直线电机应用以和伺服控制
- 格式:ppt
- 大小:2.69 MB
- 文档页数:18
直线电机在数控机床上的应用综述所在学院:机械工程学院学科专业:机械工程学生:解瑞建学号:********指导教师:***天津科技大学机械工程学院二零一二年十二月二十七日摘要简述了直线电机工作原理及其驱动技术,并且举例说明了直线电机直接驱动与传统数控机床“旋转伺服电机+滚珠丝杠”的传动方式对比具有很大的优势。
利用直线电机结构简单、运动平稳、噪声小、运动部件摩擦小、磨损小、使用寿命长、安全可靠性等特性,采用直线电机的开放式数控系统使机床驱动控制技术获得新发展。
介绍几个直线电机应用的实例,指出直线电机进给驱动技术将是高速机床未来的发展方向。
关键词:直线电机数控机床驱动控制高速机床0 引言数控机床正在向高精密、高速、高复合、高智能和环保的方向发展。
高精密和高速加工对传动及其控制提出了更高的要求:更高的动态特性和控制精度,更高的进给速度和加速度,更低的振动噪声和更小的磨损。
在传统的传动链中,作为动力源的电动机要通过齿轮、蜗轮副,皮带、丝杠副、联轴器、离合器等中间传动环节才能将动力送达工作部件。
在这些环节中产生了较大的转动惯量、弹性变形、反向间隙、运动滞后、摩擦、振动、噪声及磨损。
虽然在这些方面通过不断的改进使传动性能有所提高,但问题很难从根本上解决,于是出现了“直接传动”的概念,即取消从电动机到工作部件之间的各种中间环节。
随着电机及其驱动控制技术的发展,电主轴、直线电机、力矩电机的出现和技术的日益成熟,使主轴、直线和旋转坐标运动的“直接传动”概念变为现实,并日益显示出巨大的优越性。
直线电机及其驱动控制技术在机床进给驱动上的应用,使机床的传动结构出现了重大变化,并使机性能有了新的飞跃。
图0 SUPT Motion公司生产的一种直线电机1直线电机1.0直线电机的发展史直线电机的发展史1840年Wheatsone开始提出和制作了略具雏形的直线电机。
从那时至今,在160多年的历史中,直线电机经历了三个时期。
1840~1955年为探索实验时期:从1840年到1955年的116年期间,直线电机从设想到实验到部分实验性应用,经历了一个不断探索,屡遭失败的过程。
伺服电机直线电机工作原理A servo motor is a rotary actuator or linear actuator that allows for precise control of angular or linear position, velocity and acceleration. 伺服电机是一种可以精确控制角度或线性位置、速度和加速度的转动致动器或直线致动器。
Servo motors are used in a variety of applications, such as robotics, CNC machinery, conveyor systems, and more. 伺服电机广泛应用于各种领域,如机器人技术、数控机械、输送系统等。
The working principle of a servo motor involves the use of a feedback control system to accurately position the motor shaft. 伺服电机的工作原理涉及使用反馈控制系统来精确定位电机轴。
This is achieved by continuously comparing the actual position of the shaft to the desired position and adjusting the motor's control inputs accordingly. 这是通过不断比较轴的实际位置和期望位置,并相应地调整电机的控制输入来实现的。
The feedback control system typically utilizes a rotary encoder or linear encoder to provide position feedback to the motor controller. 反馈控制系统通常使用旋转编码器或线性编码器向电机控制器提供位置反馈。
数控机床直线电机进给伺服系统的动态特性分析与研究1. 数控机床直线电机进给伺服系统概述随着科技的不断发展,数控机床在工业生产中扮演着越来越重要的角色。
为了提高数控机床的加工精度和效率,近年多的研究者开始关注直线电机进给伺服系统的研究与应用。
直线电机进给伺服系统是一种采用直线电机作为驱动源的高精度、高速度、高可靠性的伺服系统,广泛应用于数控机床、机器人、自动化生产线等领域。
直线电机进给伺服系统具有很多优点,如结构简单、体积小、重量轻、响应速度快、转矩大等。
这些优点使得直线电机进给伺服系统在数控机床中的应用越来越广泛。
由于直线电机本身的特点以及伺服系统的复杂性,对其进行动态特性分析与研究具有很大的挑战性。
本文将对数控机床直线电机进给伺服系统的动态特性进行深入研究,以期为实际应用提供理论依据和技术支撑。
1.1 研究背景随着现代制造业的快速发展,数控机床在各个领域的应用越来越广泛。
数控机床的性能和精度对于提高产品质量、降低生产成本具有重要意义。
直线电机进给伺服系统作为数控机床的关键部件之一,其动态特性直接影响到数控机床的加工精度、速度和稳定性。
研究数控机床直线电机进给伺服系统的动态特性,对于提高数控机床的整体性能具有重要的现实意义。
传统的数控机床进给伺服系统主要采用步进电机驱动,虽然在一定程度上满足了加工需求,但其动态特性较差,如速度响应慢、加速度范围窄、负载能力有限等。
这些问题限制了数控机床在高速、高精度加工方面的应用。
随着直线电机技术的不断发展,直线电机进给伺服系统逐渐成为数控机床领域的研究热点。
直线电机具有功率密度高、加速度响应快、速度快、转矩大等优点,可以有效提高数控机床的性能。
由于直线电机进给伺服系统涉及到多个学科领域,如电机学、控制理论、机械设计等,因此对其动态特性的研究具有较高的难度。
本论文旨在对数控机床直线电机进给伺服系统的动态特性进行分析与研究,以期为提高数控机床的性能和稳定性提供理论依据。
《数控技术》大作业二1.综述直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。
其中定子相当于直线电机的初级,转子相当于直线电机的次级,当初级通入电流后,在初次级线圈之间的气隙中产生行波磁场,在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。
直线电机的工作原理设想把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应图电动机。
初级做得很长,延伸到运动所需要达到的位置,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动.通入交流电后在定子中产生的磁通,根据楞次定律,在动体的金属板上感应出涡流。
设产生涡流的感应电压为E,金属板上有电感L和电阻R,涡流电流和磁通密度将(费来明法则)产生连续的推力F。
2.工作原理直线电动机的初级三相绕组通入三相交流电后,就会在气隙中产生一个沿直线移动的正弦波磁场,其移动方向由三相交流电的相序决定,如图所示。
显然该行波磁场的移动速度与普通电机旋转磁场在定子内圆表面的线速度相等。
行波磁场切割次级上的导体后,在导体中感应出电动势和电流,该电流与气隙磁场作用,在次级中产生电磁力,驱动次级沿着行波磁场移动的方向作直线运行,或者利用反作用力驱动初级朝相反的方向运动。
如果改变直线电动机初级绕组的通电相序,即可改变电动机的运行方向。
因此直线电动机可实现往返直线运动。
3.直线电机的特点直线电机是一种将电能直接转换成直线运动机械能而不需通过中问任何转换装置的新颖电机,它具有系统结构简单、磨损少、噪声低、组合性强、维护方便等优点。
旋转电机所具有的品种,直线电机几乎都有相对应的品种,其应用范围正在不断扩大,并在一些它所能独特发挥作用的地方取得了令人满意的效果。
直线感应电动机的特点是:结构简单,维护方便;散热条件好,额定值高;适宜于高速运行;能承担特殊任务,如液态金属的运输、加工等。
其缺点是气隙大,功率因数低,力能指标差,低速运行时需采用低频电源,使控制装置复杂。
直线电机的应用直线电机凭借高速度、高加速、高精度及行程不受限制等特性在物流系统、工业加工与装配、信息及自动化系统、交通与民用以及军事等领域发挥着十分重要的作用。
直线电机主要应用场合:一是应用于自动控制系统,这类应用场合比较多;其次是作为长期连续运行的驱动电机;三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。
直线电机可以在几秒钟内把一架几千公斤重的直升飞机拉到每小时几百公里的速度,它在真空中运行时,其时速可达几千上万公里。
在军事上,人们利用它制成各种电磁炮,并试图将它用于导弹、火箭的发射;在工业领域,直线电机被用于生产输送线,以及各种横向或垂直运动的一些机械设备中;直线电机除具有高速、大推力的特点以外还具有低速、精细的另一特点,例如,步进直线电机,它可以做到步距为1μm的精度,因此,直线电机又被应用到许多精密的仪器设备中,例如计算机的磁头驱动装置、照相机的快门、自动绘图仪、医疗仪器、航天航空仪器、各种自动化仪器设备等。
除此之外,直线电机还被用于各种各样的民用装置中,如电动门、电动窗、电动桌、椅的移动,门锁、电动窗帘的开、闭等等,尤其在交通运输业中,人们利用直线电机制成了时速达500km以上的磁浮列车。
直线电机可以认为是旋转电机在结构方面的一种变形,它可以看作是一台旋转电机沿其径向剖开,然后拉平演变而成。
近年来,随着自动控制技术和微型计算机的高速发展,对各类自动控制系统的定位精度提出了更高的要求,在这种情况下,传统的旋转电机再加上一套变换机构组成的直线运动驱动装置,已经远不能满足现代控制系统的要求,为此,近年来世界许多国家都在研究、发展和应用直线电机,使得直线电机技术发展速度加快,应用领域越来越广。
直线电机的优点是:结构简单、反应速度快、灵敏度高、随动性好、密封性好、不怕污染、适应性强(由于直线电机本身结构简单,又可做到无接触运行,因此容易密封,各部件用尼龙浸渍后,采用环氧树脂加以涂封,这样它就不怕风吹雨打,或有毒气体和化学药品的侵蚀,在核辐射和液体物质中也能应用)、工作稳定可靠、寿命长(直线电机是一种直接传动的特种电机,可实现无接触传递,故障少,几乎不需要维修,又不怕振动和冲击)、额定值高(直线电机冷却条件好,特别是长次级接近常温状态,因此线负荷和电流密度可以取得很高)、有精密定位和自锁的能力(和控制系统相配合,可做到0.001mm的位移精度和自锁能力)。
直线电机伺服系统在制造装备上的控制应用[摘要]近些年,国产高端装备市场份额逐年上升。
在国产装备同级别替代进口装备的行业中,系统性能稳定性竞争日益激烈,直线电机及其驱动系统无疑是高端制造装备的核心器件,在精密贴装,高精度检测,精密测量装备系统中,直线电机伺服系统以其低功耗、高速、高动态响应等优良的系统性能在各种精密装备上应用广泛。
本文主要围绕制造装备直线电机伺服系统控制应用开展深入的研究和探讨。
关键词:伺服系统、直线电机、制造装备、控制应用伴随制造业持续高速发展,各种高端制造装备控制系统控制面临着更高的挑战。
在系统速度与加速度毫秒必争的领域,直线电机伺服系统中的运动控制系统及其系统硬件的设计,对其系统性能整体提升起到至关作用。
ELMO是一款可以适配任意运动、任意控制的驱动器,搭载雅科贝思直线电机系统和雷尼绍光栅尺作为执行机构和位置反馈系统,即形成了一整套直线电机伺服系统的硬件架构。
ELMO的龙门算法是基于MIMO结构,即多输入多输出结构,处理X1/X2/Y轴的输入,图示如下:1. Y center = Y - Y方向当前位置2. X center = (X1+X2)/2 –龙门双驱X方向中心点位置3. θ = (X1-X2) –龙门双驱X方向两个轴的同步位置偏差1、直线电机与驱动选型应用直线电机相比于旋转伺服电机、无丝杆或者减速机、传动齿轮的能耗损失,在选型阶段,我们通常关注直线电机的峰值推力、持续推力、峰值电流、持续电流、配套驱动器选型,需要知道直线电机的力常数,出力电机数量、电机相数、磁极距、负载重量、速度指标、加速度指标、电机峰值推力和持续推力、电机峰值电流、反电动势常数,持续电流等指标,从而进行计算驱动器的母线电压、峰值功率和持续功率。
2、直线电机伺服系统控制应用2.1 直线电机伺服系统2.1.1直线电机伺服系统构建及配线本项目中采用ELMO驱动器作为龙门结构的驱动系统,龙门控制算法采用主从式控制方式,设计两个同型号驱动器驱动两个同型号直线电机,主从轴直线电机全部配置配光栅尺、模拟量编码器[1]。
直线电机主要应用于三个方面:一是应用于自动控制系统,这类应用场合比较多;二是作为长期连续运行的驱动电机;三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。
在实际工业应用中的稳定增长,证明直线电机可以放心的使用。
本期讨论直线电机的运用Linear motor:直线伺服电机应用昆山佳德锐自动化系统销售中心 交流论坛: www.hilife.me工业之美什么是直线电机特点1.什么是直线电机 直线电动机(或称线性马达)(Linear motor)是电动机的一种,其原理与传统的电动机不同,直线电机是直接把输入电力转化为线性动能,与传统的扭力及旋转动能不同。
直线电机又分为低加速及高加速两大类,当中低加速直线电机适用于磁悬浮列车及其他地面交通工具,而高加速直线电机能把物件在短时间内加至极高速度,适用于粒子加速器、制造武器等。
2.直线电机是如何工作的下面简单介绍直线电机类型和他们与旋转电机的不同,最常用的直线电机类型是平板式,U型槽式和管式。
线圈的典型组成是三相,有霍尔元件实现无刷换相,直线电机用HALL换相的相序和相电流。
直线电机经常简单描述为旋转电机被展平,而工作原理相同。
动子(forcer,rotor)是用环氧材料把线圈压缩在一起制成的,而且磁轨是把磁铁(通常是高能量的稀土磁铁)固定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度)和电子接口。
在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙(airgap)。
同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。
和旋转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直线编码器,它可以直接测量负载的位置从而提高负载的位置精度。
3.直线电机分类管状直线电机圆柱形动磁体直线电机的磁路与动磁执行器相似。
区别在于线圈可以复制以增加行程。
典型的线圈绕组是三相组成的,使用霍尔装置实现无刷换相。
直线电机的缺点以下专业资料由精密丝杆供应商:雷研精密传动设备有限公司提供。
很多机械制造行业的技术人员想迫切了解直线电机能否完全替代滚珠丝杠,就目前来说,只能说是一个很好的发展方向,但尚有很多技术不是很成熟,直线电机的缺点,主要有以下方面:(1)伺服控制难度大直线电机传动的控制只能是全闭环控制。
这样,工作台的负荷(工件重盆、切削力等)及其变化,对一个稳定系统来说就是外界干扰,若自动调节不好会使系统失稳而展荡。
而回转电机传动可采用半闭环隔离这些干扰。
即使采用全闭环,由于存在着滚珠丝杆等这些弹性中间环节,它们既有刚性差而使加速度上不去的负面影响,又有吸收和抑制干扰的正面作用,而使伺服控制难度减小。
此外,由于是在高速、高精度下工作,还要求反馈用位置检测元件具备调速数据采集和响应能力和较高的分辨率。
(2)应用于垂直行程部件时,由于存在着重力加速度,故要求采取复杂的平衡措施,否则会造成电机过热。
由于是在高速、高精度下工作,要求快速响应,往往不是简单加平衡重锤所能解决的,而需在电机和伺服驱动电路上采取措施。
断电时的自锁措施也比回转电机传动复杂。
回转电机传动一般可在联轴节处装简单的超越离合器来解决自锁问题。
(3) 往往要采取冷却措施凡是电机都要发热的。
回转电机一般安装在机床的周边位置,有较好的散热条件, 远离构件, 难以造成构件的热变形, 因而一般不采取冷却措施。
而直线电机因安装在机床腹部,根据具体情况, 有时须采取风冷(自然风或压缩空气)或循环水冷的措施。
这时, 气管或水管还必须随工作台一起作高速运动。
(4) 装配和防护难度加大回转电机的磁场是闭式的, 而直线电机的是开式的。
特别是同步式, 定件上要安装一排或多排强磁的永久磁钢, 而床身等构件和装配用工具又都是磁性材料, 动不动就会被吸住,尘埃中的磁性物质, 钢铁等切屑都难抗拒强磁的吸力, 一旦尘屑堵住了不大的气隙, 电机就不能工作.1直线电机工作原理直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。
直线电机进给系统伺服参数与控制参数的设计高峰;斯迎军【摘要】简单介绍了直线电机的分类和优点,设计了一种直线电机伺服系统的结构,说明了驱动器的使用方法及其基本工作原理.研究了直线电机进给系统的控制响应特性,建立了系统的传递函数模型,分析了伺服参数对于响应特性的影响,采用PID控制器对电机位置输出进行控制以减小电机位置输出误差,运用Matlab/Simulink进行系统建模和仿真分析.【期刊名称】《山西电子技术》【年(卷),期】2018(000)003【总页数】4页(P34-37)【关键词】直线电机;伺服系统;速度环;位置控制;参数整定【作者】高峰;斯迎军【作者单位】中国电子科技集团公司第二研究所,山西太原030024;中国电子科技集团公司第二研究所,山西太原030024【正文语种】中文【中图分类】TM359.41 直线电机系统分类及其伺服系统的优点早在1845年,Wheatstone提出了直线电机的概念。
20世纪50年代中期,控制、材料技术的飞速发展为直线电机的应用提供了技术基础。
直至20世纪90年代,随着设备向高速化、精密化方向的发展,直线电机被用于设备伺服系统中,并且发展迅速[1]。
直线电机分为直线直流电动机、直线感应电动机、直线同步电动机、直线步进电动机、直线压电电动机、直线磁阻电动机。
目前使用比较广泛的是直线感应电动机和直线同步电动机。
直线同步电动机虽然比直线感应电动机工艺复杂、成本较高,但是效率较高、次级不用冷却、控制方便,更容易达到要求的性能。
因此随着钕铁硼永磁材料的出现和发展,永磁同步电机已成为主流。
在数控设备等需要高精度定位的场合,基本上采用的都是永磁交流直线同步电动机。
直线电机伺服系统的优点主要是结构简单、定位精度高、反应速度快、灵敏度高、随动性好。
2 直线电机伺服系统模型直线电机进给驱动系统结构如图1所示,主要由导轨、滑块、定子、动子、霍尔元件和光栅组成。
相对于传动的滚珠丝杠进给系统,它取消了中间的传动装置从而大大提高了电机的响应特性。