铅酸蓄电池动态模型参数辨识及仿真验证
- 格式:pdf
- 大小:227.85 KB
- 文档页数:4
铅酸蓄电池动态模型参数辨识及仿真验证李匡成;刘政【摘要】The process of lead-acid battery charging and discharging is a complicated physicochemical reaction. Meanwhile, the inner state of battery is inlfuenced by environment temperature, cycles and so on.Actual-time and accurate handling the state parameters can provide technology support to the smart charging equipment and the battery maintenance. Based on the battery dynamic model in this study, the dynamic parameters are identiifed. Through the experiment and simulation of charging and discharging for battery, verifying the effectiveness of dynamic model and accuracy of recognizing parameters.%铅酸蓄电池的充、放电过程是一个复杂的物理、化学反应体系,同时蓄电池的内部状态还受环境温度、循环次数等诸多因素的影响,实时、准确地掌控蓄电池的状态参数可以为智能充电设备和蓄电池的维护保养提供技术支持。
本文以蓄电池动态模型为基础,对动态参数进行辨识,通过充放电实验和仿真,验证了该动态模型的有效性和参数辨识的准确性。
【期刊名称】《蓄电池》【年(卷),期】2015(000)004【总页数】4页(P170-173)【关键词】铅酸蓄电池;动态模型;参数辨识;荷电状态;等效电路【作者】李匡成;刘政【作者单位】装甲兵工程学院控制工程系,北京 100072;装甲兵工程学院控制工程系,北京 100072【正文语种】中文【中图分类】TM912.10 引言铅酸蓄电池主要的参数有荷电状态 SOC、静止电动势 Em、欧姆内阻 R0、极化电阻 R1 等,而这些参数受大量因素的影响,所以需要建立铅酸蓄电池等效电路模型,并对其中的参数进行参数辨识,以实现对蓄电池参数的准确估计,最后通过仿真验证参数辨识的准确性。
310.16638/ki.1671-7988.2018.03.002蓄电池等效电路充放电模型参数辨识实验方法研究彭善涛1,盛小明2(1.苏州大学机电工程学院,江苏 苏州 215021;2. 苏州建设交通高等职业技术学校,江苏 苏州 215104) 摘 要:文章通过基于具有持续相关性的辨识M 序列基础上对充放电模型参数辨识实验研究,对选用的Thevenin 模型采取改进并进行建模仿真,使其能够更加准确的描述出蓄电池系统的工作特性,适合用于电动汽车动力蓄电池等效电路模型的相关仿真研究。
关键词:动力蓄电池;等效电路模型;M 序列中图分类号:U467 文献标识码:A 文章编号:1671-7988(2018)03-03-05Experimental method study on parameter identification of charge discharge modelof battery equivalent circuitPeng Shantao 1, Sheng Xiaoming 2(1. Institute of mechanical and electrical engineering of Soochow University, Jiangsu Suzhou 215021; 2. Suzhou construction and transportation higher vocational and technical school, Jiangsu Suzhou 215104)Abstract: Based on the identification of M sequence based on the correlation with continuous study of parameters identifica -tion experiment of charge discharge model, take the improvement and Simulation of the Thevenin model, which can describe the characteristics of the battery system is more accurate and suitable for the simulation research electric vehicle battery equivalent circuit model.Keywords: Traction battery; Equivalent circuit model; M sequence CLC NO.: U467 Document Code: A Article ID: 1671-7988(2018)03-03-05前言蓄电池的电压、电流和温度等状态可以通过传感器直接检测得到,但动力蓄电池的荷电状态(State of Charge, SOC )等无法由传感器直接测量,必须通过某种算法间接估计得到,而这些算法都离不开蓄电池的模型及其模型参数。
基于三阶动态模型的铅酸蓄电池建模与仿真摘要基于铅酸蓄电池内部化学反应的非线性、复杂性和对环境的敏感性等特点, 通过对铅酸蓄电池各类等效模型的研究和分析,本文采用三阶动态等效模型对铅酸蓄电池建模,并用MATLAB/Simulink 软件进行仿真验证。
关键词:铅酸蓄电池三阶动态模型仿真1 研究背景和意义目前应用的电池类别较多,如镍氢电池、铅酸电池和燃料电池等。
此中,通用汽车铅酸电池,便宜、能量是温和、高速率放电机能好、高温和低温机能好、效率高的优势,因此广泛普遍用在军事等行业。
由于铅酸电池具备广泛的应用远景,有必要深入研究铅酸电池的工作机理,但电池内在的电化学过程对环境敏感和复杂的非线性过程,这个过程要用数模来描述。
电池模型更好地反映电池充电和放电的,模型不要太复杂,方便工程使用。
2 铅酸蓄电池基本特性2.1 铅酸蓄电池的原理铅酸蓄电池的电极是由铅及其氧化物构成,其电解液是硫酸溶液,是由正负极板、隔板、电池槽、电解液以及接线端子等部分构成。
铅酸蓄电池的工作原理比较简单,包括正负极和电解质,正极活性物用二氧化铅(),负极活性物用铅(),电解液是用硫酸()。
如图1-1所示为蓄电池工作原理。
在铅酸蓄电池的放电反应中,因为蓄电池电势差,负极板的电子会经过负载进到正极板由此就成了电流,同样电池的内部也在进行化学反应。
在电场的作用下,电解液的硫酸根离子()移到电池的正极,氢离子()移到电池的负极,从而在蓄电池内部就成了电流,导电通路就此构成,蓄电池便接连向外部放电。
相对地,充电过程是放电过程的反向过程,充电过程可以还原放电过程中消耗的正负极活性物质。
图1-1 铅酸蓄电池的工作原理2.2 铅酸蓄电池的基本特性2.2.1 蓄电池内阻特性当电流流过电池的内部,因为有内部阻力,所以电池的工作电压就会大于或者小于开路电压。
电池内阻的不固定性,往往影响因素如温度、电解液的浓度。
从文献知,铅酸电池内部阻力可以分成三个部分:欧姆极化内阻、电化学极化电阻和浓差极化电阻。
基于主成分回归分析法的铅酸蓄电池建模与仿真摘 要:铅酸蓄电池是坦克,装甲车普遍采用的启动和辅助电源,而蓄电池内部的电化学反应是一个队环境敏感的复杂的过程,本文通过主成分回归分析,建立了回归模型,并与目前应用比较广泛的三阶模型进行了相对误差的比较分析,为解决铅酸蓄电池的建模与仿真提供了新思路。
关键词:主成分回归;相对误差中图分类号:TH137;O241.5 文献标志码:A铅酸蓄电池是提供直流电源的一种常用装置,是坦克,装甲车普遍采用的启动和辅助电源,并广泛应用在混合动力汽车和纯电动汽车中,电池品质优劣直接影响到整车运行性能和可靠性。
铅酸蓄电池的参数包括环境温度、充电电流、平均电压和单格电压和电解液温度,同时随着使用时间增长,电池内阻变化、电池老化和充放电效率都会影响电池性能[1]。
然而车用蓄电池内部结构复杂,为了使电池发挥其最大功效,建立起一个准确有效的铅酸蓄电池的数学模型显得尤为重要。
目前电化专家建立的数学模型更多的是为设计电池本身服务且非常复杂。
对电池的应用,既要求模型可以较好地反映蓄电池的充放电过程,又要求模型不能过于复杂,便于工程应用。
三阶模型是目前应用比较广泛的铅酸蓄电池模型之一,但模型本身比较粗略,确定模型参数和经验公式并不十分准确,因此拟合精度难以保证。
为了消除解决这个问题,人们提出了一些改进的方法,其中的一种主成分分析回归方法比较有效,该方法采用了在自变量集合中提取成分的思想[2] 。
本文结合工程实际,利用主成分回归对铅酸蓄电池数据进行了相关分析和建模,取得了良好的效果。
1 主成分回归建模基本思想及流程1.1建模原理主成分回归建模的基本思想[3]是,首先对所有自变量进行主成分分析,即将原来众多具有一定相关性的指标,比如P 个指标,重新组合成一组新的线性无关的综合指标,代替原来的指标,提取主成分,再对所得的主成分进行回归。
设回归模型εββ++=X Y 01中若有某个变量,比如1X ,它的变差很小,则()0211≈-∑=n i i i X X。
蓄电池仿真研究一背景铅酸蓄电池是电力系统中一种常用的器件,在以前的仿真中,我们是把它一个电压源替代,但是实际上,电压源是无法准确描述蓄电池的各种工作特性的,尤其对于类似于UPS系统开发中,准确描述蓄电池特性是很重要的,例如放电工作时的端电压变化趋势对于检测电路正常工作,充电时的注入电流变化过程决定充电器的负载特性,等等。
本文的主要目的是介绍运用仿真工具分析蓄电池特性,以及蓄电池仿真模型中各种参数的理解和设置方法。
二蓄电池的基本特性铅酸蓄电池作为一个电化学设备,完整描述其性能是极其复杂的,描述其内部过程是化学领域的任务,我们这里关心的是它在电路中表现出来的外部性能,主要有以下一些。
2.1放电性能当蓄电池给电路供电的时候,处于放电状态,它具有以下一些基本特性。
2.1.1容量限制蓄电池是通过活物质反应产生电荷,当它放电时,这些活物质被消耗,在消耗到一定度以前,蓄电池端电压会维持在某个电平附近(有轻微下降),当超过这个限度,电压会急剧下降。
一般我们用电池以某个恒定电流放电的电压-时间曲线来表示,如图2-1。
通常,我们用一个电压和时间的曲线表示这种放电特性,电压急剧下降的转折点称为“拐点(knee point)”,表示这个时候活物质已经接近消耗殆尽,此时的对应电压称为放电终止电压,在应用中应该设置保护电路防止电池过放电,对应的时间则称为在该放电电流下的放电时间。
2.1.2 放电电流的影响通常电池的容量用安时(A.h)来表示,字面含义可以理解为指放电时间和放电电流的乘积,但是实际上,电池的容量是会随着放电电流而变化的,而且,电池的端电压的也是随着放电电流大小而变化的。
不同放电电流时的端电压--时间关系可以用图2-2表示。
从这个图中得出电池的放电时间和放电电流的关系如图2-3仿真结果可以看出,电池的放电时间和放电电流并非一个线性关系,容量是随着放电电流的加大而减小的。
2.1.3、恢复特性通常,蓄电池放电时会有一个放电终止保护电压,电池端子电压低于这个值,就应该终止放电,蓄电池在放电终止以后,电压会自动回升到某个值,即所谓的“恢复”特性,恢复后的电压和放电程度有关,如图2-4,是通过设定不同放电终止电压,可以看到不同放电深度的恢复特性。
固定型铅酸蓄电池的电池容量验证和准确性分析铅酸蓄电池作为一种常见的储能设备,被广泛应用于各个领域,包括汽车、通信、太阳能储能等。
在这些领域中,电池容量的准确性对于设备的工作性能和安全性至关重要。
因此,对固定型铅酸蓄电池的电池容量进行验证和准确性分析显得十分重要。
首先,为了验证固定型铅酸蓄电池的电池容量,我们可以采用放电测试的方法。
具体步骤如下:第一步,选择一块电池,测量其初始电荷状态以确定初始电荷量。
第二步,将电池连接到负载,以一定的电流值进行放电。
第三步,记录电池放电时间和放电电流,直到电池电压降至规定的终止电压。
第四步,根据放电曲线计算电池放电容量,即电流与时间的积分。
第五步,重复以上步骤多次,确保测试结果的重复性和可靠性。
通过上述步骤,可以验证固定型铅酸蓄电池的电池容量,并得到相应的容量数值。
然而,光靠容量数值本身无法准确评估电池的性能,因此还需要进行准确性分析。
准确性分析主要包括两个方面:全电池容量的准确性和循环寿命的评估。
首先,全电池容量的准确性评估是评价电池性能的关键指标。
全电池容量指的是电池完全充电和放电后所存储的能量。
一种常用的评估方法是通过构建电压-容量曲线,确定充电和放电等各个步骤的电压和容量之间的关系。
通过对比实际测量值和理论值,可以评估电池容量值的准确性。
其次,循环寿命评估是评估固定型铅酸蓄电池长期使用能力的重要指标。
循环寿命指的是电池在一定充放电循环次数后能够维持一定容量的能力。
具体评估方法可以通过循环充放电测试来实施。
在测试过程中,将电池进行多次循环充放电,并记录每次循环后的容量损失情况。
通过观察电池容量变化趋势,可以评估电池的循环寿命。
此外,为了提高电池容量的准确性和循环寿命的稳定性,还可以采取一些措施。
首先,合理控制电池的充电和放电速率,避免超负荷使用;其次,保持电池的良好充电状态,防止过度放电;最后,定期维护和检查电池,确保其正常工作,及时发现和处理潜在问题。
总而言之,固定型铅酸蓄电池的电池容量验证和准确性分析是确保电池性能和安全的重要环节。
铅酸蓄电池动态等效电路的模型仿真
铅酸蓄电池动态等效电路的模型仿真报告
本报告通过模型仿真的方法,对铅酸蓄电池的动态等效电路进行分析。
在此报告中,我们首先概述了铅酸蓄电池及其动态等效电路的设计原理,然后介绍了模型的建立及仿真的步骤。
随后,我们根据仿真结果进行了相应分析,并给出了仿真实验的结论。
铅酸蓄电池是一种新型能源储存设备,具有充电快、容量大、使用寿命长等特点,已经被越来越多的人开始使用。
它的动态等效电路包括一个元件:电池,可以用于模拟铅酸蓄电池的供电特性。
为了实现模型仿真,首先建立了铅酸蓄电池动态等效电路仿真模型。
该模型包括一个输入源电压和一个电池元件。
将模型中的参量设置为实际测试环境,然后使用MATLAB/SIMULINK 进行仿真。
经过模拟,我们得到了负向和正向电池放电特性曲线,表明了铅酸蓄电池的动态特性。
通过对仿真结果的分析,可以发现,在正常工作范围内,铅酸蓄电池能够支持一定的功率密度。
随着电压的增加,其功率密度也会随之而降低。
而当电压超出其正常范围时,铅酸蓄电池效率会降低,这时候就需要对其进行恰当的保护。
通过本次模型仿真,我们可以认为:由于动态等效电路模拟了
铅酸蓄电池的工作特性,因此可以更好地了解电池的使用情况,并为之提供更加完善的设计。
综上所述,通过本次模型仿真,我们可以充分地分析和评估铅酸蓄电池的动态特性,以提高其使用效率。
3000AH铅酸蓄电池内阻模型仿真对于一个3000AH的铅酸蓄电池,其内部电阻中等效的电容值大概为1.5*30=45F,等效内阻模型如图1所示。
图1电池内阻等效模型
从图1可以看出,3000AH的铅酸蓄电池的内阻是非常小的,在图1中的内阻值不代表具体的电池内阻,只是一个假设,假设电池的内阻是这么多,具体的电池,每块电池的内阻都是不同的。
但是这么小的电池内阻,如何测量呢?
下面就介绍一种交流法测电池内阻的方法。
就是将一个一定频率,一定大小的电流(这里我们给定的电流频率是100Hz,峰峰值是400mA),从电池的正极流入,负极流出,然后来采集电池两端产生的交流电压信号,将采集到的电压值与电流值相除,就得到电池内阻的大小。
具体的电路如图2所示。
通过仿真,我们可以看到流过电池的电流的有效值,见图3所示。
电池两端的电压信号,经过AD620进行放大,放大倍数为100倍,放大后的电压值如图4所示。
这样我们就可以得到电池的内阻值:
r=(128.749/100)/282.843= 0.00455mΩ
图2 3000AH电池等效内阻测量电路
图3 电流有效值
图4放大100倍后的电压值。