一章:分数和小数的互换1.1 知识点- 理解分数与小数之间的关系。
- 学会将小数转换为分数的方法。
- 学会将分数转换为小数的方法。
1.2 重点难点- 掌握分数与小数互换的规律和方法。
- 理解分数值与小数值之间的等价关系。
第二章:简易方程2.1 知识点- 认识简易方程的概念。
- 学会解一元一次方程的方法。
- 理解等式的性质。
2.2 重点难点- 掌握方程的解法和技巧。
- 理解等式两边同时加减乘除同一个数的性质。
第三章:几何图形的认识3.1 知识点- 认识长方形、正方形、三角形、圆等基本几何图形。
- 学会用尺子和圆规画简单几何图形。
- 理解几何图形的基本性质和特征。
3.2 重点难点- 掌握几何图形的画法和技巧。
- 理解几何图形之间的相互关系。
第四章:计量单位4.1 知识点- 认识长度、面积、体积、重量等基本计量单位。
- 学会进行单位换算。
- 理解不同计量单位之间的换算关系。
4.2 重点难点- 掌握单位换算的方法和技巧。
- 理解不同计量单位之间的换算规律。
第五章:数据的收集与处理5.1 知识点- 学会使用统计图表来表示数据。
- 学会进行数据的收集和整理。
- 理解平均数、中位数、众数等概念。
5.2 重点难点- 掌握统计图表的画法和解读。
- 理解数据分析的方法和技巧。
以上是数学五年级下册各章节重点知识点的归纳,希望对学生们有所帮助。
五年级下册数学知识点总结人教版五年级下册数学知识点总结第一单元小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。
如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:@意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法; ⑵进一法; ⑶去尾法5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
6、小数四则运算顺序和运算定律跟整数是一样的。
7、运算定律和性质:@ 加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)@ 减法:a-b-c=a-(b+c)a-(b+c)=a-b-c@ 乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】@ 除法:a÷b÷c=a÷(b×c)a÷(b×c) =a÷b÷c第二单元位置1、数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右分别为列数和行数,即“先列后行”。
人教版五年级数学下册知识点第一单元图形的变换1、轴对称图形:把一个图形沿着一条直线折叠后,两边的图形可以完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的对称轴。
2、对称点到对称轴的距离相等。
3、旋转要明确绕点,角度和方向。
4、图形变换的基本方式是平移、对称和旋转。
5、等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。
第二单元因数和倍数6、2和6是12的因数。
12是2的倍数,也是6的倍数。
因数和倍数的描述:谁是谁的因数,谁是谁的倍数。
7、注意:为了方便,在研究因数和倍数时候,我们所说的数指的是整数(一般不包括0)8、一个数的最小因数是1,最大的因数是它本身。
9、一个数的因数的个数是有限的。
10、一个数的最小倍数是它本身,没有最大的倍数。
11、一个数的倍数的个数是无限的。
12、因数<或=它本身、倍数>或 = 它本身、最大的因数=最小的倍数=它本身13、个位上是0、2、4、6、8的数是2的倍数。
14、自然数中,是2的倍数的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
不是2的倍数的数叫奇数。
也就是个位上是1、3、5、7、9的数。
15、自然数分成偶数和奇数,最小的偶数是0,最小的奇数是1。
16、个位上是0或5的数,是5的倍数。
17、个位上是0的数,既是2的倍数,又是5的倍数。
18、奇数+、- 偶数=奇数奇数+、- 奇数=偶数偶数+、-偶数=偶数。
19、一个数各位上的数的和是3的倍数,这个数就是3的倍数。
20、既是2和5的倍数,又是3的倍数的最小三位数是120。
21、同时满足2.3.5的倍数,实际是求2×3×5=30的倍数。
22、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
23、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
(至少3个因数)24、1既不是质数,也不是合数。
25、最小的质数是2,最小的合数是4 。
26、按因数的个数划分为:自然数分为质数、合数、1和0 。
27、按2的倍数划分:自然数分为偶数、奇数28、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。
29、20以内的质数:2、3、5、7、11、13、17、19 。
30、100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97 。
31、每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
第三单元长方体和正方体32、长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
在一个长方体中,相对的面完全相同,相对的棱长度相等。
33、长方体有6个面。
有12条棱,相对(也可以说是平行)的4条棱的长度相等。
长方体有8个顶点。
34、相交于一个顶点的三条棱的长度分别叫做长方体的长`宽`高。
35、长方体的棱长总和:(1)(长+宽+高)×4(2)长×4+宽×4+高×436、(1)正方体的6个面是完全相同的正方形。
(2)正方体的12条棱长度都相等。
(3)有8个顶点。
37、正方体可以看成是长、宽、高都相等的长方体。
38、正方体的棱长总和=棱长×1239、用棱长1cm的小正方体摆成稍大一些的正方体,至少需要8个小正方体。
40、长方体或正方体6个面的总面积,叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×241、正方体的表面积=棱长×棱长×642、用刀分开物体时,每分一次增加两个面。
43、物体所占空间的大小叫做物体得体积。
44、长方体的体积=长×宽×高V=a b h45、正方体的体积=棱长×棱长×棱长用字母表示:V=a³46、 a·a·a·也可以写作“a³”,读作“a的立方”,表示3个a相乘47、长方体或正方体底面的面积叫做底面积。
48、长方体(或正方体)的体积=底面积×高用字母表示:V=S h(横截面积相当于底面积,长相当于高)。
49、 1dm³=1000cm³ 1m³=1000dm³50、一个长方体和一个正方体的棱长总和相等,但体积不一定相等。
51、箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。
52、固体一般就用体积单位,计量液体的体积,如水、油等,常用容积单位升和毫升,也可以写成L和ml。
53、 1L=1 dm³ 1ml=1 cm³ 1L=1000ml54、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。
但要从容器里面量长、宽、高。
对于同一个物体,体积大于容积。
55、形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
56、排水法的公式:V物体 =V现在-V原来57、也可以 V物体 =S×(h现在- h原来)V物体 = S×h升高更多免费资源下载绿色圃中小学教育网 课件|教案|试卷|无需注册第四单元分数的意义和性质58、一个物体、一个计量单位或者一些物体都可以看作一个整体,也就是单位“1”。
59、把单位“1”平均分成若干份,表示这样一份或几份的数叫做分数。
60、把单位“1”平均分成若干份,表示这样一份的数叫做分数单位。
61、分数与除法的关系:被除数÷除数= =分子÷分母 (除数不能为0,分母也不能够为0)) 62、求一个数是另一个数的几分之几用( )计算。
求鹅的只数是鸭的几分之几用( )÷( )=鹅的只数是鸭的几分之几。
63、分子比分母小的分数叫做真分数。
真分数小于1。
分子比分母大或分子和分母相等的分数叫做假分数。
假分数大于1或等于1。
带分数由整数和真分数组成的分数。
带分数大于1。
真分数<1≤假分数64、、当分子一定是分母的倍数时,假分数可以化成整数:用分子除以分母。
如:714的分子是14,分母是7,14是7的倍数,所以714=14÷7=2。
65、把假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是分数部分的分子,分母是原来的分母。
如:314=14÷3=4……2,分子除以分母商是4作带分数的整数部分,余数是2作分数部分的分子,分母是原来的分母3,所以314=14÷3=324。
66、分数的基本性质:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。
这叫做分数的基本性质。
67、两个数公有的倍数,叫做它们的公倍数。
其中最小的公倍数,叫做它们的最小公倍数。
两个数的公倍数是它们的最小公倍数的倍数。
68、⑴两个连续的自然数只有公因数1,它们的最大公因数是1,最小公倍数是这两个数的积。
如:3和4是两个连续的自然数,它们的最大公因数是1,最小公倍数是3×4=12。
⑵两个不同的质数只有公因数1,它们的最大公因数是1,最小公倍数是这两个质数的积。
如:5和7是两个不同的质数,它们的最大公因数是1,最小公倍数是35。
被除数 除数⑶一个数是另一个数的倍数,它们的最大公因数是较小数,最小公倍数是较大数。
如:32是8的倍数,它们的最大公因数是8,最小公倍数是32。
69、分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
70、(1)把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
约分时是根据分数的基本性质。
(2)约分可以一次性约分(用最大公因数分别去除分子、分母)也可以逐步约分(用公因数分别去除分子、分母)71、(1)比分数的大小:分母相同,分子大,分数就大;分子相同,分母小,分数才大。
(2)、分数比较大小的一般方法:同分子比较;通分分比较;化成小数比较72、(1)把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
通分时是根据分数的基本性质。
(2)通常用分子和分母的最小公倍数作公分母比较合适。
73、小数化成分数:看小数的位数,小数表示是十分之几,百分之几,千分之几……的数,所以可以直接写成分母是10、100、1000……的分数,在化简。
74、分数化成小数的方法:(1)利用分数的基本性质将分母化成整十整百…的分数(2)利用分数与除法的关系,用分子除以分母,除不尽时,要根据需要按“四舍五入”法保留几位小数。
一般保留两位小数。
75、一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。
反之则不可以。
76、同分母分数加、减法法则:分母不变,分子相加、减。
结果要是最简分数。
77、异分母分数要先通分才能够相加、减。
78、分数加减混合运算的顺序和整数的相同。
整数加法的交换律、结合律对于分数加法同样适用。
79、出现次数最多的数据是这组数据的众数。
众数能够反映一组数据的集中情况。
众数可以不止一个,也可能没有众数。
80、条形统计图可以表示数量的多少。
折线统计图分为:单式折线统计图和复式折线统计图。
不仅可以表示数量的多少,还可以表示数量增减变化的趋势,便于比较。
81、找次品规律:1 2 3 4 5 …3 3×3 3×3×3 3×3×3×3 3×3×3×3×3 …3 9 27 81 243 …82、打电话:打电话要分组,关键要把2来数,几分钟几个2,相乘之积含首数。