欧拉公式的证明和应用
- 格式:doc
- 大小:672.50 KB
- 文档页数:16
欧拉公式的三种证明欧拉公式可以用来表示一个多边形内角和与它边数之间的关系,它可以被用来确定多边形内角度数的总和。
该公式被拉普拉斯(Leonhard Euler)提出于18世纪,经历了许多历史时期,可被证明为正确性。
欧拉公式可以用来确定一个n边形内角之和是(n2)π,其中n 为边数,π是圆周率,是无穷小的值。
可以将该公式表示为V-E+F = 2,其中V是多边形的顶点数,E是多边形的边数,F是多边形的面数。
欧拉公式的证明可以通过三种方式完成:可视化证明、数学归纳法和正则多边形证明。
首先,让我们来看看可视化证明方式。
可视化证明可以通过欧拉公式来证明多边形内角和与边数之间的关系。
对于由一条边构成的多边形来说,其内角和将等于0,也就是V-E+F=2= 0。
于由两条边构成的多边形来说,其内角和将等于π,也就是V-E+F=2=。
而对于由三条边构成的多边形来说,其内角和将等于2π,也就是V-E+F=2= 2π。
样的方法可以继续用于更大的多边形,做出相应的计算,验证欧拉公式的关系是正确的。
第二种证明方式是利用数学归纳法。
数学归纳法是一种较为普遍的数学证明方式,它可以用来证明一些数学性质的正确性。
考虑到欧拉公式的关系,我们可以使用数学归纳法来证明它。
以一个多边形的内角和与边数之间的关系为例,对于由一条边构成的简单多边形,其内角和等于0,根据欧拉公式,V-E+F=2= 0,即可证明欧拉公式的正确性。
如果我们仍然考虑一个三边形,其内角和等于π,根据欧拉公式,V-E+F=2=,也可以证明欧拉公式的正确性。
同样,如果你考虑一个六边形,其内角和等于4π,那么根据欧拉公式,V-E+F=2= 4π,即可证明欧拉公式的正确性。
通过不断进行反复证明,可以证明欧拉公式的正确性。
最后,让我们来看一下正则多边形证明方法。
正则多边形的概念源自欧几里得的正多边形定理,它提出了一种特殊情况,即对于正则多边形,内角之和是(n-2)π。
正则多边形概念的出发点是每个内角度数都是相等的,每一条边都具有相同的长度。
平面图形的欧拉公式及其应用平面图形是我们日常生活中经常接触的,比如说纸片、路牌和地图等等。
欧拉公式是平面图形论中一个非常重要的定理,被誉为平面图形学的基石。
本文将简要介绍欧拉公式的定义及其应用。
一、欧拉公式的定义欧拉公式是平面图形中著名的数学定理,在平面图形中连通的多边形、边和顶点之间有着一个特殊的关系:设 $V$ 为图形的顶点数,$E$ 为边数,$F$ 为面数,则有:$$ V-E+F = 2 $$上式被称为欧拉公式,它将顶点、边和面三个要素联系起来,形成了一个完整而有机的系统。
二、欧拉公式的推导欧拉公式最初由瑞士数学家欧拉在18世纪发现。
它的推导可以通过数学归纳法得到。
对于任意一个简单的连通图,不需破坏它的连通性,可以连续剪掉边界上的一些三角形,最终得到一个由顶点、边和面构成的实体。
由于初次操作时,图形的 $V-E+F = 2$ 成立;每次移除一个三角形时,均使得 $V$ 和 $E$ 减少 $1$,但不改变 $F$,因此在这个过程中,$V-E+F$ 的值始终为 $2$。
当我们把它进行足够多次操作,在这个过程中,图形中的边界将会被全部消失,形成一个十分简单的连通图形。
在该过程中,$V-E+F$ 的值始终为 $2$,因此结论得证。
三、欧拉公式的应用欧拉公式不仅仅是数学定理,还有着广泛的应用,以下是关于欧拉公式的几个应用案例:1. 计算交叉点数对于任意一个由线段组成的平面图形,如果要求它所有线段的交叉点数 $I$,那么可以通过计算其欧拉示性数来求得。
首先,我们需要确定图形中面的数量 $F$,可以通过在图形中插入一条水平的直线,将图形划分成了若干个面。
然后,我们计算图形中有多少条边 $E$,每条边分别与多少条其他边相交,累加来得到被重复计算的交叉点数量 $J$,最后运用欧拉公式求解:$$ I = E - 2F + 2 - J $$2. 寻找多边形的边界在图形中,如果要寻找一个由多边形组成的边界,可以利用欧拉公式求解。
数学文化课程报告欧拉公式的证明与应用一. 序 ---------------------------------------------------------------------- 2 .欧拉公式的证明-------------------------- 31.1 极限法 ------------------------- 31.2 指数函数定义法 ------------------- 41.3 分离变量积分法 -------------------- 41.4 复数幕级数展开法------------------- 41.5 变上限积分法----------------------- 51.6 类比求导法----------------------- 7三.欧拉公式的应用2.1 求高阶导数----------------------- 72.2 积分计算----------------------- 82.3 高阶线性齐次微分方程的通解----------- 92.4 求函数级数展开式------------------- 92.5 三角级数求和函数------------------- 102.6 傅里叶级数的复数形式----------------- 10四.结语------------------------------- 11参考文献------------------------------ 11欧拉是十八世纪最杰出的最多产的数学家之一[1],留下了数不胜数的以其名字命名的公式。
ix 丄・・“本文关注的欧拉公式e二cos x t sin x,在复数域中它把指数函数联系在一起。
特别当x二…时,欧拉公式便写成了』二7 =0,这个等式将最富有特色的五个数。
「丄巳二绝妙的联系在一起,“ 1是实数的基本单位,i是虚数的基本单位,0是唯一的中性数,他们都具有独特的地位,都具有代表性。
i源于代数,二源于几何,e源于分析,e与二在超越数之中独具特色。
欧拉公式:V+FE=2 (简单多面体的顶点数V、棱数E和面数F)(1)E=各面多边形边数和的一半,特别地,若每个面的边数为n的多边形,则面数F与棱数E的关系:;(2)若每个顶点引出的棱数为m,则顶点数V与棱数E的关系:。
欧拉公式又称为欧拉定理,也称为尤拉公式,是用在复分析领域的公式,欧拉公式将三角函数与复数指数函数相关联,之所以叫作欧拉公式,那是因为欧拉公式是由莱昂哈德·欧拉提出来的,所以用他的名字进行了命名。
尤拉公式提出,对任意实数 x,都存在其中 e是自然对数的底数, i是虚数单位,而 \cos和 \sin则是余弦、正弦对应的三角函数,参数 x则以弧度为单位。
这一复数指数函数有时还写作 {cis}(x)(英语:cosine plus i sine,余弦加i正弦)。
由于该公式在 x为复数时仍然成立,所以也有人将这一更通用的版本称为尤拉公式。
莱昂哈德·欧拉出生于1707年4月15日,死于公元1783年9月18日,莱昂哈德·欧拉是一位来自于瑞士的数学家和物理学家,是近代著名的数学家之一,此外,莱昂哈德·欧拉还有力学,光学和天文学上都作出了重大的贡献。
莱昂哈德·欧拉被认为是18世纪,世界上最杰出的数学家,也是史上最伟大的数学家之一,而且莱昂哈德·欧拉还有许多的著作,他的学术著作就多达6080册。
他对微分方程理论作出了重要贡献。
他还是欧拉近似法的创始人,这些计算法被用于计算力学中。
此中最有名的被称为欧拉方法。
在数论里他引入了欧拉函数。
自然数 n的欧拉函数被定义为小于n并且与 n互质的自然数的个数。
在计算机领域中广泛使用的RSA公钥密码算法也正是以欧拉函数为基础的。
在分析领域,是欧拉综合了戈特弗里德·威廉·莱布尼茨的微分与艾萨克·牛顿的流数。
他在1735年由于解决了长期悬而未决的贝塞尔问题而获得名声:其中是黎曼函数。
欧拉公式19种证明欧拉公式是数学中的一个重要公式,它的表达式为e^(ix)=cos(x)+i*sin(x),其中e表示自然对数的底数2.71828…,i表示虚数单位。
欧拉公式有多种证明方法,下面我们将介绍其中19种常见的证明方法。
1. 泰勒级数证明法:利用泰勒级数展开式展开e^(ix)和cos(x)+i*sin(x),然后将它们相等的系数进行比较,即可得出欧拉公式。
2. 复合函数证明法:将e^(ix)看作复数函数f(x)=e^x,将cos(x)和sin(x)看作f(x)的实部和虚部,则有f(ix)=cos(x)+i*sin(x),即e^(ix)=cos(x)+i*sin(x)。
3. 微积分证明法:将欧拉公式两边分别对x求导,得到ie^(ix)=-sin(x)+i*cos(x),再将其两边同时乘以i,即可得到欧拉公式。
4. 积分证明法:将欧拉公式两边同时积分,得到e^(ix)/i=-sin(x)/i+cos(x),再将其两边同时乘以i,即可得到欧拉公式。
5. 欧拉级数证明法:将e^(ix)和cos(x)+i*sin(x)的泰勒级数展开式进行对比,即可得到欧拉公式。
6. 幂级数证明法:将e^(ix)和cos(x)+i*sin(x)的幂级数展开式进行对比,即可得到欧拉公式。
7. 矩阵证明法:构造一个2x2矩阵,使其特征值为e^(ix)和e^(-ix),然后求解该矩阵的本征向量,即可得到欧拉公式。
8. 矩阵幂证明法:将e^(ix)表示为矩阵的形式,然后对该矩阵进行幂运算,即可得到欧拉公式。
9. 极限证明法:将e^(ix)表示为极限的形式,然后通过极限的性质推导出欧拉公式。
10. 解微分方程证明法:将e^(ix)看作微分方程y'=iy的解,并利用欧拉公式将其转化为y=cos(x)+i*sin(x),即可得到欧拉公式。
11. 解偏微分方程证明法:将e^(ix)看作偏微分方程u_t+iu_x=0的解,并利用欧拉公式将其转化为u=cos(x-t)+i*sin(x-t),即可得到欧拉公式。
欧拉公式最简单的证明欧拉公式,也称为欧拉等式,是数学中的重要定理之一,它关联着自然对数、三角函数和复指数等数学概念,具有广泛的应用价值。
本文将为大家介绍欧拉公式最简单的证明,希望能帮助读者更好地理解和掌握这个定理。
一、欧拉公式的表述欧拉公式通常写作以下形式:e^(ix) = cos(x) + i sin(x)其中,e表示自然对数的底数(约等于2.71828),i表示虚数单位,x表示任意实数。
换句话说,欧拉公式将自然指数函数e^(ix)表示为一个复数,其中实部是余弦函数cos(x),虚部是正弦函数sin(x)。
二、欧拉公式的意义为了更好地理解欧拉公式的意义,我们可以将其视为一个在复平面上旋转的向量。
具体来说,e^(ix)表示长度为1的向量,在实轴上的投影是cos(x),在虚轴上的投影是sin(x),且该向量绕原点旋转了x个单位。
欧拉公式可以被广泛应用于复分析、微积分、信号处理和物理学等领域。
例如,在量子力学中,波函数可以表示为一个复数函数,而欧拉公式则可以帮助我们更好地理解波函数的性质。
三、欧拉公式的证明欧拉公式的证明可以通过泰勒级数展开来完成。
具体来说,我们需要用到以下两个泰勒级数:e^x = 1 + x + x^2/2! + x^3/3! + ...cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + ...sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...首先,我们将e^(ix)的泰勒级数展开式代入到欧拉公式中,得到以下等式:1 + ix + (ix)^2/2! + (ix)^3/3! + ... = cos(x) + i sin(x)接着,我们可以将左侧和右侧分别展开成实部和虚部的形式:实部:1 - x^2/2! + x^4/4! - x^6/6! + ... = cos(x)虚部:x - x^3/3! + x^5/5! - x^7/7! + ... = sin(x)这样一来,我们就完成了欧拉公式的证明。
简单多面体欧拉公式欧拉公式是简单多面体的一个基本性质,它由数学家欧拉于18世纪提出。
欧拉公式给出了简单多面体的面(F)、边(E)和顶点(V)之间的关系,具体表述如下:F+V-E=2(其中F、V、E分别表示多面体的面、顶点和边的个数)这个公式虽然简短,却包含了许多有趣的性质和应用。
下面我们将详细讨论欧拉公式及其相关的一些主要内容。
首先,我们来证明欧拉公式。
假设一个简单多面体有n个面,m个边和v个顶点,可以通过以下步骤证明欧拉公式。
1.每个面都是由若干个边围成的,而每个边都是由两个面共享的,所以每个面都至少有3个边。
因此,n个面至少有3n个边。
2.每个边都是由两个顶点连接的,所以每个边都至少连接2个顶点。
因此,m个边至少连接2m个顶点。
3.由于每个顶点都至少有3个边连接,所以v个顶点至少有3v个边。
根据以上三个推论,我们可以得到:3n≤2m2m≤3v将这两个不等式相加,得到:3n+2m≤5m,进一步化简可得:3n+2m≤5m因此,我们有:3n+3m-3m+2m≤5m,整理后得到:3n+3m-5m≤3m,进一步得到:3(n-m)≤3m,即:n-m≤m由于n和m均为正整数,所以n-m≤m一定成立。
将n-m=v代入上式,可以得到:v≤2m再将v代入欧拉公式F+V-E=2中,可以得到:F+(2m)-m=2,化简之后可以得到:F=2+m综上所述,我们证明了欧拉公式F+V-E=2接下来,我们来讨论一些与欧拉公式相关的性质和应用。
1.欧拉公式适用于所有的简单多面体,包括凸多面体和非凸多面体。
凸多面体是指其任意两点之间的直线都位于多面体的内部的多面体,而非凸多面体则不满足这一条件。
2.欧拉公式可以用于检验多面体的正确性。
例如,如果在计算多面体的面、顶点和边的个数时,结果不满足欧拉公式,即F+V-E≠2,则说明计算存在错误。
3.欧拉公式可以用于构造简单多面体。
给定一定的面、顶点和边的个数,可以通过欧拉公式来确定是否存在满足这些条件的简单多面体,并且可以帮助我们找到构造多面体的方法。
利用欧拉公式求解欧拉公式是数学中的一种重要公式,用来描述复数的指数函数。
它由著名的瑞士数学家莱昂哈德·欧拉于18世纪提出并证明。
欧拉公式的表达式为 e^ix = cos(x) + isin(x),其中e是常数, i是虚数单位,x是实数。
这个等式将复数写成了指数的形式,从而方便进行复数运算。
欧拉公式在数学、物理学、工程学等多个领域都有广泛的应用。
它在复数分析、微积分、信号处理等方面都有重要作用。
接下来将详细介绍欧拉公式的解释和运用。
首先,我们来看一下欧拉公式的证明。
通过泰勒级数展开可以证明欧拉公式成立。
泰勒级数展开是将一些函数表示为无限次可微函数的幂级数的形式。
以指数函数e^x为例,它的泰勒级数展开为1 + x + x^2/2! + x^3/3! + ...。
将x替换为ix,即可得到e^ix的泰勒级数展开。
然后根据奇偶性质和复数的定义,我们可以将e^ix展开为cos(x) + isin(x),从而证明欧拉公式成立。
欧拉公式提供了一种将复数表达为指数形式的方法。
这种表达方式在复数计算中十分方便,特别是在求幂、对数、三角函数等运算时,可以直接利用欧拉公式进行化简和计算。
例如,要计算e^zi,其中z是复数,我们可以将z表示为z = x + iy的形式,然后将e^zi转化为e^x *e^iy,再分别对e^x和e^iy进行计算。
这样就大大简化了复数计算的过程。
欧拉公式还可以用来解决一些复杂的问题。
例如,它在微积分中可以用来求解常微分方程的初值问题。
对于一些具有指数函数解的微分方程,可以利用欧拉公式将其转化为求解常微分方程的初值问题。
这种方法十分实用,可以大大简化微分方程的求解过程。
在物理学和工程学中,欧拉公式也有广泛的应用。
例如,在信号处理中,复数幅角的变化可以用欧拉公式来描述。
在电路分析中,欧拉公式可以用来分析交流电路。
在量子力学中,欧拉公式是描述波函数的数学工具。
总结来说,欧拉公式是数学中的一种重要公式,用来描述复数的指数函数。
欧拉公式的证明和应用work Information Technology Company.2020YEAR数学文化课程报告欧拉公式的证明与应用一 .序言------------------------------------------------------------------------2二.欧拉公式的证明--------------------------------------31.1 极限法 --------------------------------------31.2 指数函数定义法-------------------------------41.3 分离变量积分法-------------------------------41.4 复数幂级数展开法-----------------------------41.5 变上限积分法---------------------------------51.6 类比求导法-----------------------------------7 三.欧拉公式的应用2.1 求高阶导数-----------------------------------72.2 积分计算------------------------------------8 2.3 高阶线性齐次微分方程的通解------------------9 2.4 求函数级数展开式----------------------------9 2.5 三角级数求和函数----------------------------10 2.6 傅里叶级数的复数形式-------------------------10四.结语------------------------------------------------11 参考文献-----------------------------------------------11一.序言欧拉是十八世纪最杰出的最多产的数学家之一[1],留下了数不胜数的以其名字命名的公式。
本文关注的欧拉公式x i x e ixsin cos +=,在复数域中它把指数函数联系在一起。
特别当π=x 时,欧拉公式便写成了01=+πi e ,这个等式将最富有特色的五个数π,,,,10e i 绝妙的联系在一起,“1是实数的基本单位,i 是虚数的基本单位,0是唯一的中性数,他们都具有独特的地位,都具有代表性。
i 源于代数,π源于几何,e 源于分析,e 与π在超越数之中独具特色。
这五个数看来是互不相关的数,居然和谐的统一在一个式子中。
”[2]公式01=+πi e 成为人们公认的优美公式,被视为数学美一个象征。
这充分揭示了数学美的统一性、简洁性、奇异性等美学特性,了解这些丰富的数学文化内容,对于通过高等数学学习提高大学生的综素质、提高数学教育质量具有重要意义。
二. 欧拉公式的证明欧拉公式x i x e ix sin cos +=有广泛而重要的应用,关于该公式的证明方法目前有如下六种:首先,欧拉本人是从数学中两个重要极限出发,采用初等方法“推导”出这个公式的;其次是复指数函数定义法[2];另外从对数函数特征性质xdx x d 1ln =或x x e dxde =出发[3],利用微分方程分离变量积分法;再者采用复数幂级数展开式法来验证[3];再其次采用变上限积分法验证;最后利用Lagrange 中值定理的推论来证明[3]。
1.1极限法当0=x 时,欧拉公式显然成立; 当0≠x 时,考虑极限),(,)1(lim N n R x nix nn ∈∈+∞→, 一方面,令ixn t =则有ix ix t t n n e tn ix =+=+∞→∞→])11[(lim )1(lim ;(1)另一方面,将nix+1化为三角式,得))](sin(arctan ))n([cos(arcta )(112nxi n x n x n ix ++=+; 由棣莫弗公式得))]arctan(sin())arctan([cos(])(1[)1(22nxn i n x n n x n ix nn ++=+,而,cos )arctan(lim cos ))arctan(cos(lim ,1lim ])(1[lim ])(1[lim 022.).()(222222x nxn n x n e e n x n x n n n x n nn xx nn n n =====+=+∞→∞→∞→∞→∞→x nxn n x n n n sin )arctan(lim sin ))arctan(sin(lim ==∞→∞→, 所以有,sin cos )1(lim x i x nix nn +=+∞→ (2)由(1)、(2)两式得x i x e ix sin cos +=。
1.2 指数函数定义法因为对任何复数),(,R y x iy x z ∈+=,复指数函数)sin (cos y i y e e e x iy x z +==+[4] 所以,当复数z 的实部x=0时,就得y i y e iy sin cos +=。
1.3 分离变量积分法设复数)(,sin cos R x x i x z ∈+=,两边对x 求导数,得iz x i x i x i x i x i x dx dz=+=+=+-=)sin (cos cos sin cos sin 2, 分离变量并对两边积分,得⎰⎰=idx dz z1,c ix z +=ln ,取0=x ,得0,0sin cos ==+=c x i x z , 故有ix z =ln ,即x i x e ix sin cos +=。
1.4复数幂级数展开法+-+++-=)!2()1(!4!21cos 242n x x x x nn)(,)!2()1(02R x n x n nn ∈-=∑+∞=,+++++=)!2()(!4)(!2)(1cos 242n ix ix ix x n)(,)!2()(02R x n ix n n∈=∑+∞=++-+++-=++)!12()1(!5!3sin 12253n xx x x x n n )(,)!12()1(0122R x n x n n n ∈+-=∑+∞=++,++-+++-=++)!12()1(!5!3sin 12253n ix ix ix ix x i n n ++++++=+)!12()(!5)(!3)(!11253n ix ix ix ix n )(,)!12()(012R x n ix n n ∈+=∑+∞=++++++=!)(!2)(!112n ix ix ix e nix)(,!)(0R x n ix n n∈=∑+∞=,∑∑+∞=++∞=++=+01202)!12()()!2()(sin cos n n n n n ix n ix x i xix n ne n ix ==∑+∞=0!)(。
1.5 变上限积分法 考虑变上限积分dt t y⎰+0211因为y t dt t y yarctan arctan 11|002==+⎰,又因为dt t i t i dt t y y)111(2111002--+-=+⎰⎰]ln )[ln(2)]ln(ln )ln()[ln(2|)]ln()[ln(20ii i y i y i i i i y i y ii t i t i y -+-+=-+---+=--+=)]1ln(1)([ln 222-+++=y i y i 。
再设 θ=y arctan ,由此得θtan =y ,即)]1ln(1)([ln 222-+++=y i y i θ)]1ln(1tan )(tan [ln 222-+++=θθi i ]sec )(tan [ln 222θθi i +-= ]1)(tan cos [ln 222i i +-=θθ 222222))sin()ln(cos(2))(sin )cos()sin(2)(ln(cos 2)sin cos sin 2ln(cos 2θθθθθθθθθθ-+-=-+--+-=--=i ii i ii i))sin()ln(cos(θθ-+-=i i ;令 θ-=x),sin ln(cos x i x ix +=))sin()ln(cos()(θθθ-+-=-i i ,即有cos+=。
e ix sinxix 1.6 类比求导法构造辅助函数xi x e x f xsin cos )(+=,为在),(+∞-∞=I 上处处有ix e 和x i x sin cos +可导,且0sin cos ≠+x i x ,所以在区间),(+∞-∞=I 上,)(x f 处处可导,且2)sin (cos )sin sin ()sin (cos )(x i x x i x e x i x ie x f x x ++--+=' 02sin 2cos )cos sin sin cos (=+-+-=xi x x i x x x i e ix ; 根据Lagrange 微分中值定理的一个重要推论“如果函数f(x)在区间I 上的导数恒为0,那么)(x f 在区间I 上是一个常数”, )(x f 在区间I 上是一个常数,即存在某个常数C ,使得),(+∞-∞=∈∀I x ,都有c x f ≡)(; 又因为1)0(=f ,所以1=c ,从而1)(≡x f ,即x i x e ix sin cos +=。
三. 欧拉公式在高等数学的应用举例欧拉公式除了在初等数学中诸如证明一些三角恒等式有十分重要的应用外,在高等数 学中也有极为广泛的应用,分以下几个方面各举一个例子来说明。
2.1 求高阶导数设)(,4cos )()(3x f x e x f n x 求-=。
解: 设34arctan ,4sin )(3-==-ϕx e x g x ,并记)()()(x ig x f x F +=,根据欧拉公式,有xi n i xi n n x i x ee ei Fe x i x e x F )43()43()()43(3)5()43(,)4sin 4(cos )(+-+-+---=+-==+=ϕi x n x n e )4(3)5(++--=ϕ)]4sin()4[cos()5(3x n i x n e x n +++-=-ϕϕ,分离其实部和虚部,即可得所求之结果)34arctan 4cos()5(3)(n x e f x n n --=-。
2.2积分计算求不定积分:xdx xe x 3sin 2⎰和xdx xe x3cos 2⎰。
解:记xdx xe x g xdx xe x f x x 3sin )(,3cos )(22⎰⎰==,则⎰⎰+=+xdx xe i xdx xe x ig x f x x 3sin 3cos )()(22 ,c x x x x e x x x x e c x i x i x x e c e i x x e ce i e x i c e i e x i c e i e x i c e i e x i xde i dx x i x xe xx x ix x x i xi x i x i x i x i x i x i xi x +++-+-++=++⋅--+=+⋅--+=+++⋅-=+++⋅-=++-⋅+=++-⋅+=+=+=+++++++++⎰⎰]3sin )526(cos )3912[(169]3sin )1239(cos )526[(169)3sin 3(cos ])1239()526[(169])1239()526[(16916912516939261691251332)32(1321]321[321321)3sin 3(cos 22232)32()32()32()32()32(2)32()32()32()32(2 分离实部和虚部(上式中c 为任意复数,1c 和2c 分别为其实部和虚部),]3sin )1239(cos )526[(1693cos 122C x x x x e xdx xe xx+-++=⎰222]3sin )526(cos )3912[(1693sin C x x x x e xdx xe xx+++-=⎰。