2011届高考数学二轮复习课件28函数模型及其应用
- 格式:ppt
- 大小:14.02 MB
- 文档页数:66
知识图谱-函数与方程零点的概念与二分法零点存在性判断定理函数与方程综合第02讲_函数模型及其应用错题回顾函数与方程知识精讲一.函数零点的概念1.函数零点概念:对于函数,把使成立的实数叫做函数的零点.2.函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根函数的图象与轴有交点函数有零点.3.二次函数的零点:,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点;,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点;,方程无实根,二次函数的图象与轴无交点,二次函数无零点.二.函数零点存在性判定定理如果函数在区间上的图象是连续不断的一条曲线,并且有,那么函数在区间内有零点.即存在,使得,这个也就是方程的根.说明:这样得到方程在区间内必有根,由此只能判断根的存在,既不能判定有多少个实数根,也不能得出根的值.三.函数零点的基本性质从“数”的角度看:即是使的实数.从“形”的角度看:即是函数的图象与轴交点的横坐标.若函数的图象在处与轴相切,则零点通常称为不变号零点;若函数的图象在处与轴相交,则零点通常称为变号零点.四.二次函数零点的分布问题1.当,在区间上的最大值,最小值,令.若,则,;若,则,;若,则,;若,则.2.二次方程的实根分布及条件.(1)二次方程的两不等实数根中一根比大,另一根比小;(2)二次方程的两不等实数根都大于(3)二次方程在区间内有两不等实数根(4)二次方程在区间内只有一根(不包括两等根),当或检验另一根若在内成立.五.二分法1.二分法定义:我们把每次取区间的中点,将区间一分为二再进行比较,按需求留下其中一个小区间的方法称为二分法.2.用二分法求函数零点的近似值(1)确定区间,验证,给定精确度.(2)求区间的中点.(3)计算①若,则就是函数的零点;②(2)若,则令;③若,则令.(4)判断是否达到精确度,即若,则得到零点的近似值(或),否则重复第二、三、四步.三点剖析一.注意事项利用零点存在性定理判定函数的零点个数时,当函数在区间上是连续不断的曲线,且,此时可得函数在区间存在零点,但个数不能确定,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.二.方法点拨函数零点个数的判断方法1.直接求零点令,如果能求出解,则有几个解就有几个零点.2.零点存在性定理利用定理不仅要求函数在区间上是连续不断的曲线,且,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.当单调,在内有且只有一个零点.3.利用图象交点的个数画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.题模精讲题模一零点的概念与二分法例1.1、函数的零点为________.例1.2、若函数f(x)=ax+b的零点为x=2,则函数g(x)=bx2-ax的零点是x=0和x=____.例1.3、已知,函数恒有零点,求实数的取值范围.例1.4、若函数的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:那么方程的一个近似根(精确到0.1)为()A、1.2B、1.3C、1.4D、1.5例1.5、用二分法求方程的正实根的近似解(精确度)时,如果我们选取初始区间是,则要达到精确度要求至少需要计算的次数是________.题模二零点存在性判断定理例2.1、已知函数y=f(x)的图象是连续不间断的,x,f(x)对应值表如下:则函数y=f(x)存在零点的区间有()A、区间[1,2]和[2,3]B、区间[2,3]和[3,4]C、区间[2,3]和[3,4]和[4,5]D、区间[3,4]和[4,5]和[5,6]例2.2、若方程2ax2-1=0在(0,1)内恰有一解,则实数a的取值范围是____.题模三函数与方程综合例3.1、设函数,若互不相等的实数x1,x2,x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是()A、B、C、D、例3.2、已知函数f(x)对任意的x∈R满足f(﹣x)=f(x),且当x≥0时,f(x)=x2﹣ax+1,若f(x)有4个零点,则实数a的取值范围是_______.例3.3、已知函数f(x)=x2+(2-a)x+4,a∈R(1)若a=8,求不等式f(x)>0的解;(2)若f(x)=0有两根,一根小于2,另一根大于3且小于4,求实数a的取值范围;(3)若函数f(x)=x2+(2-a)x+4在区间[1,3]内有零点,求实数a的取值范围.随堂练习随练1.1、函数f(x)=x3-3x+2的零点为()A、1,2B、±1,-2C、1,-2D、±1,2随练1.2、函数的一个零点为1,则它的另外一个零点为________随练1.3、若,则方程的根是()A、B、C、2D、随练1.4、设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间()A、(1,1.25)B、(1.25,1.5)C、(1.5,2)D、不能确定随练1.5、用二分法求下图所示函数的零点时,不可能求出的零点是()B、A、C、随练1.6、已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表,那么函数f(x)一定存在零点的区间是()A、(-∞,1)B、(1,2)C、(2,3)D、(3,+∞)随练1.7、已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是__________.随练1.8、函数f(x)=,关于x的方程f(x)=kx﹣k至少有两个不相等的实数根,则实数k的取值范围为________随练1.9、设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)﹣g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2﹣3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为()A、B、[﹣1,0](﹣,﹣2]C、(﹣∞,﹣2]D、(﹣,+∞)自我总结课后作业作业1、若求下列函数的零点:(1);(2)作业2、二次函数中,则函数的零点个数是()A、没有零点B、有一个零点C、有2个零点D、不能确定作业3、设f(x)=()x-x+1,用二分法求方程()x-x+1=0在(1,3)内近似解的过程中,f(1)>0,f(1.5)<0,f(2)<0,f(3)<0,则方程的根落在区间()A、(1,1.5)B、(1.5,2)C、(2,3)D、无法确定作业4、用二分法求方程x3-2x-1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为____.作业5、函数f(x)=x-2-x+1的零点所在区间为()A、(0,1)B、(1,)C、D、(2,3)(,2)作业6、已知关于x的方程为2kx2-2x-3k-2=0的两个实数根一个小于1,另一个大于1,则实数k的取值范围是()A、k>0B、k<-4C、-4<k<0D、k<-4或k>0作业7、已知f(x),g(x)均是定义在[﹣2,2]的函数,其中函数f(x)是奇函数,函数f(x)在[﹣2,0]上的图象如图1,函数g(x)在定义域上的图象如图2,则函数y=f[g(x)]的零点个数()A、3B、4C、5D、6作业8、设函数若f(﹣3)=f(﹣1),f(﹣2)=﹣3,则关于x的方程f(x)=x的解的个数为个.。
第2讲函数的应用考情解读(1)函数零点所在区间、零点个数及参数的取值范围是高考的常见题型,主要以填空题的形式出现.(2)函数的实际应用以二次函数、分段函数模型为载体,主要考查函数的最值问题.1.函数的零点与方程的根(1)函数的零点对于函数f(x),我们把使f(x)=0的实数x叫做函数f(x)的零点.(2)函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.(3)零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y =f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点.(4)二分法求函数零点的近似值,二分法求方程的近似解.2.函数模型解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.热点一函数的零点例1(1)函数f(x)=2x+x3-2在区间(0,1)内的零点个数是________.(2)(2014·辽宁改编)已知f (x )为偶函数,当x ≥0时,f (x )=⎩⎨⎧cos πx ,x ∈[0,12],2x -1,x ∈(12,+∞),则不等式f (x -1)≤12的解集为________.思维升华 (1)根据二分法原理,逐个判断;(2)画出函数图象,利用数形结合思想解决. 答案 (1)1 (2)[14,23]∪[43,74]解析 (1)先判断函数的单调性,再确定零点. 因为f ′(x )=2x ln 2+3x 2>0,所以函数f (x )=2x +x 3-2在(0,1)上递增, 且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0, 所以有1个零点.(2)先画出y 轴右边的图象,如图所示.∵f (x )是偶函数,∴图象关于y 轴对称,∴可画出y 轴左边的图象,再画直线y =12.设与曲线交于点A ,B ,C ,D ,先分别求出A ,B 两点的横坐标. 令cos πx =12,∵x ∈[0,12],∴πx =π3,∴x =13.令2x -1=12,∴x =34,∴x A =13,x B =34.根据对称性可知直线y =12与曲线另外两个交点的横坐标为x C =-34,x D =-13.∵f (x -1)≤12,则在直线y =12上及其下方的图象满足,∴13≤x -1≤34或-34≤x -1≤-13, ∴43≤x ≤74或14≤x ≤23. 思维升华 函数零点(即方程的根)的确定问题,常见的有①函数零点值大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同的方程多以数形结合求解.(1)已知函数f (x )=(14)x -cos x ,则f (x )在[0,2π]上的零点个数是________.(2)已知a 是函数f (x )=2x -log 12x 的零点,若0<x 0<a ,则f (x 0)和0的大小关系是________.答案 (1)3 (2)f (x 0)<0解析 (1)f (x )在[0,2π]上的零点个数就是函数y =(14)x 和y =cos x 的图象在[0,2π]上的交点个数,而函数y =(14)x 和y =cos x 的图象在[0,2π]上的交点有3个.(2)∵f (x )=2x -log 12x 在(0,+∞)上是增函数,又a 是函数f (x )=2x -log 12x 的零点,即f (a )=0,∴当0<x 0<a 时,f (x 0)<0.热点二 函数的零点与参数的范围例2 (2014·常州高三模拟)对任意实数a ,b 定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-1)⊗(4+x ),若函数y =f (x )+k 的图象与x 轴恰有三个不同交点,则k 的取值范围是________. 思维启迪 先确定函数f (x )的解析式,再利用数形结合思想求k 的范围. 答案 [-2,1)解析 解不等式x 2-1-(4+x )≥1, 得x ≤-2或x ≥3,所以f (x )=⎩⎪⎨⎪⎧x +4,x ∈(-∞,-2]∪[3,+∞),x 2-1,x ∈(-2,3).函数y =f (x )+k 的图象与x 轴恰有三个不同交点转化为函数y =f (x )的图象和直线y =-k 恰有三个不同交点.如图,所以-1<-k ≤2,故-2≤k <1.思维升华 已知函数的零点个数求解参数范围,可以利用数形结合思想转为函数图象交点个数;也可以利用函数方程思想,构造关于参数的方程或不等式进行求解.定义在R 上的函数f (x )=ax 3+bx 2+cx (a ≠0)的单调增区间为(-1,1),若方程3a (f (x ))2+2bf (x )+c =0恰有6个不同的实根,则实数a 的取值范围是________. 答案 (-∞,-12)解析 ∵函数f (x )=ax 3+bx 2+cx (a ≠0)的单调增区间为(-1,1),∴-1和1是f ′(x )=0的根, ∵f ′(x )=3ax 2+2bx +c ,∴⎩⎨⎧(-1)+1=-2b 3a,(-1)×1=c3a,∴b =0,c =-3a ,∴f (x )=ax 3-3ax ,∵3a (f (x ))2+2bf (x )+c =0,∴3a (f (x ))2-3a =0,∴f 2(x )=1,∴f (x )=±1,∴⎩⎪⎨⎪⎧ f (1)>1,f (-1)<-1,即⎩⎪⎨⎪⎧a -3a >1,-a +3a <-1,∴a <-12.热点三 函数的实际应用问题例3 省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f (x )与时刻x (时)的关系为f (x )=|x x 2+1-a |+2a +23,x ∈[0,24],其中a 是与气象有关的参数,且a ∈[0,12],若用每天f (x )的最大值为当天的综合放射性污染指数,并记作M (a ).(1)令t =xx 2+1,x ∈[0,24],求t 的取值范围;(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?思维启迪 (1)分x =0和x ≠0两种情况,当x ≠0时变形使用基本不等式求解.(2)利用换元法把函数f (x )转化成g (t )=|t -a |+2a +23,再把函数g (t )写成分段函数后求M (a ).解 (1)当x =0时,t =0;当0<x ≤24时,x +1x≥2(当x =1时取等号),∴t =x x 2+1=1x +1x ∈(0,12],即t 的取值范围是[0,12].(2)当a ∈[0,12]时,记g (t )=|t -a |+2a +23,则g (t )=⎩⎨⎧-t +3a +23,0≤t ≤a ,t +a +23,a <t ≤12.∵g (t )在[0,a ]上单调递减,在(a ,12]上单调递增,且g (0)=3a +23,g (12)=a +76,g (0)-g (12)=2(a -14).故M (a )=⎩⎨⎧ g (12),0≤a ≤14,g (0),14<a ≤12.即M (a )=⎩⎨⎧a +76,0≤a ≤14,3a +23,14<a ≤12.当0≤a ≤14时,M (a )=a +76<2显然成立;由⎩⎨⎧3a +23≤2,14<a ≤12,得14<a ≤49, ∴当且仅当0≤a ≤49时,M (a )≤2.故当0≤a ≤49时不超标,当49<a ≤12时超标.思维升华 (1)关于解决函数的实际应用问题,首先要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去. (2)对函数模型求最值的常用方法:单调性法、基本不等式法及导数法.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎨⎧10.8-130x 2 (0<x ≤10),108x -1 0003x 2(x >10).(1)写出年利润W (万元)关于年产量x (千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大?(注:年利润=年销售收入-年总成本) 解 (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10;当x >10时,W =xR (x )-(10+2.7x )=98-1 0003x-2.7x . ∴W =⎩⎨⎧8.1x -x 330-10 (0<x ≤10),98-1 0003x-2.7x (x >10).(2)①当0<x ≤10时,由W ′=8.1-x 210=0,得x =9,且当x ∈(0,9)时,W ′>0;当x ∈(9,10)时,W ′<0,∴当x =9时,W 取得最大值, 且W max =8.1×9-130·93-10=38.6.②当x >10时,W =98-⎝⎛⎭⎫1 0003x +2.7x ≤98-21 0003x·2.7x =38, 当且仅当1 0003x =2.7x ,即x =1009时,W =38,故当x =1009时,W 取最大值38.综合①②知:当x =9时,W 取最大值38.6万元,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.1.函数与方程(1)函数f (x )有零点⇔方程f (x )=0有根⇔函数f (x )的图象与x 轴有交点. (2)函数f (x )的零点存在性定理:如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,并且有f (a )·f (b )<0,那么,函数f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使f (c )=0.①如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,并且函数f (x )在区间[a ,b ]上是一个单调函数,那么当f (a )·f (b )<0时,函数f (x )在区间(a ,b )内有唯一的零点,即存在唯一的c ∈(a ,b ),使f (c )=0.②如果函数f (x )在区间[a ,b ]上的图象是连续不断的曲线,并且有f (a )·f (b )>0,那么,函数f (x )在区间(a ,b )内不一定没有零点.2.函数综合题的求解往往应用多种知识和技能.因此,必须全面掌握有关的函数知识,并且严谨审题,弄清题目的已知条件,尤其要挖掘题目中的隐含条件.要认真分析,处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决. 3.应用函数模型解决实际问题的一般程序读题(文字语言)⇒建模(数学语言)⇒求解(数学应用)⇒反馈(检验作答)与函数有关的应用题,经常涉及到物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.解答这类问题的关键是确切的建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.真题感悟1.(2014·重庆改编)已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3, x ∈(-1,0],x , x ∈(0,1],且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是________. 答案 ⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12 解析 作出函数f (x )的图象如图所示,其中A (1,1),B (0,-2).因为直线y =mx +m =m (x +1)恒过定点C (-1,0),故当直线y =m (x +1)在AC 位置时,m =12,可知当直线y =m (x +1)在x 轴和AC 之间运动时两图象有两个不同的交点(直线y =m (x +1)可与AC 重合但不能与x 轴重合),此时0<m ≤12,g (x )有两个不同的零点.当直线y =m (x +1)过点B 时,m =-2;当直线y =m (x +1)与曲线f (x )相切时,联立⎩⎪⎨⎪⎧y =1x +1-3,y =m (x +1),得mx 2+(2m +3)x +m +2=0,由Δ=(2m +3)2-4m (m +2)=0,解得m =-94,可知当y =m (x +1)在切线和BC 之间运动时两图象有两个不同的交点(直线y =m (x +1)可与BC 重合但不能与切线重合),此时-94<m ≤-2,g (x )有两个不同的零点.综上,m 的取值范围为(-94,-2]∪(0,12].2.(2014·北京改编)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a 、b 、c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________分钟.答案 3.75解析 根据图表,把(t ,p )的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,消去c 化简得⎩⎪⎨⎪⎧7a +b =0.1,9a +b =-0.3,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2.0.所以p =-0.2t 2+1.5t -2.0=-15(t 2-152t +22516)+4516-2=-15(t -154)2+1316,所以当t =154=3.75时,p 取得最大值,即最佳加工时间为3.75分钟. 押题精练1.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f [f (x )+1]的零点有________个.答案 4解析 当f (x )=0时,x =-1或x =1,故f [f (x )+1]=0时,f (x )+1=-1或1.当f (x )+1=-1,即f (x )=-2时,解得x =-3或x =14;当f (x )+1=1,即f (x )=0时,解得x =-1或x =1.故函数y =f [f (x )+1]有四个不同的零点.2.函数f (x )=x e x -a 有两个零点,则实数a 的取值范围是________. 答案 (-1e,0)解析 令f ′(x )=(x +1)e x =0,得x =-1,则当x ∈(-∞,-1)时,f ′(x )<0,当x ∈(-1,+∞)时,f ′(x )>0,所以f (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,要使f (x )有两个零点,则极小值f (-1)<0,即-e -1-a <0,所以a >-1e ,又x →-∞时,f (x )>0,则a <0,∴a ∈(-1e,0).3.某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *).则当每台机器运转________年时,年平均利润最大,最大值是________万元. 答案 5 8解析 由题意知每台机器运转x 年的年平均利润为y x =18-(x +25x ),而x >0,故yx ≤18-225=8,当且仅当x =5时,年平均利润最大,最大值为8万元.(推荐时间:60分钟)一、填空题1.函数f (x )=x 2-2x 的零点个数为________. 答案 3解析 由于f (-1)=1-2-1=12>0,又f (0)=0-1<0,则在区间(-1,0)内有1个零点; 又f (2)=22-22=0,f (4)=42-24=0,故有3个零点.2.若函数f (x )=x 2-ax -b 的两个零点是2和3,则函数g (x )=bx 2-ax -1的零点是________. 答案 -12,-13解析 由⎩⎪⎨⎪⎧ 22-2a -b =0,32-3a -b =0,得⎩⎪⎨⎪⎧a =5,b =-6.所以g (x )=-6x 2-5x -1的零点为-12,-13.3.f (x )=2sin πx -x +1的零点个数为________. 答案 5解析 ∵2sin πx -x +1=0,∴2sin πx =x -1,图象如图所示,由图象看出y =2sin πx 与y =x -1有5个交点,∴f (x )=2sin πx -x +1的零点个数为5.4.设函数f (x )=⎩⎪⎨⎪⎧x ,x ≤0,x 2-x ,x >0,若方程f (x )=m 有三个不同的实根,则实数m 的取值范围为________. 答案 (-14,0)解析 作出函数y =f (x )的图象,如图所示.当x >0时,f (x )=x 2-x =(x -12)2-14≥-14,所以要使函数f (x )=m 有三个不同的零点,则-14<m <0,即m 的取值范围为(-14,0).5.(2013·江西改编)如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F 、G 两点,与三角形ABC 两边相交于E 、D 两点.设弧FG 的长为x (0<x <π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f (x )的图象大致是________.答案 ④解析 如图所示,连结OF ,OG ,过点O 作OM ⊥FG ,过点A 作AH ⊥BC ,交DE 于点N .因为弧FG 的长度为x ,所以∠FOG =x , 则AN =OM =cos x 2,所以AN AH =AE AB =cos x 2,则AE =233cos x 2,所以EB =233-233cos x2.所以y =EB +BC +CD =433-433cos x 2+233=-433cos x 2+23(0<x <π).对照图象知④正确. 6.已知定义在R 上的函数f (x )满足:f (x )=⎩⎪⎨⎪⎧x 2+2,x ∈[0,1),2-x 2,x ∈[-1,0),且f (x +2)=f (x ),g (x )=2x +5x +2,则方程f (x )=g (x )在区间[-5,1]上的所有实根之和为________.答案 -7解析 由题意知g (x )=2x +5x +2=2(x +2)+1x +2=2+1x +2,函数f (x )的周期为2,则函数f (x ),g (x )在区间[-5,1]上的图象如图所示:由图形可知函数f (x ),g (x )在区间[-5,1]上的交点为A ,B ,C ,易知点B 的横坐标为-3,若设C 的横坐标为t (0<t <1),则点A 的横坐标为-4-t ,所以方程f (x )=g (x )在区间[-5,1]上的所有实根之和为-3+(-4-t )+t =-7.7.若函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________. 答案 (0,1]解析 当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是0<a ≤1.8.(2014·课标全国Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧e x -1, x <1,x 13, x ≥1,则使得f (x )≤2成立的x 的取值范围是________.答案 (-∞,8]解析 当x <1时,x -1<0,e x -1<e 0=1≤2, ∴当x <1时满足f (x )≤2.当x ≥1时,x 13≤2,x ≤23=8,1≤x ≤8. 综上可知x ∈(-∞,8].9.已知函数f (x )=1x +2-m |x |有三个零点,则实数m 的取值范围为________.答案 (1,+∞)解析 函数f (x )有三个零点等价于方程1x +2=m |x |有且仅有三个实根. ∵1x +2=m |x |⇔1m =|x |(x +2),作函数y =|x |(x +2)的图象,如图所示,由图象可知m 应满足0<1m <1,故m >1.10.若对于定义在R 上的函数f (x ),其图象是连续不断的,且存在常数λ(λ∈R )使得f (x +λ)+λf (x )=0对任意实数都成立,则称f (x )是一个“λ-伴随函数”.有下列关于“λ-伴随函数”的结论:①f (x )=0是常数函数中唯一一个“λ-伴随函数”;②f (x )=x 是“λ-伴随函数”;③f (x )=x 2是“λ-伴随函数”;④“12-伴随函数”至少有一个零点. 其中正确结论的个数是________.答案 1解析 对于①,若f (x )=c ≠0,取λ=-1,则f (x -1)-f (x )=c -c =0,即f (x )=c ≠0是一个“λ-伴随函数”,故①不正确.对于②,若f (x )=x 是一个“λ-伴随函数”,则(x +λ)+λx =0,求得λ=0且λ=-1,矛盾,故②不正确.对于③,若f (x )=x 2是一个“λ-伴随函数”,则(x +λ)2+λx 2=0,求得λ=0且λ=-1,矛盾,故③不正确.对于④,若f (x )是“12-伴随函数”, 则f (x +12)+12f (x )=0,取x =0, 则f (12)+12f (0)=0, 若f (0),f (12)任意一个为0,函数f (x )有零点; 若f (0),f (12)均不为0, 则f (0),f (12)异号,由零点存在性定理, 知f (x )在(0,12)内存在零点x 0,所以④正确.二、解答题11.设函数f (x )=ax 2+bx +b -1(a ≠0).(1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,求实数a 的取值范围.解 (1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1.所以函数f (x )的零点为3和-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同实根.所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4(4a )<0⇒a 2-a <0,所以0<a <1.因此实数a 的取值范围是(0,1).12.随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a 人(140<2a <420,且a 为偶数),每人每年可创利b 万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.01b 万元,但公司需付下岗职员每人每年0.4b 万元的生活费,并且该公司正常运转所需人数不得小于现有职员的34,为获得最大的经济效益,该公司应裁员多少人?解 设裁员x 人,可获得的经济效益为y 万元,则y =(2a -x )(b +0.01bx )-0.4bx =-b 100[x 2-2(a -70)x ]+2ab . 依题意得2a -x ≥34·2a ,所以0<x ≤a 2. 又140<2a <420,即70<a <210.(1)当0<a -70≤a 2,即70<a ≤140时,x =a -70,y 取到最大值; (2)当a -70>a 2,即140<a <210时,x =a 2,y 取到最大值. 故当70<a ≤140时,公司应裁员(a -70)人,经济效益取到最大,当140<a <210时,公司应裁员a 2人,经济效益取到最大. 13.是否存在这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上恒有一个零点,且只有一个零点?若存在,求出a 的取值范围;若不存在,说明理由.解 令f (x )=0,则Δ=(3a -2)2-4(a -1)=9a 2-16a +8=9(a -89)2+89>0, 即f (x )=0有两个不相等的实数根,∴若实数a 满足条件,则只需f (-1)·f (3)≤0即可.f (-1)·f (3)=(1-3a +2+a -1)·(9+9a -6+a -1)=4(1-a )(5a +1)≤0,∴a ≤-15或a ≥1. 检验(1)当f (-1)=0时,a =1,所以f (x )=x 2+x .令f (x )=0,即x 2+x =0,得x =0或x =-1.方程在[-1,3]上有两个实数根,不合题意,故a ≠1.(2)当f (3)=0时,a =-15,此时f (x )=x 2-135x -65. 令f (x )=0,即x 2-135x -65=0, 解得x =-25或x =3. 方程在[-1,3]上有两个实数根,不合题意,故a ≠-15. 综上所述,a <-15或a >1.。
函数模型及其应用一、基础知识1.常见的8种函数模型(1)正比例函数模型:f(x)=kx(k为常数,k≠0);(2)反比例函数模型:f(x)=kx(k为常数,k≠0);(3)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(4)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(5)指数函数模型:f(x)=ab x+c(a,b,c为常数,a≠0,b>0,b≠1);(6)对数函数模型:f(x)=m log a x+n(m,n,a为常数,m≠0,a>0,a≠1);(7)幂函数模型:f(x)=ax n+b(a,b,n为常数,a≠0,n≠1);(8)“对勾”函数模型:y=x+ax(a>0).(1)形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型,“对勾”函数的性质:①该函数在(-∞,-a]和[a,+∞)上单调递增,在[-a,0)和(0,a]上单调递减.②当x>0时,x=a时取最小值2a,当x<0时,x=-a时取最大值-2a.(2)函数f(x)=xa+bx(a>0,b>0,x>0)在区间(0,ab]内单调递减,在区间[ab,+∞)内单调递增.2.三种函数模型的性质函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大,逐渐表现为与y轴平行随x的增大,逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x<x n<a x幂函数模型y=x n(n>0)可以描述增长幅度不同的变化,当n,值较小(n≤1)时,增长较慢;当n值较大(n>1)时,增长较快.考点一二次函数、分段函数模型[典例]国庆期间,某旅行社组团去风景区旅游,若每团人数在30或30以下,飞机票每张收费900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75为止.每团乘飞机,旅行社需付给航空公司包机费15000元.(1)写出飞机票的价格关于人数的函数;(2)每团人数为多少时,旅行社可获得最大利润?[解](1)设每团人数为x,由题意得0<x≤75(x∈N*),飞机票价格为y元,则y ,0<x≤30,-10(x-30),30<x≤75,即y,0<x≤30,200-10x,30<x≤75.(2)设旅行社获利S元,则Sx-15000,0<x≤30,200x-10x2-15000,30<x≤75,即Sx-15000,0<x≤30,10(x-60)2+21000,30<x≤75.因为S=900x-15000在区间(0,30]上为增函数,故当x=30时,S取最大值12000.又S=-10(x-60)2+21000,x∈(30,75],所以当x=60时,S取得最大值21000.故当x=60时,旅行社可获得最大利润.[解题技法]二次函数、分段函数模型解决实际问题的策略(1)在建立二次函数模型解决实际问题中的最值问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解.(2)对于分段函数模型的最值问题,应该先求出每一段上的最值,然后比较大小.(3)在利用基本不等式求解最值时,一定要检验等号成立的条件,也可以利用函数单调性求解最值.[题组训练]1.某市家庭煤气的使用量x(m3)和煤气费f(x)(元)满足关系f(x),0<x≤A,+B(x-A),x>A.已知某家庭2018年前三个月的煤气费如表:月份用气量煤气费一月份4m34元二月份25m314元三月份35m 319元若四月份该家庭使用了20m 3的煤气,则其煤气费为()A .11.5元B .11元C .10.5元D .10元解析:选A根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x ),0<x ≤5,+12(x -5),x >5,所以f (20)=4+12×(20-5)=11.5.2.A ,B 两城相距100km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使月供电总费用y 最少?解:(1)由题意知x 的取值范围为[10,90].(2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25000+500003,所以当x =1003y min =500003.故核电站建在距A 城1003km 处,能使月供电总费用y 最少.考点二指数函数、对数函数模型[典例]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.[解](1)由题图,设y 0≤t ≤1,a,t >1,当t =1时,由y =4,得k =4,由-a =4,得a =3.所以y 0≤t ≤1,-3,t >1.(2)由y ≥0.25≤t ≤1,t ≥0.253≥0.25,解得116≤t ≤5.故服药一次后治疗疾病有效的时间是5-116=7916(小时).[解题技法]1.掌握2种函数模型的应用技巧(1)与指数函数、对数函数模型有关的实际问题,在求解时,要先学会合理选择模型,在三类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题,必要时可借助导数.2.建立函数模型解应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型.(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型.(3)求模:求解数学模型,得出数学结论.(4)还原:将利用数学知识和方法得出的结论,还原到实际问题中.[题组训练]1.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为()A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况解析:选B设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.2.声强级Y(单位:分贝)由公式Y=10lg I为声强(单位:W/m2).(1)平常人交谈时的声强约为10-6W/m2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?解:(1)当声强为10-6W/m2时,由公式Y=得Y=10lg106=60(分贝).(2)当Y=0时,由公式Y=得0.∴I10-12=1,即I=10-12W/m2,则最低声强为10-12W/m2.[课时跟踪检测]1.(2018·福州期末)某商场销售A型商品.已知该商品的进价是每件3元,且销售单价与日均销售量的关系如下表所示:销售单价/元45678910日均销售量/件400360320280240200160请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为()A.4B.5.5C.8.5D.10解析:选C由数据分析可知,当单价为4元时销售量为400件,单价每增加1元,销售量就减少40件.设定价为x 元/件时,日均销售利润为y 元,则y =(x -3)·[400-(x -4)·40]=-+1210,故当x =172=8.5时,该商品的日均销售利润最大,故选C.2.(2019·绵阳诊断)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月的水费为55元,则该职工这个月实际用水为()A .13立方米B .14立方米C .15立方米D .16立方米解析:选C 设该职工某月的实际用水为x 立方米时,水费为y 元,由题意得y =x ,0≤x ≤10,+5(x -10),x >10,即y x ,0≤x ≤10,x -20,x >10.易知该职工这个月的实际用水量超过10立方米,所以5x -20=55,解得x =15.3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4000,则每吨的成本最低时的年产量为()A .240吨B .200吨C .180吨D .160吨解析:选B 依题意,得每吨的成本为y x =x 10+4000x -30,则yx≥2x 10·4000x-30=10,当且仅当x 10=4000x,即x =200时取等号,因此,当每吨成本最低时,年产量为200吨.4.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P (单位:毫克/升)与过滤时间t (单位:时)之间的函数关系为P =P 0e -kt (k ,P 0均为正常数).如果在前5个小时的过滤过程中污染物被排除了90%,那么排放前至少还需要过滤的时间是()A.12小时 B.59小时C .5小时D .10小时解析:选C 由题意,前5个小时消除了90%的污染物.∵P =P 0e -kt ,∴(1-90%)P 0=P 0e -5k,∴0.1=e-5k,即-5k =ln 0.1,∴k =-15ln 0.1.由1%P 0=P 0e -kt ,即0.01=e -kt ,得-kt =ln 0.01,=ln 0.01,∴t =10.∴排放前至少还需要过滤的时间为t -5=5(时).5.(2019·蚌埠模拟)某种动物的繁殖数量y (单位:只)与时间x (单位:年)的关系式为y =a log 2(x +1),若这种动物第1年有100只,则到第7年它们发展到________只.解析:由题意,得100=a log 2(1+1),解得a =100,所以y =100log 2(x +1),当x =7时,y =100log 2(7+1)=300,故到第7年它们发展到300只.答案:3006.某人根据经验绘制了从12月21日至1月8日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象如图所示,则此人在12月26日大约卖出了西红柿________千克.解析:前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析=k +b ,=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909.答案:19097.候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s ,求其耗氧量至少要多少个单位?解:(1)由题意可知,当这种鸟类静止时,它的速度为0m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0.当耗氧量为90个单位时,速度为1m/s ,故a +b log 39010=1,整理得a +2b =1.+b =0,+2b =1,=-1,=1.(2)由(1)知,v =a +b log 3Q 10=-1+log 3Q10.所以要使飞行速度不低于2m/s ,则有v ≥2,所以-1+log 3Q10≥2,即log 3Q 10≥3,解得Q10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2m/s ,则其耗氧量至少要270个单位.8.据气象中心观察和预测:发生于沿海M 地的台风一直向正南方向移动,其移动速度v (单位:km/h)与时间t (单位:h)的函数图象如图所示,过线段OC 上一点T (t,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积为时间t 内台风所经过的路程s (单位:km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650km ,试判断这场台风是否会侵袭到N 城,如果会,在台风发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解:(1)由图象可知,直线OA 的方程是v =3t (0≤t ≤10),直线BC 的方程是v =-2t +70(20<t ≤35).当t =4时,v =12,所以s =12×4×12=24.(2)当0≤t ≤10时,s =12×t ×3t =32t 2;当10<t ≤20时,s =12×10×30+(t -10)×30=30t -150;当20<t ≤35时,s =150+300+12×(t -20)×(-2t +70+30)=-t 2+70t -550.综上可知,s 随t 变化的规律是s2,t ∈[0,10],t -150,t ∈(10,20],t 2+70t -550,t ∈(20,35].(3)当t ∈[0,10]时,s max =32×102=150<650,当t ∈(10,20]时,s max =30×20-150=450<650,当t ∈(20,35]时,令-t 2+70t -550=650,解得t =30或t =40(舍去),即在台风发生30小时后将侵袭到N 城.。