天津市五区县2017届高三上学期期末考试数学(文)试题+分析.doc
- 格式:docx
- 大小:690.06 KB
- 文档页数:11
绝密★启用前天津市部分区2017~2018学年度第一学期期末考试高三数学(文科)温馨提示:使用答题卡的区,学生作答时请将答案写在答题卡上;不使用答题卡的区,学生作答时请将答案写在试卷上。
第Ⅰ卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合U={1, 2, 3, 4, 5},集合A={1, 2},集合B={2, 4},则集合()UA B=ðA. {4}B. {2, 3, 4, 5}C. {3, 5}D. {2, 3, 5}2. 设变量x,y满足约束条件220,220,2,x yx yy+-⎧⎪-+⎨⎪⎩………则目标函数z=x+y的最大值为A. 7B. 6C. 5D. 43. 一个四棱柱的三视图如图所示,该四棱柱的体积为A. 12B. 24C. 36D. 484. 设x∈R,若“1≤x≤3”是“⎪x-a⎪ < 2”的充分而不必要条件,则实数a的取值范围是A. (1, 3) B. [1, 3)C. (1, 3]D. [1, 3]5. 已知双曲线22221x ya b-=(a> 0,b> 0)的一个焦点为F(-2, 0),一条渐近线的斜率A.2213xy-= B.2213yx-= C.2213yx-= D.2213xy-=正视图侧视图俯视图6. 已知函数f (x ) = 2⎪x ⎪,且f (log 2 m ) > f (2),则实数m 的取值范围为 A. (4, +∞)B. 1(0,)4C. 1(,)(4,)4-∞+∞D. 1(0,)(4,)4+∞7.设函数()cos f x x x ωω=+(ω > 0),其图象的一条对称轴在区间(,)63ππ内,且f (x )的最小正周期大于π,则ω的取值范围为A. 1(,1)2B. (0, 2)C. (1, 2)D. [1, 2)8.如图,平面四边形ABCD ,∠ABC = ∠ADC = 90︒,BC = CD = 2,点E 在对角线AC 上,AC = 4AE = 4,则EB ED ⋅的值为A. 17B. 13C. 5D. 1第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.已知a ∈R ,i 为虚数单位,若i1ia -+为纯虚数,则a 的值为__________. 10. 已知函数ln ()xf x x=,f ′(x )为f (x )的导函数,则f ′(1)的值为__________.11. 阅读如图所示的程序框图,若输入的a ,b 分别是1,2,运行相应的程序,则输出S 的值为__________. 12. 已知函数1()221x x f x =+-(x > 0),则f (x )的最小值为__________.13. 以点(0, b )为圆心的圆与直线y = 2x + 1相切于点(1,3),则该圆的方程为__________. 14. 已知函数2,0,()115,0.24x x f x a x x ⎧>⎪=⎨+-⎪⎩… 函数g (x ) =x 2,若函数y = f (x ) - g (x )有4个零点,则实数a 的取值范围为__________.B三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)某公司需要对所生产的A,B,C三种产品进行检测,三种产品数量(单位:件)如下表所示:采用分层抽样的方法从上产品中共抽取6件.(Ⅰ)求分别抽取三种产品的件数;(Ⅱ)将抽取的6件产品按种类A,B,C编号,分别记为A i,B i,C i,i= 1, 2, 3….现从这6件产品中随机抽取2件.(ⅰ)用所给编号列出所有可能的结果;(ⅱ)求这两件产品来自不同种类的概率.16.(本小题满分13分)在△ABC中,内角A,B,C所对的边为a,b,c,且满足sin sin sin sinA C A Bb a c--=+.(Ⅰ)求C;(Ⅱ)若1cos7A=,求cos (2A-C)的值.17.(本小题满分13分)如图,在多面体ABCDEF中,已知ABCD是边长为2的正方形,△BCF为正三角形,G、H分别为BC、EF的中点,EF 4且EF∥AB,EF⊥FB.(Ⅰ)求证:GH∥平面EAD;(Ⅱ)求证:FG⊥平面ABCD;(Ⅲ)求GH与平面ABCD所成角的正弦值.DA BC G FH E18.(本小题满分13分)已知{a n }是等差数列,且a 2 = 4,其前8项和为52.{b n }是各项均为正数的等比数列,且满足b 1 + b 2 = a 4,b 3 = a 6.(Ⅰ)求{a n }和{b n }的通项公式; (Ⅱ)令22log log n nn n nb ac a b =+,数列{c n }的前n 项和为T n .若对任意正整数n ,都有T n - 2n < λ成立,求实数λ的取值范围.19.(本小题满分14分)设椭圆22221x ya b+=(a>b> 0)的左焦点为F1,离心率为12.F1为圆M:x2+y2+ 2x- 15 = 0的圆心.(Ⅰ)求椭圆的方程;(Ⅱ)已知过椭圆右焦点F2的直线l交椭圆于A,B两点,过F2且与l垂直的直线l1与圆M交于C,D两点,求四边形ABCD面积的取值范围.20.(本小题满分14分)已知函数3211()(2)232f x x a x ax =-++,21()(5)2g x a x =-(a ≥4). (Ⅰ)求f (x )的单调区间;(Ⅱ)若f (x )图象上任意一点P (x 0, y 0)处的切线的斜率254k -…,求a 的取值范围; (Ⅲ)若对于区间[3, 4]上任意两个不相等的实数x 1,x 2都有⎪f (x 1) - f (x 2)⎪>⎪g (x 1) - g (x 2)⎪成立,求a 的取值范围.天津市部分区2017~2018学年度第一学期期末考试高三数学(文科)参考答案一、选择题:1-4 BDCA 5-8 BDCA 二、填空题:9. 1 10. 1 11. 158 12. 3 13. 452722=⎪⎭⎫ ⎝⎛-+y x 14. ⎪⎭⎫ ⎝⎛2155,三、解答题:15.(本小题满分13分)解:(I )设C 产品抽取了x 件,则A 产品抽取了x 2件,B 产品抽取了x 3件,.............2分1632==++x x x x 解得:,则有: .................4分所以A 、B 、C 三种产品分别抽取了2件、3件、1件. ................................5分 (II )(i )设A 产品编号为12,A A ; B 产品编号为123,,;B B B C 产品编号为1C ..................6分则从这6件产品中随机抽取2件的所有结果是:{}{}{}{}{}{}{}{}{}{}{}1211121311212223211213,,,,,,,,,,,,,,,,,,,,,,A A A B A B A B A C A B A B A B A C B B B B {}{}{}{}11232131,,,,,,,B C B B B C B C 共15个 .......................................10分.(ii )根据题意,这些基本事件的出现是等可能的;其中这两件产品来自不同种类的有:{}{}{}{}{}{}{}{}{}{}11121311212223211121,,,,,,,,,,,,,,,,,,,,A B A B A B A C A B A B A B A C B C B C {}31,B C 共11个. .................... .................... .................... .................... ...........................12分因此这两件产品来自不同种类的概率为1115P = .........................13分16.(本小题满分13分)分,即:及正弦定理得:由)解:(3..................................sin sin sin sin I 222b ab c a ca ba b c a ca BA b C A -=-+-=-+-=-I 1////42////.............................................................AD M EM GMEF AB M G AD BC MG EF H EF EF AB EH AB EMGH GH EM GH EAD EM EADGH EAD ===⊄⊂()证明:如图,取的中点,连接,因为,、分别为、的中点,所以因为为的中点,,所以,所以四边形为平行四边形,所以又因为平面,平面所以平面.........4分分所以分由余弦定理得:6 (3)5 (21)2cos 222π==-+=C ab c b a C (II )由1cos 7A =及22sin cos 1A A += 得sin A =........................7分 49471cos 22cos 2-=-=A A ...............................9分1sin 22sin cos 27A A A ===分()分所以13 (98)232349382149473sin2sin 3cos 2cos 32cos 2cos -=⨯+⨯-=+=⎪⎭⎫ ⎝⎛-=-πππA A A C A17.(本小题满分13分). ............2分(II )证明:因为EF FB ⊥,EF AB ∥,所以AB FB ⊥,在正方形ABCD 中,AB BC ⊥,所以AB ⊥平面FBC . . ..............6分 又FG ⊂平面FBC ,所以AB FG ⊥,在正三角形FBC ∆中FG BC ⊥,所以FG ⊥平面ABCD . . ..............8分(III )如图2,连接HM ,由(I )(II )可知HM ⊥平面ABCD .所以HGM ∠为GH 与平面ABCD 所成的角 . ...... .............................10分在Rt HGM ∆中,HM =2MG =,所以HGsin HM HGM HG ∠===. .........13分18.(本小题满分13分)解:(Ⅰ)在等差数列}{n a 中, 由⎪⎩⎪⎨⎧=⨯+=52824812a a a ………………………………………………1分 得⎩⎨⎧==131d a ,………………………………………………2分 所以2+=n a n ………………………………………………3分在各项均为正数的等比数列}{n b 中,由⎩⎨⎧====+8663421a b a b b ………………………………………………4分 得⎩⎨⎧==221q b ………………………………………………5分 所以n n b 2=……………………………………………6分 (Ⅱ)由(Ⅰ)可知22224422n n n n n c n n n n+++=+=++……………………………………7分 1122.2n n ⎛⎫=+- ⎪+⎝⎭…………………………………………9分 所以12n n T c c c =+++ ⎪⎭⎫ ⎝⎛+-++--++-+-⨯+=2111111412131122n n n n n11232.............................1212n n n ⎛⎫=+-+ ⎪++⎝⎭分 因为对任意正整数n ,都有λ<-n T n 2成立 即λ<-⎪⎭⎫⎝⎛+++-+n n n n 22111232对任意正整数n 恒成立,所以3≥λ......….. 13分19.(本小题满分14分) 解:(Ⅰ)由题意知12c a =,则2a c =, ………………1分 圆M 的标准方程为16)1(22=++y x ,从而椭圆的左焦点为()11,0F -,即1c =,…………3分所以2a =,又222b a c =-,得b = ………………3分 所以椭圆的方程为:13422=+y x . ………………4分 (Ⅱ)可知椭圆右焦点()21,0F . ………………5分 (ⅰ)当l 与x 轴垂直时,此时k 不存在,直线l :1x =,直线1:0l y =, 可得:3AB =,8CD =,四边形ACBD 面积12. ………………7分 (ⅱ)当l 与x 轴平行时,此时=0k ,直线:0l y =,直线1:1l x =, 可得:4AB =,CD =,四边形ACBD 面积为38. ………………8分 (iii )当l 与x 轴不垂直时,设l 的方程为()1y k x =-()0k ≠,并设()11,A x y ,()22,B x y . 由⎪⎩⎪⎨⎧=+-=,134),1(22y x x k y 得()22224384120k x k x k ++-=-. ………………9分 显然0∆>,且2122843k x x k +=+, 212241243k x x k -=+. ………………10分所以212212(1)43k AB x k +=-=+. ………………11分过2F 且与l 垂直的直线11:(1)l y x k =--,则圆心到1l 的距离为122+k ,所以CD == ………………12分 故四边形ACBD面积:12S AB CD ==可得当l 与x 轴不垂直时,四边形ACBD 面积的取值范围为(12,38).………13分 综上,四边形ACBD面积的取值范围为12,⎡⎣. ………………14分20.(本小题满分14分)解:(I )由()3211()2232f x x a x ax =-++得()()()2()222f x x a x a x x a '=-++=-- …1分 因为4a >,所以单调递增;时,函数或即当)(2,0)(x f a x x x f ><>' …………2分 .)(2,0)(单调递减时,函数即当x f a x x f <<<' ………………3分 所以函数)(x f 的单调递增区间为()()+∞∞-,,2,a ,单调递减区间为()a ,2.……4分 (II )由(I )可知()2()22f x x a x a '=-++ 所以2min 244()()24a a a f x f +-+-''==, …………………………6分 由254k ≥-,得2442544a a -+-≥-,即37a -≤≤………………………7分 又因为4a ≥,所以a 的取值范围为[]4,7. …………………………8分 ()[]121212III 3443,4,()()()()x x a f x f x f x f x f x ≤<≤≥-=-()不妨设当时,在区间上恒单调递减有[][]212121************()(5)3,42()()()()()()()()()()()()()()()()()()3,4a g x a x g x g x g x g x f x f x g x g x f x g x f x g x F x f x g x F x F x F x ≤<=--=-->-->-=->①当时,在区间上恒单调递减,则等价于,令函数,由知在区间上单调递减,2222()(23)2,45,(23)203(23)32014, 5.........................................1034(23)420F x x a x a a x a x a a a a a a '=--+≤<--+≤⎧--⨯+≤⎪≤<⎨--⨯+≤⎪⎩即求得分当时[][]上单调递减,在区间知由,令函数,等价于则上恒单调递增,在区间时,当4,3)()()()()()()()()()()()()()()()()()(4,3)5(21)(5③212211212112212x G x G x G x g x f x G x g x f x g x f x g x g x f x f x g x g x g x g x a x g a >+=+>+->--=--=>显然成立时,当)()()()(0,g(x)5a ②2121x g x g x f x f ->-==…………………11分 2222()72,5,72037320,564742014,6...................................................143G x x x a a x x a a a a a '=-+>-+≤⎧-⨯+≤⎪<≤⎨-⨯+≤⎪⎩⎡⎤⎢⎥⎣⎦即求得由得的取值范分当时围为①②③。
绝密★启用前天津市部分区2016~2017学年度第一学期期末考试高三数学(理科)试卷温馨提示:使用答题卡的区,学生作答时请将答案写在答题卡上;不使用答题卡的区,学生作答时请将答案写在试卷上.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第I卷1至2页,第Ⅱ卷2至4页.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘帖考试用条形码。
答卷时,考生务必将答案涂写在答题卡上。
考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题,共40分)注意事项:1.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:如果事件,A B互斥,那么()()()=+.P A B P A P B如果事件,A B相互独立,那么()()()=.P A B P A P B锥体的体积公式13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高。
柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合2{1,4},{|log,}A B y y x x A ===∈,则A B =(A ){}1,4 (B ){}0,1,4 (C ){}0,2 (D ){}0,1,2,4(2)设变量x ,y 满足约束条件240,330,10.x y x y x y +-⎧⎪+-⎨⎪--⎩≤≥≤则目标函数2z x y =-的最小值为(A )165- (B)3- (C )0 (D )1(3)阅读右边的程序框图,运行相应的程序,则输出v 的值为(A )4 (B)5 (C)6 (D )7(4)已知ABC ∆是钝角三角形,若2,1==BC AC ,且ABC ∆3 则=AB(A 3 (B 7(C )22 (D )3(5)设{na }是公比为q 的等比数列,则“1q >” 是“{na }为单调递增数列”的(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(6)已知双曲线22221x y a b-=(0,0a b >>)的焦点到渐近线的距离为2,且双曲线的一条渐近线与直线230x y -+=平行,则双曲线的方程为(A )221164x y -=(B )22194x y -=(C )22149x y -=(D )22184x y -=(7)在ABC ∆中,D 在AB 上,:1:2AD DB =,E为AC 中点,CD 、BE 相交于点P ,连结AP .设AP xAB yAC =+,x y ∈R (),则x ,y 的值分别为 (A)11,23(B )12,33(C)12,55(D )11,36(8)已知2()(3)e x f x x=-(其中x ∈R ,e 是自然对数的底数),当10t >时,关于x 的方程12[()][()]0f x t f x t --=恰好有5个实数根,则实数2t 的取值范围是(A )(2e,0)- (B )(]2e,0- (C )32e,6e -⎡⎤-⎣⎦ (D )(32e,6e-⎤-⎦第Ⅱ卷(非选择题,共110分)注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2.本卷共12小题,共110分.二、填空题:本大题共有6小题,每小题5分,共30分。
绝密★启用前天津市部分区第一学期期末考试高三数学(文科)试卷温馨提示:使用答题卡的区,学生作答时请将答案写在答题卡上;不使用答题卡的区,学生作答时请将答案写在试卷上.分钟.第I 卷1至2页,第Ⅱ卷3至8页.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘帖考试用条形码.答卷时,考生务必将答案涂写在答题卡上.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题,共40分)注意事项:1.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共8小题,每小题5分,共40分. 参考公式:如果事件,A B 互斥,那么()()()P AB P A P B =+.如果事件,A B 相互独立,那么()()()P A B P A P B =.锥体的体积公式13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高. 柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高.一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合2{0,1,4},{|,}A B y y x x A ===∈,则A B =U(A ){}0,1,16 (B ){}0,1 (C ){}1,16(D ){}0,1,4,16(2)从数字1,2,3,4,5,6中任取两个数,则取出的两个数的乘积为奇数的概率为(A )115(B )215(C )15(D )415(3)已知某几何体的三视图如图,则该几何体的体积是(A )48 (B )36 (C )24(D )12(4)设x ∈R ,则“2x >”是“11x ->”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件(5)已知3log 0.5a =,0.3log 0.2b =,0.30.5c =,则(A )a c b >> (B )b c a >> (C )b a c >>(D )c a b >>(6)已知双曲线22221x y a b-=(0,0a b >>)的焦点到渐近线的距离为2,且双曲线的一条渐近线与直线230x y -+=平行,则双曲线的方程为(A )221164x y -=(B )22184x y -= (C )2214-=x y(D )2214y x -= (7)已知向量(cos 40,sin 40)=︒︒a ,(sin 20,cos20)=︒︒b,λ=+u b (其中λ∈R ),则u 的最小值为 (A(B )34(C(D(8)已知函数21||,1,()(1), 1.x x f x x x -≤⎧=⎨->⎩若方程(1)0f x m --=有三个不相等的实数根,则实数m 的取值范围为第3题图(A )(,1)-∞ (B )3(,)4+∞(C )(0,2) (D )(0,1)第Ⅱ卷(非选择题,共110分)注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2.本卷共12小题,共110分.二、填空题:本大题共有6小题,每小题5分,共30分.(9)已知i 是虚数单位,若(2i)24i z -=+,则复数z =___________.(10)阅读右边的程序框图,运行相应的程序, 则输出v 的值为___________. (11)已知2()(2)e xf x x x =-(其中e 是自 然对数的底数),()f x '为()f x 的导 函数,则(0)f '的值为___________. (12)在等比数列{n a }中,已知114a =,3544(1)a a a =-, 则{n a }的前10项和10S =___________. (13)如图,ABC ∆为边长为1的正三角形,D 为AB 的中点,E 在BC 上,且:1:2BE EC =,连结DE并延长至F ,使EF DE =,连结FC .则FC AC ⋅uu u r uuu r的值为________.(14)已知()sin f x x x ωω=+(0,x ω>∈R ),若函数()f x 在区间(0,4)π内恰有5个零点,则ω的取值范围是___________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分)第13题在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,且满足2cos cos -=a b cB C. (I )求角C 的值;(II )若7c =,ABC ∆的面积为a b +的值. (16)(本小题满分l3分)某石材加工厂可以把甲、乙两种类型的大理石板加工成,,A B C 三种规格的小石板,每种类型的大理石板可同时加工成三种规格小石板的块数如下表所示:某客户至少需要订购两种规格的石板分别为块和块,至多需要规格的石板100块.分别用,x y 表示甲、乙两种类型的石板数.(I )用,x y 列出满足客户要求的数学关系式,并画出相应的平面区域;(II )加工厂为满足客户的需求,需要加工甲、乙两种类型的石板各多少块,才能使所用石板总数最少?(17)(本小题满分13分)如图,在四棱锥P ABCD -中,PCD ∆为等边三角形,底面ABCD 为直角梯形,AB AD ⊥,//AD BC ,22AD BC ==,AB =E 、F 分别为AD 、CD的中点.(I )求证:直线//BE 平面PCD ; (II )求证:平面PAF ⊥平面PCD ;(III )若PB=PB 与平面PAF 所成的角.(18)(本小题满分13分)已知数列{}n a 的前n 项和2=n A n (n *∈N ),11n n n n na ab a a ++=+(n *∈N ),数列{}n b 的前n 项和为n B .(I )求数列{}n a 的通项公式;(II )设2n n n a c =(n *∈N ),求数列{}n c 的前n 项和n C ; (III )证明: 222<<+n n B n (n *∈N ). (19)(本小题满分14分)已知椭圆2222: 1 (0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,上顶点为B ,若12BF F ∆的周长为6,且点1F 到直线2BF 的距离为b .(Ⅰ)求椭圆C 的方程;(Ⅱ)设12,A A 是椭圆C 长轴的两个端点,点P 是椭圆C 上不同于12,A A 的任意一点,直线1A P 交直线14x =于点M ,求证:以MP 为直径的圆过点2A .(20)(本小题满分14分) 已知函数325()2f x x x ax b =+++(,a b ∈R ),函数()f x 的图象记为曲线C . (I )若函数()f x 在1x =-时取得极大值2,求,a b 的值; (II )若函数25()2()(21)32F x f x x a x b =----存在三个不同的零点,求实数b 的取值范围;(III )设动点00(,())A x f x 处的切线1l 与曲线C 交于另一点B ,点B 处的切线为2l ,两切线的斜率分别为12,k k ,当a 为何值时存在常数λ使得21k k λ=?并求出λ的值.天津市部分区2016~2017学年度第一学期期末考试 高三数学(文科)参考答案一、选择题1-4 DCDA 5-8 BACD二、填空题9. 10. 11. 12. 13. 14.三、解答题15.(本小题满分13分) 解:(Ⅰ)已知 可化为, …………………………3分整理得,,又…………………………6分(Ⅱ)由得,由(Ⅰ),所以由余弦定理得:,,即,…………………………9分所以 . …………………………13分16.(本小题满分13分)解:(I)由题意得………………………………3分二元一次不等式组所表示的区域为图中的阴影部分.………………………………6分(Ⅱ)解:设需要加工甲、乙两种类型的板材数为,则目标函数,作出直线,平移直线,如图,易知直线经过点A时,取到最小值,解方程组得点的坐标为,………………………………10分所以最少需要加工甲、乙两种类型的板材分别8块和6块.答:加工厂为满足客户需求,最少需要加工甲、乙两种类型的板材分别8块和6块.………………………………13分17.(本小题满分13分)解:(Ⅰ),且为的中点, .又因为,则四边形是平行四边形,∴,平面,平面,直线平面. ……………4分(II)∵在等边中,是的中点,;又,;又,,又,,又,平面,故平面平面;……8分(III)设与交于点,由(II)知平面,,故平面,连结,为直线与平面所成的角.在中,,,. ………………………13分18.(本小题满分13分)解:(I)当时,,,两式相减:;当时,,也适合,故数列的通项公式为;………………………………….3分(II),,,,两式相减可得:,…………………………………4分即,,. …………………7分(III),显然,即,;………………………………. 9分另一方面,,即,,…,,,即: . ……………………….. 13分19.(本小题满分14分)解:(Ⅰ)由已知得,解得.所以椭圆的方程为. ……………5分(Ⅱ)由题意知,……………6分设,则,得.且由点在椭圆上,得. ……………9分所以…………13分以为直径的圆过点. ……………14分20.(本小题满分14分)解:函数的导函数为.(I)当时极大值2,则,解得;……4分(II)由题意可得有三个不同的零点,即方程有三个实数解.令,则,由可得或,且是其单调递增区间,是其单调递减区间, .因此,实数的取值范围是. 9分(III)由(I)知点处的切线的方程为,与联立得,即,所以点的横坐标是,可得,即,等价于,解得.综上可得,当时存在常数使得 . ……………14分天津市部分区第一学期期末考试 高三数学(文科)参考答案一、选择题1-4 DCDA 5-8 BACD二、填空题9.2i 10. 6 11.2- 12.1023413. 112-1712ω<≤三、解答题15.(本小题满分13分)解:(Ⅰ)已知0cos cos )2(=--B c C b a 可化为0cos sin cos )sin sin 2(=--B C C B A , …………………………3分整理得B C C B C A cos sin cos sin cos sin 2+=A C B sin )sin(=+=,,0sin π,0≠∴<<A A 21cos =∴C ,又.3ππ,0=∴<<C C …………………………6分(Ⅱ)由11πsin sin 223ABC S ab C ab ∆===40=ab , 由(Ⅰ)21cos =C , 所以由余弦定理得: 222222cos ()3()340c a b ab C a b ab a b =+-=+-=+-⨯,249()340a b ∴=+-⨯,即,2()169a b += …………………………9分所以13a b +=. …………………………13分 16.(本小题满分13分)解:(I )由题意得0,02200,2220,451000,.y x y x y x y x +-⎧⎪+-⎪⎨+-⎪⎪⎩≥≥≤≥≥………………………………3分二元一次不等式组所表示的区域为图中的阴影部分.………………………………6分(Ⅱ)解:设需要加工甲、乙两种类型的板材数为,则目标函数z x y =+,作出直线0:0l x y +=,平移直线0l ,如图,易知直线经过点A 时,z 取到最小值,解方程组220222x y x y +=⎧⎨+=⎩得点A 的坐标为(8,6)A ,………………………………10分所以最少需要加工甲、乙两种类型的板材分别8块和6块.答:加工厂为满足客户需求,最少需要加工甲、乙两种类型的板材分别8块和6块.………………………………13分17.(本小题满分13分) 解:(Ⅰ)22AD BC ==,且E 为AD 的中点,BC ED ∴=.又因为//AD BC ,则四边形BCDE 是平行四边形,∴ //BE CD ,CD ⊂平面PCD ,BE ⊄平面PCD ,∴直线//BE 平面PCD . ……………4分(II )∵在等边PCD ∆中,F 是CD 的中点,CD PF ∴⊥; 又//,BC AD AB AD ⊥,AB BC ∴⊥;又1AB BC ==,2AC ∴=,又2AD =,CD AF ∴⊥,又PF AF F =,CD ∴⊥平面PAF ,故平面PAF⊥平面PCD ; ……8分(III )设AF 与BE 交于点G ,由(II )知CD ⊥平面PAF ,//BE CD ,故BG ⊥平面PAF ,连结PG ,BPG ∴∠为直线BP 与平面PAF 所成的角.在Rt PBG ∆中,32BG =,3sin 2BG BPG PB ∠===, 3BPG π∴∠=. ………………………13分 18.(本小题满分13分)解:(I )当2n ≥时,2=n A n ,21(1)-=-n A n , 两式相减:121-=-=-n n n a A A n ;当1n =时,111==a A ,也适合21=-n a n ,故数列{}n a 的通项公式为21=-n a n ;………………………………….3分 (II )2122-==n n n n a n c ,12n n C c c c =+++,123135212222-=++++n n n C ,23411352122222+-=++++n n C n ,两式相减可得: 1231122221222222+-=++++-n n n C n , ………………………………… 4分 即123-111111121()2222222+-=+++++-n n n C n , -111121(1)2222+-=+--n n n C n ,2332+=-n n n C . ………………… 7分 (III )21212121-+=++-n n n b n n ,显然212122121-++>=+-n n n n , 即2n b >,122n n B b b b n =+++>;………………………………. 9分另一方面,21212222112212*********-++=-++=+-+-+--+n n n n n n n n , 即122213=+-b ,222235=+-b ,…,11222121⎛⎫=+- ⎪-+⎝⎭n b n n ,2222222(2)(2)(2)22221335212121=+-++-+++-=+-<+-++n B n n n n n ,即:222<<+n n B n . ……………………….. 13分 19.(本小题满分14分)解:(Ⅰ)由已知得2222262c a cb ab a b c ⎧+=⎪=⎨⎪=+⎩,解得21a b c =⎧⎪=⎨⎪=⎩.所以椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ)由题意知12(2,0),(2,0)A A -, ……………6分 设00(,)P x y ,则100:(2)2A P y l y x x =++,得0016(14,))2y M x +. 且由点P 在椭圆上,得22003(1)4x y =-. ……………9分 所以20022000001616(12,)(2,)12(2)22y y A M A P x y x x x ⋅=⋅-=-+++ 2000000012(4)12(2)(2)12(2)12(2)022x x x x x x x --+=-+=--=++ …………13分以MP 为直径的圆过点2A . ……………14分 20.(本小题满分14分)解:函数325()2f x x x ax b =+++的导函数为2()35f x x x a '=++. (I )当1x =-时极大值2,则(1)0,(1)2f f '-=-=,解得52,2a b ==;…… 4分 (II )由题意可得25()2()(21)32F x f x x a x b =----有三个不同的零点,即方程325202x x x b ++-=有三个实数解. 令325()22g x x x x =++,则2()651(21)(31)g x x x x x '=++=++,由()0g x '=可得12x =-或13x =-,且11(,),(,)23-∞--+∞是其单调递增区间,11(,)23--是其单调递减区间,1117(),()28354g g -=--=-.因此,实数b 的取值范围是71(,)548--. 9分 (III )由(I )知点00(,())A x f x 处的切线1l 的方程为000()()()y f x f x x x '-=-,与()y f x =联立得000()()()()f x f x f x x x '-=-,即2005()(2)02x x x x -++=,所以点B 的横坐标是05(2)2B x x =-+,可得221002005535,3(2)5(2)22k x x a k x x a =++=+-++,即22002512204k x x a =+++,21k k λ=等价于20025(35)(4)(1)4x x a λλ+-=--,解得254,12a λ==. 综上可得,当2512a =时存在常数4λ=使得21k k λ=. ……………14分。
2017年普通高等学校招生全国统一考试(天津卷)数学(文科)一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2017年天津,文1,5分】设集合{}1,2,6A =,{}2,4B =,{}1,2,3,4C =,则()A B C =( )(A ){}2 (B ){}1,2,4 (C ){}1,2,3,4 (D ){}1,2,3,4,6 【答案】B【解析】{}1,2,4,6A B =,(){1,2,4,6}{1,2,3,4}{1,2,4}A B C ==,故选B . (2)【2017年天津,文2,5分】设x R ∈,则“20x -≥”是“11x -≤”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】B【解析】20x -≥解得:2x ≤;11x -≤解得:02x ≤≤,2x ≤⇐02x ≤≤,故选B .(3)【2017年天津,文3,5分】有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )(A )45 (B )35 (C )25 (D )15【答案】C【解析】“从这5支彩笔中任取2支不同颜色的彩笔”基本事件总个数:25C ,而事件“取出的2支彩笔中含有红色彩笔”包含基本事件个数:14C ;42105P ==,故选C .(4)【2017年天津,文4,5分】阅读右边的程序框图,运行相应的程序,若输入的N 的值为19,则输出的N 的值为( )(A )0 (B )1 (C )2 (D )3 【答案】C【解析】阅读流程图可得,程序执行过程如下:首先初始化数值为19N =,第一次循环:118N N =-=,不满足3N ≤;第二次循环:63NN ==,不满足3N ≤;第三次循环:23NN ==,满足3N ≤;此时跳出循环体,输出3N =,故选C .(5)【2017年天津,文5,5分】已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF ∆是边长为2的等边三角形(O 为原点),则双曲线的方程为( )(A )221412x y -= (B )221124x y -= (C )2213x y -= (D )2213y x -=【答案】D【解析】因为OAF ∆是边长为2的等边三角形(O 为原点)所以2OF =,60AOF ∠=︒,所以直线OA 方程为3y x =,所以渐近线方程by x a=±其中一条为3y x =,所以,23c ba=⎧⎪⎨=⎪⎩,解之得:1,3,2a b c ===,故选D . (6)【2017年天津,文6,5分】已知奇函数()f x 在R 上是增函数,若21(log )5a f =-,2(log 4.1)b f =,0.8(2)c f =, 则,,a b c 的大小关系为( ) (A )a b c << (B )b a c << (C )c b a << (D )c a b <<【答案】C【解析】因为()f x 在R 上是奇函数,所以有()()f x f x -=-,即21(log )5a f =-2(log 5)f =;又因为()f x 在R 上是增函数,且0.8122222log 4log 4.1log 5<=<<,所以c b a <<,故选C .(7)【2017年天津,文7,5分】设函数()2sin(),f x x x R ωϕ=+∈,其中0,ωϕπ><,若511()2,()088f f ππ==,且()f x 的最小正周期大于2π,则( )(A )2,312πωϕ== (B )211,312πωϕ==- (C )111,324πωϕ==- (D )17,324πωϕ==【答案】A【解析】函数()2sin(),f x x x R ωϕ=+∈,511()2,()088f f ππ==,振幅为2,所以如图所示: 若函数图象如图表1所示,3115488T ππ=-,解得T π=,不满足最小正周期大于2π,所以函数图象如图表2所示,115488T ππ=-,解得3T π=,23ω=,又因为5()28f π=,所以25382ππϕ⨯+=,所以12πϕ=,故选A .(8)【2017年天津,文8,5分】已知函数2,1()2,1x x f x x x x ⎧+<⎪=⎨+≥⎪⎩,设a R ∈,若关于x 的不等式()2xf x a ≥+在R 上恒成立,则a 的取值范围是( )(A )[2,2]- (B )[23,2]- (C )[2,23]- (D )[23,23]- 【答案】A【解析】函数()f x 的图象如下图(左),若关于x 的不等式()2xf x a ≥+在R 上恒成 立,则不妨设()2x g x a =+,“()2xf x a ≥+在R 上恒成立”表示()y f x =图 象与()yg x =图象应如下图(右)所示找到两个临界位置: ①()f x 与()g x 相切时,1x >,221'()12f x x =-=,解得02x =,03y =,代入(2)3g =,解得 232a +=,2,4a a ==-(舍);②()g x 过点(0,2),代入(0)2g =,2a =,解得2,2a a =-=(舍),故a的取值范围在2-与2之间,故选A .二、填空题:本大题共6小题,每小题5分,共30分.(9)【2017年天津,文9,5分】已知a R ∈,i 为虚数单位,若i2ia -+为实数,则a 的值为 . 【答案】2-【解析】解法一:i (i)(2i)21(2)i2i (2i)(2i)5a a a a -----+==++-为实数,所以20a +=,2a =-. 解法二:i2ia -+为实数⇔i a -与2i +成比例,比例为1-,所以2a =-.(10)【2017年天津,文10,5分】已知a R ∈,设函数()ln f x ax x =-的图象在点(1,(1))f 处的切线为l ,则l 在y 轴上的截距为 .【答案】1【解析】函数()f x 的导函数1'()f x a x=-,所以(1),'(1)1f a f a ==-,切点(1,)a ,斜率为1a -,所以代入切线点斜式:(1)(1)y a a x -=--,l 在y 轴上的截距为:0,1x y ==,所以答案为1.(11)【2017年天津,文11,5分】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】92π【解析】球的表面积公式2618S a ==,所以棱长3a =,计算得:233R a ==,32R =,34932V R ππ==.(12)【2017年天津,文12】设抛物线24y x =的焦点为F ,准线为l ,已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A ,若120FAC ∠=︒,则圆的方程为 . 【答案】22(1)(3)1x y ++-=【解析】抛物线24y x =的焦点为(1,0)F ,准线为:1l x =-,所以可设(1,)C b -,OA b =,120FAC ∠=︒,所以60AFH ∠=︒,在直角三角形OAF 中,1OF =,所以3OA =,所以圆的圆心(1,3)-,半径等于1,所以圆22:(1)(3)1C x y ++-=.(13)【2017年天津,文13,5分】若,a b R ∈,0ab >,则4441a b ab++的最小值为 .【答案】4【解析】4422414144a b a b abab ab ab+++≥≥=(0ab >),当且仅当“444a b =”、“2241a b =”同时成立时,等号成立,解之得:13442,2a b --==.(14)【2017年天津,文14,5分】在ABC ∆中,60A ∠=︒,3AB =,2AC =,若2BD DC =,AE AC AB λ=-()R λ∈,且4AD AE ⋅=-,则λ的值为 .【答案】311【解析】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+,则122123()()3493433333311AD AE AB AC AC AB λλλλ⋅=+-=⨯+⨯-⨯-⨯=-⇒=.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)【2017年天津,文15,13分】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A B =,2225()ac a b c =--.(1)求cos A 的值; (2)求sin(2)B A -的值.解:(1)sin 4sin a A b B =可化为224a b =,解得:2a b =,余弦定理:222cos 2b c a A bc +-=25ac bc -=55=-. (2)根据5cos 5A =-,解得25sin 5A =,所以5sin 5B =,25cos 5B =,4sin 22sin cos 5B B B ==,23cos22cos 15B B =-=,sin(2)B A -45325sin 2cos cos2sin ()5555B A B A =-=⨯--⨯10525255--==. (16)【2017年天津,文16,13分】电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告,已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:连续剧播放时长(分钟) 广告播放时长(分钟) 收视人次(万)甲 70 5 60 乙60525已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟, 且甲连续剧播放的次数不多于乙连续剧播放次数的2倍,分别用,x y 表示每周计划播出的甲、乙两套电视 剧的次数.(1)用,x y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多? 解:(1)分别用,x y 表示每周计划播出的甲、乙两套电视剧的次数766062,x y x y x y x y N+≤⎧⎪+≥⎪⎨≤⎪⎪∈⎩.(2)设总收视人次为z 万,则目标函数为6025z x y =+.考虑6025z x y =+,将它变形为12525z y x =-+,这是斜率为125-,随z 变化的一族平行直线.25z为直线在y 轴上的截距,当25z取得最大值时,z 的值最大.又因为,x y 满足约束条件,所以由图2可知,当直线6025z x y =+经过可行域上的点M 时,截距25z最大,即z 最大.解方程组766020x y x y +=⎧⎨-=⎩,得点M 的坐标为()6,3.所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.(17)【2017年天津,文17,13分】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD ∥BC ,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(1)求异面直线AP 与BC 所成的角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.解:(1)因为AD ∥BC ,所以PAD ∠等于异面直线AP 与BC 所成的角,AD ⊥平面PDC ,所以90PDA ∠=︒,PAcos AD PAD AP ∠==. (2)因为AD ⊥平面PDC ,所以AD PD ⊥,又因为AD ∥BC ,所以PD BC ⊥,PD PB ⊥,且PBBC B =,所以PD ⊥平面PBC .(3)取BC 上三分点,3BE BC =,//BE AD ,1AD BE ==,PD ⊥平面PBC ,所以DEP ∠等于直线AB 与平面PBC 所成角90DPE ∠=︒,AB =DE =4PE =,sin PD DEP DE ∠==. (18)【2017年天津,文18,13分】已知{}n a 为等差数列,前n 项和为n S *()n N ∈,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(1)求{}n a 和{}n b 的通项公式;(2)求数列{}2n n a b 的前n 项和*()n ∈N .解:(1)已知{}n a 为等差数列,{}n b 是首项为2的等比数列,且公比大于0,所以1(1)n a a n d =+-,1112n n n b b q q --==,22212q q +=,解之得:2,3q q ==-(舍),118311(5)1116a da d =-+⎧⎨+=⨯⎩,解之得:11,3a d ==所以31n a n =-,2n n b =.(2)2(62)2n n n a b n =-⨯,不妨设数列{}2n n a b 的前n 项和为n T ,2142632212n n n n n T a b a b a b a b a b --=+++++,123142102162(68)2(62)2n nn T n n -=⨯+⨯+⨯++-⨯+-⨯①2n T =231142102(614)2(68)2(62)2n n n n n n -+⨯+⨯+-⨯+-⨯+-⨯ ②①-②得:123142626262(62)2n n n T n +-=⨯+⨯+⨯++⨯--⨯,整理得:216(34)2n n T n +=+-⨯.(19)【2017年天津,文19,14分】设,a b R ∈,1a ≤,已知函数32()63(4)f x x x a a x b =---+,()()x g x e f x =.(1)求()f x 的单调区间;(2)已知函数()y g x =和函数xy e =的图象在公共点00(,)x y 处有相同的切线.(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()xg x e ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.解:(1)32'()()'6()'3(4)'f x x x a a x =---,2'()3123(4)f x x x a a =---,2'()3123(4)3()(4)f x x x a a x a x a =---=-+-,因为1a ≤,所以4a a <-,所以,()f x 的单调增区间(,),(4,)a a -∞-+∞,()f x 的单调减区间[,4]a a -.(2)(i )()()x g x e f x =与xy e =在公共点00(,)x y 处有相同的切线,首先,00()x g x e =;其次,00'()x g x e =,0()1f x =,00()'()1f x f x +=,所以0'()0f x =.(ii )()xg x e ≤等价于()1f x ≤,0'()0f x =,0()1f x =,所以0x a =极大值点,若关于x 的不等式()x g x e ≤ 在区间00[1,1]x x -+上恒成立,等价于()1f x ≤在区间00[1,1]x x -+上恒成立,等价于max ()1f x ≤,00[1,1]x x x ∈-+,当0x a =,()f x 在[1,]a a -递增,在[,1]a a +递减,()f a 为最大值, ()1f a =,32261a a b -++≤,32261b a a ≤-+,令32()261h x x x =-+,ABCDPE2'()6126(2)h x x x x x =-=-,()h x 在[1,0]-递增,在[0,1]递减,所以7()1h x -≤≤,71b -≤≤.(20)【2017年天津,文20,14分】已知椭圆22221(0)x y a b a b+=>>的左焦点为(,0)F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA ∆的面积为22b.(1)求椭圆的离心率;(2)设点Q 在线段AE 上,3||2FQ c =,延长线段PQ 与椭圆交于点P ,点M ,N 在轴上,PM QN ∥,且直线PM 与直线QN 间的距离为,四边形PQNM 的面积为3c ; (i )求直线FP 的斜率; (ii )求椭圆的方程.解:(1)12AEFS AF OE ∆=⨯⨯21()22b a c c =+⨯=,因为222b a c =-,所以c a c =-,故2a c =,12c e a ==.(2)(i )45EFO ∠=︒,设1EQ EA λλ=+(01)λ<<,所以(1)FQ FE FA λλ=-+,2FE c =,3FA c =,因为32c FQ =,两边平方,解之得:910λ=,32λ=(舍) 代入(1)FQ FE FA λλ=-+,得69(,)510c c FQ =,直线FP 的斜率等于34y x =(ii )直线FP 的方程:30()4y x c -=-;为求点P 的坐标,联立方程解方程组:2224333412y x c x y c=-⎧⎨+=⎩,解之得:13,7c x c x ==-(舍),所以3(,)2c P c ,因为69(,)510c cFQ =,所以9(,)510c cQ , 即PQ c =,而PM ∥QN ,且直线PM 与直线QN 间的距离为c ,所以直线PM 与直线QN 垂直于PF ,由(i )直线FP 的斜率等于34,可得335154428c c PM PF ==⨯=,33394428c c QN FQ =⨯=⨯=, MNPQ FPM FQN S S S ∆∆=- 1()2PM PF QN QF =⨯⨯-⨯232c =,所以2332c c =,解之得2c =,所以4,23a b ==,所以2211612x y+=.。
2016-2017学年天津市五区县高三(上)期末数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,1,4},B={y|y=x2,x∈A},则A∪B=()A.{0,1,16}B.{0,1}C.{1,16} D.{0,1,4,16}2.从数字1,2,3,4,5,6中任取两个数,则取出的两个数的乘积为奇数的概率为()A.B.C.D.3.已知某几何体的三视图如图,则该几何体的体积是()A.48 B.36 C.24 D.124.设x∈R,则“x>2”是“|x﹣1|>1”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知,则()A.a>c>b B.b>c>a C.b>a>c D.c>a>b6.已知双曲线的焦点到渐近线的距离为2,且双曲线的一条渐近线与直线x﹣2y+3=0平行,则双曲线的方程为()A.B.C.D.7.已知向量=(cos40°,sin40°),=(sin20°,cos20°),=+λ(其中λ∈R),则||的最小值为()A.B.C.D.8.已知函数,若方程f(1﹣x)﹣m=0有三个不相等的实数根,则实数m的取值范围为()A.(﹣∞,1)B.C.(0,2)D.(0,1)二、填空题:本大题共有6小题,每小题5分,满分30分.9.已知i是虚数单位,若z(2﹣i)=2+4i,则复数z=.10.阅读下边的程序框图,运行相应的程序,则输出v的值为.11.已知f(x)=(x2﹣2x)e x(其中e是自然对数的底数),f'(x)为f(x)的导函数,则f'(0)的值为.12.在等比数列{a n}中,已知,则{a n}的前10项和S10=.13.如图,△ABC为边长为1的正三角形,D为AB的中点,E在BC上,且BE:EC=1:2,连结DE并延长至F,使EF=DE,连结FC,则•的值为.14.已知,若函数f(x)在区间(0,4π)内恰有5个零点,则ω的取值范围是.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足.(1)求角C的值;(2)若c=7,△ABC的面积为,求a+b的值.16.(13分)某石材加工厂可以把甲、乙两种类型的大理石板加工成A,B,C 三种规格的小石板,每种类型的大理石板可以同时加工成三种规格小石板的块数如表所示:某客户至少需要订购A,B两种规格的石板分别为20块和22块,至多需要C规格的石板100块,分别用x,y表示甲、乙两种类型的石板数.(1)用x,y列出满足客户要求的数学关系式,并画出相应的平面区域;(2)加工厂为满足客户的需求,需要加工甲、乙两种类型的石板各多少块,才能使所用石板总数最少?17.(13分)如图,在四棱锥P﹣ABCD中,△PCD为等边三角形,底面ABCD为直角梯形,AB⊥AD,AD∥BC,AD=2BC=2,AB=,点E、F分别为AD、CD的中点.(1)求证:直线BE∥平面PCD;(2)求证:平面PAF⊥平面PCD;(3)若PB=,求直线PB与平面PAF所成的角.18.(13分)已知数列{a n}的前n项和,数列{b n}的前n项和为B n.(1)求数列{a n}的通项公式;(2)设,求数列{c n}的前n项和C n;(3)证明:.19.(14分)已知椭圆的左、右焦点分别为F1,F2,上顶点为B,若△BF1F2的周长为6,且点F1到直线BF2的距离为b.(1)求椭圆C的方程;(2)设A1,A2是椭圆C长轴的两个端点,点P是椭圆C上不同于A1,A2的任意一点,直线A1P交直线x=14于点M,求证:以MP为直径的圆过点A2.20.(14分)已知函数,函数f(x)的图象记为曲线C.(1)若函数f(x)在x=﹣1时取得极大值2,求a,b的值;(2)若函数存在三个不同的零点,求实数b的取值范围;(3)设动点A(x0,f(x0))处的切线l1与曲线C交于另一点B,点B处的切线为l2,两切线的斜率分别为k1,k2,当a为何值时存在常数λ使得k2=λk1?并求出λ的值.2016-2017学年天津市五区县高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,1,4},B={y|y=x2,x∈A},则A∪B=()A.{0,1,16}B.{0,1}C.{1,16} D.{0,1,4,16}【考点】并集及其运算.【分析】先分别求出集体合A与B,由此能求出A∪B.【解答】解:∵集合A={0,1,4},B={y|y=x2,x∈A}={0,1,16},∴A∪B={0,1,4,16}.故选:D.【点评】本题考查并集的求法,是基础题,解题时要认真审题,注意并集性质的合理运用.2.从数字1,2,3,4,5,6中任取两个数,则取出的两个数的乘积为奇数的概率为()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数n=,再取出的两个数的乘积为奇数包含的基本事件个数m==3,由此能求出取出的两个数的乘积为奇数的概率.【解答】解:从数字1,2,3,4,5,6中任取两个数,基本事件总数n=,取出的两个数的乘积为奇数包含的基本事件个数m==3,∴取出的两个数的乘积为奇数的概率为p=.故选:C.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.3.已知某几何体的三视图如图,则该几何体的体积是()A.48 B.36 C.24 D.12【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,代入棱锥体积公式,可得答案.【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱锥,底面面积S=3×4=12,高h=3,故体积V==12,故选:D【点评】本题考查的知识点是棱柱的体积和表面积,棱锥的体积和表面积,简单几何体的三视图,难度基础.4.设x∈R,则“x>2”是“|x﹣1|>1”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】求出不等式的等价条件,结合充分条件和必要条件的定义进行判断即可.【解答】解:由|x﹣1|>1得x﹣1>1或x﹣1<﹣1,得x>2或x<0,即“x>2”是“|x﹣1|>1”的充分不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,求出不等式的等价条件是解决本题的关键.5.已知,则()A.a>c>b B.b>c>a C.b>a>c D.c>a>b【考点】对数的运算性质.【分析】利用对数函数、指数函数的单调性求解.【解答】解:∵,∴a=log30.5<log31=0,b=log0.30.2>log0.30.3=1,0<c=0.50.3<0.50=1,∴b>c>a.故选:B.【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意对数函数、指数函数的单调性的合理运用.6.已知双曲线的焦点到渐近线的距离为2,且双曲线的一条渐近线与直线x﹣2y+3=0平行,则双曲线的方程为()A.B.C.D.【考点】双曲线的简单性质.【分析】设右焦点为(c,0 ),一条渐近线为x﹣2y=0,根据点到直线的距离公式=2,可得c=2,再根据c2=a2+b2,求出a,b,即可求出结果.【解答】解:设右焦点为(c,0 ),一条渐近线为x﹣2y=0,根据点到直线的距离公式=2,可得c=2,∵=,c2=a2+b2,解得b=2,a=4,所以双曲线的方程为=1,故选A.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,考查学生的计算能力,属于中档题.7.已知向量=(cos40°,sin40°),=(sin20°,cos20°),=+λ(其中λ∈R),则||的最小值为()A.B.C.D.【考点】平面向量的坐标运算.【分析】先求出=(,),从而||==,再利用配方法能求出当时,||取最小值.【解答】解:∵向量=(cos40°,sin40°),=(sin20°,cos20°),=+λ(其中λ∈R),∴=(,)+(λsin20°,λcos20°)=(,),∴||====,∴当时,||取最小值.故选:C.【点评】本题考查向量的模的最小值的求法,是中档题,解题时要认真审题,注意向量的坐标运算法则、三角函数性质、配方法的合理运用.8.已知函数,若方程f(1﹣x)﹣m=0有三个不相等的实数根,则实数m的取值范围为()A.(﹣∞,1)B.C.(0,2)D.(0,1)【考点】根的存在性及根的个数判断.【分析】由题意可得f(1﹣x)=m有三个不相等的实数根,作出y=f(1﹣x)的图象和直线y=m,通过图象观察,即可得到m的范围.【解答】解:方程f(1﹣x)﹣m=0有三个不相等的实数根,即为f(1﹣x)=m有三个不相等的实数根,作出y=f(1﹣x)的图象和直线y=m,y=f(1﹣x)的图象可看作是由y=f(x)的图象先关于y轴对称,再向右平移1个单位得到.通过图象可得当0<m<1时,函数y=f(1﹣x)和直线y=m有3个交点,即为方程f(1﹣x)﹣m=0有三个不相等的实数根.故选:D.【点评】本题考查函数方程的转化思想,考查数形结合的思想方法,以及图象平移,属于中档题.二、填空题:本大题共有6小题,每小题5分,满分30分.9.已知i是虚数单位,若z(2﹣i)=2+4i,则复数z=2i.【考点】复数代数形式的乘除运算.【分析】由z(2﹣i)=2+4i,得,然后利用复数代数形式的乘除运算化简复数z即可得答案.【解答】解:由z(2﹣i)=2+4i,得=,故答案为:2i.【点评】本题考查了复数代数形式的乘除运算,是基础题.10.阅读下边的程序框图,运行相应的程序,则输出v的值为6.【考点】程序框图.【分析】模拟程序的运行,依次写出每次循环得到的v,i的值,当i=﹣1时不满足条件i≥0,退出循环,输出v的值为6.【解答】解:模拟程序的运行,可得n=2,a0=1,a1=2,a2=3,v=3,i=1满足条件i≥0,执行循环体,v=5,i=0满足条件i≥0,执行循环体,v=6,i=﹣1不满足条件i≥0,退出循环,输出v的值为6.故答案为:6.【点评】本题主要考查了循环结构的程序框图的应用,当循环次数不多或由规律时,常采用模拟运行程序的方法来解决,属于基础题.11.已知f(x)=(x2﹣2x)e x(其中e是自然对数的底数),f'(x)为f(x)的导函数,则f'(0)的值为﹣2.【考点】导数的运算.【分析】根据函数导数公式求出函数的导数进行求解即可.【解答】解:函数的导数为f′(x)=(2x﹣2)e x+(x2﹣2x)e x=(x2﹣2)e x,则f'(0)═(02﹣2)e0=﹣2,故答案为:﹣2.【点评】本题主要考查函数的导数的计算,根据导数的公式求出函数的导数是解决本题的关键.12.在等比数列{a n}中,已知,则{a n}的前10项和S10=.【考点】等比数列的前n项和.【分析】由等比数列通项公式得公比q=2,由此能求出{a n}的前10项和S10.【解答】解:∵在等比数列{a n}中,,∴=4(),解得q=2,{a n}的前10项和S10===.故答案为:.【点评】本题考查等比数列前10项和的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.13.如图,△ABC为边长为1的正三角形,D为AB的中点,E在BC上,且BE:EC=1:2,连结DE并延长至F,使EF=DE,连结FC,则•的值为.【考点】平面向量数量积的运算.【分析】建立平面直角坐标系,转化为坐标运算即可.【解答】解:如图建立平面直角坐标系,依题意得A(0,0),B(),C (1,0),∵D为AB的中点,E在BC上,且BE:EC=1:2,∴D(),E(,0)∵EF=DE∴F(,﹣),则•=,故答案为:【点评】本题考查平面向量基本定理、数量积运算性质,建立坐标系转化为坐标运算是关键,属于基础题.14.已知,若函数f(x)在区间(0,4π)内恰有5个零点,则ω的取值范围是.【考点】三角函数的化简求值;正弦函数的图象.【分析】令f(x)=2sin(ωx+)=0,可解得:x=,k∈Z,由于ω>0,则非负根中较小的有:,,,,,,由题意可求<4π,且≥4π,即可解得ω的取值范围.【解答】解:∵f(x)=sinωx+cosωx=2sin(ωx+),∴令f(x)=2sin(ωx+)=0,可得:ωx+=kπ,k∈Z,∴解得:x=,k∈Z,∴由于ω>0,则非负根中较小的有:,,,,,,∵函数f(x)在区间(0,4π)内恰有5个零点,∴<4π,且≥4π,∴解得:.故答案为:.【点评】本题考查函数f(x)=Asin(ωx+φ)(ω>0)的图象及性质,考查了函数的零点与方程的根的关系应用,同时考查了三角函数的求值应用,体现了数形结合的思想.属于中档题.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)(2016秋•天津期末)在△ABC中,角A,B,C的对边分别为a,b,c,且满足.(1)求角C的值;(2)若c=7,△ABC的面积为,求a+b的值.【考点】余弦定理;正弦定理.【分析】(1)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,求出cosC的值,即可确定出C的度数;(2)利用三角形面积公式列出关系式,把已知面积与sinC的值代入求出ab的值,再利用余弦定理列出关系式,整理即可求出a+b的值.【解答】解:(1)已知等式利用正弦定理化为=,整理得:2sinAcosC=sinBcosC+sinCcosB=sin(B+C)=sinA,∵0<A<π,∴sinA≠0,∴cosC=,又∵0<C<π,∴C=;=absinC=absin=10,得ab=40,(2)由S△ABC∵cosC=,∴由余弦定理得:c2=a2+b2﹣2abcosC=(a+b)2﹣3ab=(a+b)2﹣3×40,∴49=(a+b)2﹣3×40,即(a+b)2=169,开方得:a+b=13.【点评】此题考查了正弦、余弦定理,三角形面积公式,熟练掌握定理及公式是解本题的关键.16.(13分)(2016秋•天津期末)某石材加工厂可以把甲、乙两种类型的大理石板加工成A,B,C三种规格的小石板,每种类型的大理石板可以同时加工成三种规格小石板的块数如表所示:某客户至少需要订购A,B两种规格的石板分别为20块和22块,至多需要C规格的石板100块,分别用x,y表示甲、乙两种类型的石板数.(1)用x,y列出满足客户要求的数学关系式,并画出相应的平面区域;(2)加工厂为满足客户的需求,需要加工甲、乙两种类型的石板各多少块,才能使所用石板总数最少?【考点】简单线性规划的应用.【分析】(1)根据某客户至少需要订购A,B两种规格的石板分别为20块和22块,至多需要C规格的石板100块,分别用x,y表示甲、乙两种类型的石板数,可用x,y列出满足客户要求的数学关系式,并画出相应的平面区域;(2)设需要加工甲、乙两种类型的板材数为z,则目标函数z=x+y,利用作出可行域,得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:(I)由题意得…(3分)二元一次不等式组所表示的区域为图中的阴影部分.…(Ⅱ)设需要加工甲、乙两种类型的板材数为z,则目标函数z=x+y,作出直线l0:x+y=0,平移直线l0,如图,易知直线经过点A时,z取到最小值,解方程组得点A的坐标为A(8,6),…(10分)所以最少需要加工甲、乙两种类型的板材分别8块和6块.答:加工厂为满足客户需求,最少需要加工甲、乙两种类型的板材分别8块和6块.…(13分)【点评】本题考查简单的线性规划,考查了简单的数学建模思想方法,考查数形结合的解题思想方法,是中档题.17.(13分)(2016秋•天津期末)如图,在四棱锥P﹣ABCD中,△PCD为等边三角形,底面ABCD为直角梯形,AB⊥AD,AD∥BC,AD=2BC=2,AB=,点E、F分别为AD、CD的中点.(1)求证:直线BE∥平面PCD;(2)求证:平面PAF⊥平面PCD;(3)若PB=,求直线PB与平面PAF所成的角.【考点】直线与平面所成的角;直线与平面平行的判定;平面与平面垂直的判定.【分析】(1)推导出四边形BCDE是平行四边形,从而BE∥CD,由此能证明直线BE∥平面PCD.(2)推导出CD⊥PF,AB⊥BC,CD⊥AF,从而CD⊥平面PAF,由此能证明平面PAF⊥平面PCD.(3)设AF与BE交于点G,连结PG,则∠BPG为直线BP与平面PAF所成的角,由此能求出直线PB与平面PAF所成的角.【解答】(本小题满分13分)证明:(1)∵AD=2BC=2,且E为AD的中点,∴BC=ED.又因为AD∥BC,则四边形BCDE是平行四边形,∴BE∥CD,∵CD⊂平面PCD,BE⊄平面PCD,∴直线BE∥平面PCD.…(2)∵在等边△PCD中,F是CD的中点,∴CD⊥PF,又BC∥AD,AB⊥AD,∴AB⊥BC,又,∴AC=2,又AD=2,∴CD⊥AF,又∵PF∩AF=F,∴CD⊥平面PAF,故平面PAF⊥平面PCD.…(8分)解:(3)设AF与BE交于点G,由(2)知CD⊥平面PAF,BE∥CD,故BG⊥平面PAF,连结PG,则∠BPG为直线BP与平面PAF所成的角.在Rt△PBG中,,,∴.∴直线PB与平面PAF所成的角.…(13分)【点评】本题考查面面平行的证明,考查面面垂直的证明,考查线面角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.18.(13分)(2016秋•天津期末)已知数列{a n}的前n项和,数列{b n}的前n项和为B n.(1)求数列{a n}的通项公式;(2)设,求数列{c n}的前n项和C n;(3)证明:.【考点】数列递推式;数列的应用.【分析】(1)当n≥2时,利用a n=A n﹣A n﹣1可得a n=2n﹣1,再验证n=1的情况,即可求得数列{a n}的通项公式;(2)由题意知:,利用错位相减法即可求得数列{c n}的前n项和C n;(3)利用基本不等式可得>,可得B n=b1+b2+…+b n>2n;再由b n=,累加可,于是可证明:.【解答】(本小题满分13分)解:(I)当n≥2时,,,两式相减:a n=A n﹣A n﹣1=2n﹣1;当n=1时,a1=A1=1,也适合a n=2n﹣1,故数列{a n}的通项公式为a n=2n﹣1;.…(3分)(II)由题意知:,C n=c1+c2+…+c n,,,两式相减可得:,…即,,.…(7分)(III),显然,即b n>2,B n=b1+b2+…+b n>2n;…(9分)另一方面,,即,,…,,,即:2n<B n<2n+2.…(13分)【点评】本题考查数列递推式的应用,突出考查错位相减法求和与累加法求和的综合运用,考查推理与运算能力,属于难题.19.(14分)(2016秋•天津期末)已知椭圆的左、右焦点分别为F1,F2,上顶点为B,若△BF1F2的周长为6,且点F1到直线BF2的距离为b.(1)求椭圆C的方程;(2)设A1,A2是椭圆C长轴的两个端点,点P是椭圆C上不同于A1,A2的任意一点,直线A1P交直线x=14于点M,求证:以MP为直径的圆过点A2.【考点】椭圆的简单性质.【分析】(1)由已知得,解得a,b的值,可得椭圆C的方程;(2)P(x0,y0),可得,即以MP为直径的圆过点A2.【解答】(本小题满分14分)解:(1)由已知得,解得.所以椭圆C的方程为.…证明:(Ⅱ)由题意知A1(﹣2,0),A2(2,0),…设P(x0,y0),则,得.且由点P在椭圆上,得.…(9分)所以=…(13分)以MP为直径的圆过点A2.…(14分)【点评】本题考查的知识点是椭圆的标准方程,椭圆的简单性质,向量的数量积运算,难度中档.20.(14分)(2016秋•天津期末)已知函数,函数f(x)的图象记为曲线C.(1)若函数f(x)在x=﹣1时取得极大值2,求a,b的值;(2)若函数存在三个不同的零点,求实数b 的取值范围;(3)设动点A(x0,f(x0))处的切线l1与曲线C交于另一点B,点B处的切线为l2,两切线的斜率分别为k1,k2,当a为何值时存在常数λ使得k2=λk1?并求出λ的值.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的极值.【分析】(1)求出导数,由题意可得f'(﹣1)=0,f(﹣1)=2,解方程可得a,b的值;(2)由题意可得方程2x3+x2+x﹣b=0有三个实数解.令g(x)=2x3+x2+x,求出导数和单调区间,可得极值,即可得到b的范围;(3)求出动点A(x0,f(x0))处的切线l1与曲线C交于另一点B的横坐标,k2=λk1等价于,即可解得所求λ的值.【解答】(本小题满分14分)解:函数的导函数为f'(x)=3x2+5x+a.(1)当x=﹣1时极大值2,则f'(﹣1)=0,f(﹣1)=2,即为3﹣5+a=0,﹣1+﹣a+b=2,解得;…(2)由题意可得函数存在三个不同的零点,即方程2x3+x2+x﹣b=0有三个实数解.令g(x)=2x3+x2+x,则g′(x)=6x2+5x+1=(2x+1)(3x+1),由g′(x)=0,可得x=﹣或,且是其单调递增区间,是其单调递减区间,.因此,实数b的取值范围是.(9分)(3)由(1)知点A(x0,f(x0))处的切线l1的方程为y﹣f(x0)=f'(x0)(x ﹣x0),与y=f(x)联立得f(x)﹣f(x0)=f'(x0)(x﹣x0),即,所以点B的横坐标是,可得,即,k2=λk1等价于,解得.综上可得,当时存在常数λ=4使得k2=λk1.…(14分)【点评】本题考查导数的运用:求切线的斜率和单调区间、极值,考查存在性问题的解法,考查化简整理的运算能力,属于中档题.。
2017-2018学年天津市和平区高三(上)期末数学试卷(文科)一、选择题:每小题5分,共40分,在四个选项中只有一项是正确的.1.已知集合M={x|<0},N={x|x≤﹣1},则集合{x|x≥2}等于()A.M∩N B.M∪N C.∁R(M∩N)D.∁R(M∪N)2.从1,2,3,4,5,6,7这7个数字中,任取2个数字相加,其和为偶数的概率是()A.B.C.D.3.阅读如图所示的程序框图,运行相应的程序,输出S的值为()A.8 B.32 C.48 D.3844.设x∈R,则“﹣1<x<6”是“2x2﹣5x﹣3<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.如图,半径为2的⊙O中,∠AOB=90°,D为OB的中点,AD的延长线交⊙O于点E,则线段DE的长为()A.B.C.D.6.若双曲线﹣=1的一个焦点与抛物线y2=2px的焦点重合,则该双曲线的离心率为()A.B.C.3 D.27.记实数x1,x2,…,x n中最小数为min{x1,x2,…,x n},则定义在区间[0,+∞)上的函数f(x)=min{x2+1,x+3,13﹣x}的最大值为()A.5 B.6 C.8 D.108.已知函数f(x)=x|x|﹣mx+1有三个零点,则实数m的取值范围是()A.C.(﹣∞,﹣2)D.[2,+∞)二、填空题:每小题5分,共30分.9.i是虚数单位,计算的结果为.10.一个几何体的三视图如图所示(单位:cm),则几何体的体积为cm3.11.(5分)(2011新余二模)在区间上随机取一个数x,则cosx的值介于0到的概率为.12.已知x>0,y>0,+=1,则2x+y的最小值为.13.已知函数f(x)=3sin(ωx﹣)+1(ω>0)和g(x)=cos(2x+φ)﹣2的图象的对称轴完全相同,当x∈[0,]时,函数f(x)的值域是.14.(5分)(2018济宁二模)如图,在△ABC中,∠BAC=60°,AB=2,AC=1,D是BC边上的一点(含端点),则的取值范围是.三、解答题:共80分,解答应写出文字说明,证明过程或演算步骤.15.(13分)(2018秋和平区期末)已知△ABC的内角A、B、C所对的边分别为a、b、c,asinA+csinC﹣asinC=bsinB.(Ⅰ)求B;(Ⅱ)若C=,b=2,求a和c.16.(13分)(2018秋和平区期末)某企业生产A、B两种产品,现有资源如下:煤360吨,水300吨,电200千瓦.每生产1吨A产品需消耗煤9吨,水3吨,电4千瓦,利润7万元;每生产1吨B产品需消耗煤4吨,水10吨,电5千瓦,利润12万元.(Ⅰ)根据题目信息填写下表:每吨产品煤(吨)水(吨)电(千瓦)AB(Ⅱ)设分别生产A、B两种产品x吨、y吨,总产值为z万元,请列出x、y满足的不等式组及目标函数.(Ⅲ)试问该企业利用现有资源,生产A、B两种产品各多少吨,才能获得最大利润?17.(13分)(2018秋和平区期末)如图,已知三棱柱ABC﹣A1B1C1的侧面BCC1B1是菱形,D为A1C1的中点,B1C⊥A1B.(Ⅰ)求证:平面AB1C垂直平面A1BC1;(Ⅱ)求证:A1B∥平面B1CD;(Ⅲ)若AB=AC=BC=AB1=B1C=2,求三棱柱ABC﹣A1B1C1的表面积.18.(13分)(2013山东)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n.19.(14分)(2018秋和平区期末)已知椭圆C经过点A(2,3)、B(4,0),对称轴为坐标轴,焦点F1、F2在x轴上.(Ⅰ)求椭圆C的方程;(Ⅱ)求∠F1AF2的角平分线所在的直线l与椭圆C的另一个交点的坐标.20.(14分)(2018秋和平区期末)设函数f(x)=x3﹣x2+6x+m.(Ⅰ)对于x∈R,f′(x)≥a恒成立,求a的最大值;(Ⅱ)若方程f(x)=0有且仅有一个实根,求m的取值范围;(Ⅲ)若g(x)=mx﹣6x2﹣2f(x)在(1,+∞)上存在单调递增区间,求m的取值范围.2017-2018学年天津市和平区高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题:每小题5分,共40分,在四个选项中只有一项是正确的.1.已知集合M={x|<0},N={x|x≤﹣1},则集合{x|x≥2}等于()A.M∩N B.M∪N C.∁R(M∩N)D.∁R(M∪N)【分析】先化简集合M,再根据集合的并集运算求出M∪N={x|x<2},这时发现{x|x<2}∪{x|x≥2}=R,问题得以解决.【解答】解:∵M={x|<0}={x|﹣1<x<2},N={x|x≤﹣1},∴M∪N={x|x<2},∴∁R(M∪N)={x|x≥2},故选:D.【点评】此题考查的分式不等式的解法及集合间的交、并、补运算是高考中的常考内容,要认真掌握,并确保得分.2.从1,2,3,4,5,6,7这7个数字中,任取2个数字相加,其和为偶数的概率是()A.B.C.D.【分析】从1,2,3,4,5,6,7这7个数字中,任取2个数字相加,先求出基本事件总数,再求出其和为偶数包含的基本事件个数,由此能求出其和为偶数的概率.【解答】解:从1,2,3,4,5,6,7这7个数字中,任取2个数字相加,基本事件总数n==21,其和为偶数包含的基本事件个数m==9,∴其和为偶数的概率p===.故选:A.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.3.阅读如图所示的程序框图,运行相应的程序,输出S的值为()A.8 B.32 C.48 D.384【分析】由程序中的变量、各语句的作用,结合流程图所给的顺序,可知当满足n<8时,用s×n的值代替s得到新的s值,进入下一步判断,直到条件不满足时输出最后的S值,由此即可得到本题答案.【解答】解:模拟执行程序框图,可得S=1,n=2满足条件n<8,S=2,n=4满足条件n<8,S=8,n=6满足条件n<8,S=48,n=8不满足条件n<8,退出循环,输出S的值为48.故选:C.【点评】本题给出程序框图,求最后输出的结果值,属于基础题.解题的关键是先根据已知条件判断程序的功能,构造出相应的数学模型再求解,从而使问题得以解决.4.设x∈R,则“﹣1<x<6”是“2x2﹣5x﹣3<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】由2x2﹣5x﹣3<0,解得,即可判断出结论.【解答】解:由2x2﹣5x﹣3<0,解得,∴“﹣1<x<6”是“2x2﹣5x﹣3<0”的必要不充分条件,故选:B.【点评】本题考查了不等式的解法、充要条件的判定,考查了推理能力与计算能力,属于中档题.5.如图,半径为2的⊙O中,∠AOB=90°,D为OB的中点,AD的延长线交⊙O于点E,则线段DE的长为()A.B.C.D.【分析】延长BO交⊙O于点C,我们根据已知中⊙O的半径为2,∠AOB=90°,D为OB的中点,我们易得,代入相交弦定理,我们即可求出线段DE的长.【解答】解:延长BO交⊙O于点C,由题设知:,又由相交弦定理知ADDE=BDDC,得故选C【点评】本题考查的知识是与圆有关的比例线段,其中延长B0交圆于另一点C,从而构造相交弦的模型是解答本题的关键.6.若双曲线﹣=1的一个焦点与抛物线y2=2px的焦点重合,则该双曲线的离心率为()A.B.C.3 D.2【分析】求出抛物线的焦点坐标,双曲线的a,b,c,解方程可得p2=36,即有c=2,运用离心率公式计算即可得到所求值.【解答】解:抛物线y2=2px的焦点为(,0),由双曲线﹣=1的a=,b=||,可得c=,即有=||,解得p2=36,可得c=3,则离心率e===.故选:A.【点评】本题考查双曲线的离心率的求法,注意运用抛物线的焦点坐标,以及双曲线的a,b,c的关系和离心率公式,考查运算能力,属于基础题.7.记实数x1,x2,…,x n中最小数为min{x1,x2,…,x n},则定义在区间[0,+∞)上的函数f(x)=min{x2+1,x+3,13﹣x}的最大值为()A.5 B.6 C.8 D.10【分析】在同一坐标系中作出三个函数y=x+3,y=x2+1与y=﹣x+13的图象,依题意,由图象即可求得max{min{x2+1,x+3,13﹣x}}.【解答】解:在同一坐标系中作出三个函数y=x2+1,y=x+3,y=13﹣x的图象如图:由图可知,min{x2+1,x+3,13﹣x}为y=x+3上A点下方的射线,抛物线AB之间的部分,线段BC,与直线y=13﹣x点C下方的部分的组合体,显然,在C点时,y=min{x2+1,x+3,13﹣x}取得最大值.解方程组得,C(5,8),∴max{min{x2+1,x+3,13﹣x}}=8.故选:C.【点评】本题考查函数的最值的求法,在同一坐标系中作出三个函数y=x+3,y=x2+1与y=﹣x+13的图象是关键,考查数形结合的思想方法,属于中档题.8.已知函数f(x)=x|x|﹣mx+1有三个零点,则实数m的取值范围是()A.C.(﹣∞,﹣2)D.[2,+∞)【分析】f(x)=x|x|﹣mx+1得x|x|+1=mx利用参数分离法得m=|x|+,构造函数g(x)=|x|+,转化为两个函数的交点个数问题进行求解即可.【解答】解:由f(x)=x|x|﹣mx+1得x|x|+1=mx,当x=0时,方程不成立,即x≠0,则方程等价为m=|x|+设g(x)=|x|+,当x<0时,g(x)=﹣x+为减函数,当x>0时,g(x)=x+,则g(x)在(0,1)上为减函数,则(1,+∞)上为增函数,即当x=1时,函数取得极小值同时也是最小值g(1)=1+1=2,作出函数g(x)的图象如图:要使f(x)=x|x|﹣mx+1有三个零点,则等价为m=|x|+有三个不同的根,即y=m与g(x)有三个不同的交点,则由图象知m>2,故实数m的取值范围是(2,+∞),故选:B.【点评】本题主要考查函数与方程的应用,利用参数分离法以及数形结合是解决本题的关键.二、填空题:每小题5分,共30分.9.i是虚数单位,计算的结果为2﹣.【分析】直接利用复数代数形式乘除运算化简得答案.【解答】解:=.故答案为:.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.10.一个几何体的三视图如图所示(单位:cm),则几何体的体积为12πcm3.【分析】由三视图得到该几何体上面是个圆锥,下面是个圆柱,根据圆锥和圆柱的体积公式进行求解即可.【解答】解:由三视图得到该几何体上面是个圆锥,下面是个圆柱,圆锥的高为3cm,底面半径r=2cm,则圆锥的体积为=4π(cm3),圆柱的高为2cm,底面半径r=2cm,则圆柱的体积为π×22×2=8π(cm3),则该几何体的体积为4π+8π=12π(cm3),故答案为:12π【点评】本题主要考查三视图的应用以及空间几何体的体积计算,根据三视图判断几何体的结构是解决本题的关键.11.(5分)(2011新余二模)在区间上随机取一个数x,则cosx的值介于0到的概率为.【分析】解出关于三角函数的不等式,使得cosx的值介于0到之间,在所给的范围中,求出符合条件的角的范围,根据几何概型公式用角度之比求解概率.【解答】解:∵0<cosx,∴x∈(2kπ+,2kπ+)当x∈[﹣,]时,x∈(﹣,﹣)∪(,)∴在区间上随机取一个数x,cosx的值介于0到之间的概率P==,故答案为:.【点评】本题是一个几何概型,古典概型和几何概型是我们学习的两大概型,在解题过程中不能列举的就是几何概型,几何概型的概率的值是通过长度、面积、和体积的比值得到.12.已知x>0,y>0,+=1,则2x+y的最小值为18.【分析】利用基本不等式的性质即可得出.【解答】解:∵x>0,y>0,+=1,则2x+y=(2x+y)=10++≥10+2=18,当且仅当y=2x=2+8时取等号.故答案为:18.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.13.已知函数f(x)=3sin(ωx﹣)+1(ω>0)和g(x)=cos(2x+φ)﹣2的图象的对称轴完全相同,当x∈[0,]时,函数f(x)的值域是[﹣,4].【分析】由条件利用三角函数的周期性求得ω的值,可得函数f(x)的解析式,再利用正弦函数的定义域和值域,求得函数f(x)的值域.【解答】解:函数f(x)=3sin(ωx﹣)+1(ω>0)和g(x)=cos(2x+φ)﹣2的图象的对称轴完全相同,故它们的周期相同,即=,∴ω=2,f(x)=3sin(2x﹣)+1.当x∈[0,]时,2x﹣∈[﹣,],∴函数f(x)的值域为[﹣+1,4],即函数f(x)的值域是[﹣,4],故答案为:[﹣,4].【点评】本题主要考查三角函数的周期性,正弦函数的定义域和值域,属于基础题.14.(5分)(2018济宁二模)如图,在△ABC中,∠BAC=60°,AB=2,AC=1,D是BC边上的一点(含端点),则的取值范围是[﹣3,0].【分析】由条件可以求出,而根据B,D,C三点共线,便可得到,从而得到,进行数量积的运算便可得出,【解答】解:根据条件,;∵B,D,C三点共线,∴存在实数λ使,0≤λ≤1;∴;∴;∴==1﹣2λ﹣4(1﹣λ)+λ=3λ﹣3;∵0≤λ≤1;∴﹣3≤3λ﹣3≤0;∴的取值范围为[﹣3,0].故答案为:[﹣3,0].【点评】考查向量数量积的运算及其计算公式,共线向量基本定理,向量减法的几何意义,向量的数乘运算,以及不等式的性质.三、解答题:共80分,解答应写出文字说明,证明过程或演算步骤.15.(13分)(2018秋和平区期末)已知△ABC的内角A、B、C所对的边分别为a、b、c,asinA+csinC﹣asinC=bsinB.(Ⅰ)求B;(Ⅱ)若C=,b=2,求a和c.【分析】(I)由asinA+csinC﹣asinC=bsinB,利用正弦定理可得:=b2,再利用余弦定理可得:cosB.(II )A=π﹣B ﹣C=,由正弦定理可得:a=,而sinC=.可得c=.【解答】解:(I )由asinA+csinC ﹣asinC=bsinB ,利用正弦定理可得:=b 2,由余弦定理可得:cosB==,∵B ∈(0,π),∴B=.(II )A=π﹣B ﹣C=,由正弦定理可得:a===,而sinC==+=.∴c==1+.【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.16.(13分)(2018秋和平区期末)某企业生产A 、B 两种产品,现有资源如下:煤360吨,水300吨,电200千瓦.每生产1吨A 产品需消耗煤9吨,水3吨,电4千瓦,利润7万元;每生产1吨B 产品需消耗煤4吨,水10吨,电5千瓦,利润12万元.(Ⅰ)根据题目信息填写下表:每吨产品 煤(吨) 水(吨) 电(千瓦) A B(Ⅱ)设分别生产A 、B 两种产品x 吨、y 吨,总产值为z 万元,请列出x 、y 满足的不等式组及目标函数.(Ⅲ)试问该企业利用现有资源,生产A 、B 两种产品各多少吨,才能获得最大利润?【分析】(Ⅰ)根据题意,即可填写表格;(Ⅱ)由题意可得组,目标函数z=7x+12y;(Ⅲ)作出不等式组表示的可行域,以及直线l0:7x+12y=0,平移直线l0:,由图象观察可得经过直线3x+10y=300和直线4x+5y=200的交点时,取得最大值.【解答】解:(Ⅰ)每吨产品煤(吨)水(吨)电(千瓦)A 9 3 4B 4 10 5(Ⅱ)x,y满足的不等式组,目标函数z=7x+12y;(Ⅲ)作出不等式组表示的可行域,以及直线l0:7x+12y=0,由,解得M(20,24),平移直线l0,当经过点M(20,24),取得最大值,且为z=7×20+12×24=428.则生产A种产品20吨,B种产品24吨,才能获得最大利润428万元.【点评】本题考查线性规划的运用,考查数形结合的思想方法,以及平移法,考查运算能力,属于中档题.17.(13分)(2018秋和平区期末)如图,已知三棱柱ABC﹣A1B1C1的侧面BCC1B1是菱形,D为A1C1的中点,B1C⊥A1B.(Ⅰ)求证:平面AB1C垂直平面A1BC1;(Ⅱ)求证:A1B∥平面B1CD;(Ⅲ)若AB=AC=BC=AB1=B1C=2,求三棱柱ABC﹣A1B1C1的表面积.【分析】(Ⅰ)推导出B1C⊥BC1,B1C⊥A1B,从而B1C⊥平面A1BC1,由此能证明平面AB1C垂直平面A1BC1.(Ⅱ)设BC1∩B1C于点E,连DE,推导出DE∥A1B,由此能证明A1B∥平面B1CD.(Ⅲ)侧面BAA1B1和侧面BCC1B1是两个全等的菱形,侧面ACC1A1是一个正方形,由此能求出三棱柱ABC﹣A1B1C1的表面积.【解答】证明:(Ⅰ)∵侧面BCC1B1是菱形,∴B1C⊥BC1,∵B1C⊥A1B,且A1B∩BC1=B,∴B1C⊥平面A1BC1,∵B1C⊂平面AB1C,∴平面AB1C垂直平面A1BC1.(Ⅱ)设BC1∩B1C于点E,连DE,∵在△A1BC1中,D为A1C1的中点,E为BC1的中点,∴DE∥A1B,∵DE⊂平面B1CD,A1B⊄平面B1CD,∴A1B∥平面B1CD.解:(Ⅲ)依题意,在三棱柱ABC﹣A1B1C1中,两底面是边长为2的正三角形,面积均为,侧面BAA1B1和侧面BCC1B1是两个全等的菱形,面积均为2,侧面ACC1A1是一个正方形,面积为4,∴三棱柱ABC﹣A1B1C1的表面积为.【点评】本题考查面面垂直的证明,考查线面平行的证明,考查三棱柱的表面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.18.(13分)(2013山东)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n.【分析】(Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1得到关于a1与d的方程组,解之即可求得数列{a n}的通项公式;(Ⅱ)由(Ⅰ)知,a n=2n﹣1,继而可求得b n=,n∈N*,于是T n=+++…+,利用错位相减法即可求得T n.【解答】解:(Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1得:,解得a1=1,d=2.∴a n=2n﹣1,n∈N*.(Ⅱ)由已知++…+=1﹣,n∈N*,得:当n=1时,=,当n≥2时,=(1﹣)﹣(1﹣)=,显然,n=1时符合.∴=,n∈N*由(Ⅰ)知,a n=2n﹣1,n∈N*.∴b n=,n∈N*.又T n=+++…+,∴T n=++…++,两式相减得:T n=+(++…+)﹣=﹣﹣∴T n=3﹣.【点评】本题考查数列递推式,着重考查等差数列的通项公式与数列求和,突出考查错位相减法求和,考查分析运算能力,属于中档题.19.(14分)(2018秋和平区期末)已知椭圆C经过点A(2,3)、B(4,0),对称轴为坐标轴,焦点F1、F2在x轴上.(Ⅰ)求椭圆C的方程;(Ⅱ)求∠F1AF2的角平分线所在的直线l与椭圆C的另一个交点的坐标.【分析】(Ⅰ)设椭圆C的方程为=1,a>b>0,利用待定系数法能求出椭圆C的方程.(Ⅱ)直线AF1的方程为3x﹣4y+6=0,求出直线l的方程为2x﹣y﹣x=0,与椭圆联立,得19x2﹣16x﹣44=0,由此利用韦达定理能求出直线l与椭圆C的另一个交点坐标.【解答】解:(Ⅰ)∵椭圆C经过点A(2,3)、B(4,0),对称轴为坐标轴,焦点F1、F2在x轴上,∴设椭圆C的方程为=1,a>b>0,则,解得a2=16,b2=12,∴椭圆C的方程为.(Ⅱ)∵椭圆C的方程为,∴F1(﹣2,0),F2(2,0),则直线AF1的方程为y=,即3x﹣4y+6=0,直线AF2的方程为x=2,由点A在椭圆C上的位置得直线l的斜率为正数,设P(x,y)为直线l上一点,则=|x﹣2|,解得2x﹣y﹣1=0或x+2y﹣8=0(斜率为负,舍),∴直线l的方程为2x﹣y﹣x=0,由,整理,得19x2﹣16x﹣44=0,设直线l与椭圆C的另一个交点为M(x0,y0),则有,解得,,∴直线l与椭圆C的另一个交点坐标为(﹣,﹣).【点评】本题考查椭圆方程的求法,考查直线与椭圆的另一个交点坐标的求法,是中档题,解题时要认真审题,注意椭圆性质、韦达定理的合理运用.20.(14分)(2018秋和平区期末)设函数f (x )=x 3﹣x 2+6x+m .(Ⅰ)对于x ∈R ,f ′(x )≥a 恒成立,求a 的最大值;(Ⅱ)若方程f (x )=0有且仅有一个实根,求m 的取值范围;(Ⅲ)若g (x )=mx ﹣6x 2﹣2f (x )在(1,+∞)上存在单调递增区间,求m 的取值范围.【分析】(1)求出f (x )的导数,得到3x 2﹣9x+(6﹣a )≥0恒成立,根据判别式△≤0,求出a 的范围即可;(2)求出f (x )的极大值和极小值,从而求出m 的范围即可;(3)求出g (x )的导数,得到函数的单调性,求出函数的g ′(x )的最大值,从而求出m 的范围即可.【解答】解:(1)f ′(x )=3x 2﹣9x+6,x ∈R ,f ′(x )≥a 恒成立,即3x 2﹣9x+(6﹣a )≥0恒成立,∴△=81﹣12(6﹣a )≤0,解得:a ≤﹣,∴a 的最大值是﹣;(2)由f ′(x )=3(x ﹣1)(x ﹣2),令f ′(x )>0,解得:x >2或x <1,令f ′(x )<0,解得:1<x <2,∴f (x )极大值=f (1)=+m ,f (x )极小值=f (2)=2+m ,故f (2)>0或f (1)<0时,方程f (x )=0仅有1个实数根,∴m 的范围是(﹣∞,﹣)∪(﹣2,+∞); (3)∵g (x )=﹣2x 3+3x 2+(m ﹣12)x ﹣2m ,∴g ′(x )=﹣6+(m ﹣),当x ∈[1,+∞)时,g ′(x )的最大值是g ′(1)=m ﹣12, 令g ′(1)>0,解得:m >12, ∴m 的范围是(12,+∞).【点评】本题考查了函数的单调性、最值问题,考查导数的应用,函数恒成立问题,是一道中档题.。
绝密★启用前天津市部分区2016~2017学年度第一学期期末考试高三数学(理科)试卷温馨提示:使用答题卡的区,学生作答时请将答案写在答题卡上;不使用答题卡的区,学生作答时请将答案写在试卷上.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第I 卷1至2页,第Ⅱ卷2至4页.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘帖考试用条形码.答卷时,考生务必将答案涂写在答题卡上.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题,共40分)注意事项:1.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共8小题,每小题5分,共40分. 参考公式:如果事件,A B 互斥,那么()()()P A B P A P B =+ . 如果事件,A B 相互独立,那么()()()P A B P A P B = . 锥体的体积公式13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高. 柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合2{1,4},{|log ,}A B y y x x A ===∈,则A B =U(A ){}1,4(B ){}0,1,4(C ){}0,2(D ){}0,1,2,4(2)设变量x ,y 满足约束条件240,330,10.x y x y x y +-⎧⎪+-⎨⎪--⎩≤≥≤则目标函数2z x y =-的最小值为(A )165-(B )3-(C )0(D )1(3)阅读右边的程序框图,运行相应的程序,则输出v 的值为(A )4 (B )5 (C )6 (D )7(4)已知ABC ∆是钝角三角形,若2,1==BC AC ,且ABC ∆则=AB(A(B(C) (D )3(5)设{n a }是公比为q 的等比数列,则“1q >” 是“{n a }为单调递增数列”的 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件(6)已知双曲线22221x y a b-=(0,0a b >>)的焦点到渐近线的距离为2,且双曲线的一条渐近线与直线230x y -+=平行,则双曲线的方程为(A )221164x y -=(B )22194x y -= (C )22149x y -=(D )22184x y -= (7)在ABC ∆中,D 在AB 上,:1:2AD DB =,E 为AC 中点,CD 、BE 相交于正视图侧视图俯视图点P,连结AP.设AP xAB yAC=+u u u r u u u r u u u r,x y∈R(),则x,y的值分别为(A)11,23(B)12,33(C)12,55(D)11,36(8)已知2()(3)e xf x x=-(其中x∈R,e是自然对数的底数),当1t>时,关于x的方程12[()][()]0f x t f x t--=恰好有5个实数根,则实数2t的取值范围是(A)(2e,0)-(B)(]2e,0-(C)32e,6e-⎡⎤-⎣⎦(D)(32e,6e-⎤-⎦第Ⅱ卷(非选择题,共110分)注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共12小题,共110分.二、填空题:本大题共有6小题,每小题5分,共30分.(9)已知a,∈b R,i是虚数单位,若(12i)(2i)2ia b-+=-,则a b+的值为__________. (10)在261(4xx-的展开式中,3x-的系数为__________. (用数字作答)(11)某空间几何体的三视图如图所示,则该几何体的表面积是__________.(12)在平面直角坐标系xOy中,由曲线1yx=(0x>)与直线y x=和3y=所围成的封闭图形的面积为__________.(13)在直角坐标系xOy中,已知曲线1:C11x tty tt⎧=+⎪⎪⎨⎪=-⎪⎩(t为参数),曲线2:Ccossinx ayθθ=⎧⎨=⎩(θ为参数,1a>),若1C恰好经过2C的焦点,则a的值为__________.(14)已知24,1,()e, 1.xx x xf xx⎧-<⎪=⎨≥⎪⎩若方程()f x kx=有且仅有一个实数解,则实数k的取值范围为__________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分)已知函数()2cos (cos )f x x x x a =++(a ∈R ). (I )求()f x 的最小正周期; (II )当[0,]2x π∈时,()f x 的最小值为2,求a 的值.(16)(本小题满分13分)某区选派7名队员代表本区参加全市青少年围棋锦标赛,其中3名来自A 学校且1名为女棋手,另外4名来自B 学校且2名为女棋手.从这7名队员中随机选派4名队员参加第一阶段的比赛.(I )求在参加第一阶段比赛的队员中,恰有1名女棋手的概率;(II )设X 为选出的4名队员中A 、B 两校人数之差的绝对值,求随机变量X 的分布列和数学期望.(17)(本小题满分13分)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,AB AD ⊥,//AD BC ,122AD BC ==,E 在BC 上,且112BE AB ==,侧棱PA ⊥平面ABCD .(I )求证:平面PDE ⊥平面PAC ; (II )若PAB ∆为等腰直角三角形.(i )求直线PE 与平面PAC 所成角的正弦值; (ii )求二面角A PC D --的余弦值.(18)(本小题满分13分)已知数列{}n a 的前n 项和2=n A n (n *∈N ),11n n n n na ab a a ++=+(n *∈N ),数列{}n b 的前n 项和为n B .(I )求数列{}n a 的通项公式; (II )设2nn n a c =(n *∈N ),求数列{}n c 的前n 项和n C ; (III )证明: 222<<+n n B n (n *∈N ).PA BECD(19)(本小题满分14分)已知椭圆2222: 1 (0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,上顶点为B ,若12BF F ∆的周长为6,且点1F 到直线2BF 的距离为b .(Ⅰ)求椭圆C 的方程;(Ⅱ)设12,A A 是椭圆C 长轴的两个端点,点P 是椭圆C 上不同于12,A A 的任意一点,直线1A P 交直线x m =于点M ,若以MP 为直径的圆过点2A ,求实数m 的值. (20)(本小题满分14分)已知函数321()3f x x x cx d =-++(,c d ∈R ),函数()f x 的图象记为曲线C . (I )若函数()f x 在[0,)+∞上单调递增,求c 的取值范围;(II )若函数()y f x m =-有两个零点,()αβαβ≠,且x α=为()f x 的极值点,求2αβ+的值;(III )设曲线C 在动点00(,())A x f x 处的切线1l 与C 交于另一点B ,在点B 处的切线为2l ,两切线的斜率分别为12,k k ,是否存在实数c ,使得12k k 为定值?若存在,求出c 的值;若不存在,说明理由.天津市部分区2016~2017学年度第一学期期末考试高三数学(理科)参考答案一、选择题:1-4 DACB 5-8 DACD二、填空题:9.8 10. 24-11. 32+ 12. 4ln 3-14. (,e)-∞三、解答题:15.(本小题满分13分)解:(I)函数2()2cos cos cos212f x x x x a x x a =++=++2sin(2)16x a π=+++, ……………………4分故函数()f x 的最小正周期为T π=. ………………………6分 (II )由题意得70,,2,2666x x ππππ⎡⎤⎡⎤∈+∈⎢⎥⎢⎥⎣⎦⎣⎦, ……………………10分故min ()112f x a =-++=,所以2a =. ……………………13分 16.(本小题满分13分)解:(I )由题意知,7名队员中分为两部分,3人为女棋手,4人为男棋手,设事件A =“恰有1位女棋手”,则()1334471235C C P A C ==,………………………4分 所以参加第一阶段的比赛的队员中,恰有1位女棋手的概率为1235.…………5分 (II )随机变量X 的所有可能取值为0,2,4.其中()22344718035C C P X C ===, ()133134344716235C C C C P X C +===, ()0434471435C C P X C ===. ………………………………9分 所以,随机变量X 分布列为随机变量X 的数学期望()181613602435353535E X =⨯+⨯+⨯=. ………………………………13分 17.(本小题满分13分)解:(Ⅰ)法一:∵△AGD △CGE ,知23DG AD AG GE EC GC ===,且AC =故355GC AC ==.同理可得35GE DE ==,且3EC =,222GC GE EC +=,ED AC ⊥. ………2分又∵PA ⊥平面ABCD ∴PA ED ⊥ ……3分 而PA AC A = ∴ED ⊥平面PAC .ED ⊂平面PDE ,故平面PDE ⊥平面PAC ; ……4分法二:∵PA ⊥平面ABCD ∴AB PA ⊥ 又∵AB AD ⊥,故可建立建立如图所示坐标系.由已知(0,2,0)D ,(2,1,0)E ,(2,4,0)C ,(0,0,)P λ(0λ>)∴(2,4,0)AC = ,(0,0,)AP λ= ,(2,1,0)DE =-∴4400DE AC ⋅=-+= ,0DE AP ⋅=.……3分,∴DE AC ⊥,DE AP ⊥,∴ED ⊥平面PAC ,ED ⊂平面PDE ,平面PDE ⊥平面PAC ;……4分(Ⅱ)(i )由(Ⅰ),平面PAC 的一个法向量是(2,1,0)DE =-,因为PAB ∆为等腰直角三角形,故2PA =,(2,1,2)PE =-.设直线PE 与平面PAC 所成的角为θ,则sin cos ,PE DE θ=<>= ………8分(ii )设平面PCD 的一个法向量为n 000(,,)x y z =,(2,2,0)DC = ,(0,2,2)DP =-由n DC ⊥ ,n DP ⊥ ∴0000220220x y y z +=⎧⎨-+=⎩,令01x =,则n (1,1,1)=--, ………10分∴cos <n,DE >==.………11分 显然二面角A PC D --的平面角是锐角, ∴二面角A PC D --的余弦值为515.………13分(其他方法可酌情给分) 18.(本小题满分13分)解:(I )当2n ≥时,2=n A n ,21(1)-=-n A n , 两式相减:121-=-=-n n n a A A n ;当1n =时,111==a A ,也适合21=-n a n ,故数列{}n a 的通项公式为21=-n a n ;. ………3分(II )由题意知:2122-==n n n na n c ,12n n C c c c =+++ ,123135212222-=++++ n n n C ,23411352122222+-=++++ n n C n ,两式相减可得:1231122221222222+-=++++- n n n C n , ……… 4分 即123-111111121()2222222+-=+++++- n n n C n ,-111121(1)2222+-=+--n n n C n ,2332+=-n n n C .………7分 (III )21212121-+=++-n n n b n n,显然212122121-++>=+-n n n n , 即2n b >,122n n B b b b n =+++> ; ………9分 另一方面,21212222112212*********-++=-++=+-+-+--+n n n n n n n n , 即122213=+-b ,222235=+-b ,…,11222121⎛⎫=+- ⎪-+⎝⎭n b n n ,2222222(2)(2)(2)22221335212121=+-++-+++-=+-<+-++ n B n n n n n , 即:222<<+n n B n . ………13分 19.(本小题满分14分)解:(Ⅰ)由已知得2222262c a cb ab a b c ⎧+=⎪=⎨⎪=+⎩,解得21a b c =⎧⎪=⎨⎪=⎩所以椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ)由题意知12(2,0),(2,0)A A -, ……………6分设00(,)P x y ,则100:(2)2A P y l y x x =++,得00(,(2))2yM m m x ++. 且由点P 在椭圆上,得22003(1)4x y =-. ……………8分 若以MP 为直径的圆过点2A ,则220A M A P ⋅=, ……………9分所以20000000(2,(2))(2,)(2)(2)(2)022y y m m x y m x m x x -+⋅-=--++=++2000000033(4)(2)(2)44(2)(2)(2)(2)(2)(2)022x x x m x m m x m x x --+--++=---+=++ ……………12分因为点P 是椭圆C 上不同于12,A A 的点,所以02x ≠±. 所以上式可化为3(2)(2)04m m --+=,解得14m =. ……………14分 20.(本小题满分14分)解法一:(I )2()2f x x x c '=-+,当[0,)x ∈+∞时2()20f x x x c '=-+≥所以2min (2)0x x c -+≥,而22x x c -+在1x =处取得最小值,所以120c -+≥,1c ≥;……………4分 (II )因为x α=为()f x 的极值点,所以21()20k f c ααα'==-+=,所以22c αα=-+, 又因为()y f x m =-有不同的零点,αβ,所以()()f f αβ=,即32321133c d c d ααααββ-++=-++, 整理得:21(23)()03αβαβ+--=, 所以23αβ+=.……………9分 (III )满足条件的实数c 存在,由2()2f x x x c '=-+,知过00(,())A x f x 点与曲线相切的直线1l 为:000()()+()y f x x -x f x '=,且21002k x x c =-+将000()()+()y f x x -x f x '=与()y f x =联立即得B 点得横坐标,所以000()()+(())f x x -x f x f x '=即:3223200000011(2)()+33x x cx d x x c x -x x x cx d -++=-+-++ 整理得:2001(23)()03x x x x +--=由已知0x x ≠,所以0230x x +-=所以032x x =-,即B 点的横坐标为032x - 所以过点B 的曲线的切线斜率为22()2k f x x x c '==-+200(32)2(32)x x c =---+2004(2)33x x c c =-++-1433k c =+-因此当且仅当 330c -=时,1k 、1k 成比例, 这时1c =即存在实数1c =,使12k k 为定值.……………14分解法二:(I )2()2f x x x c '=-+,当[0,)x ∈+∞时2()20f x x x c '=-+≥, 所以2(2)c x x ≥--对任意的[0,)x ∈+∞恒成立,故2max [(2)]c x x ≥--, 即2max [(2)]1x x --=,故c 的取值范围是[1,)+∞;…………… 4分(II )因为x α=为()f x 的极值点,且()y f x m =-有两个零点,()αβαβ≠, 所以()0f x m -=的三个实数根分别为,,ααβ, 由根与系数的关系得12313ααβαβ-++=+=-=;……………9分 (III )满足条件的实数c 存在,因为2()2f x x x c '=-+,所以过00(,())A x f x 点且与曲线C 相切的直线1l 为:000()()+()y f x x -x f x '=,其中21002k x x c =-+.设1l 与C 交于另一点11(,)B x y ,则001,,x x x 必为方程'000()()()+()f x f x x -x f x =的三个实数根由'000()()()+()f x f x x -x f x =得32200001(2)()+()3x x cx d x x c x -x f x -++=-+ 因为上述方程的右边不含三次项和二次项,所以0011313x x x -++=-= ,所以1032x x =- 所以'22111()2k f x x x c ==-+ 200(32)2(32)x x c =---+2004(2)33x x c c =-++-1433k c =+-.因此当且仅当 330c -=时,1k 、1k 成比例, 这时1c =,即存在实数1c =,使12k k 为定值. ……………14分天津市部分区2016~2017学年度第一学期期末考试高三数学(理科)参考答案一、选择题:1-4 DACB 5-8 DACD二、填空题:9.8 10. 24-11. 32+ 12. 4ln 3-14. (,e)-∞ 三、解答题:15.(本小题满分13分)解:(I)函数2()2cos cos cos212f x x x x a x x a =++=++2sin(2)16x a π=+++, ……………………4分故函数()f x 的最小正周期为T π=. ………………………6分 (II )由题意得70,,2,2666x x ππππ⎡⎤⎡⎤∈+∈⎢⎥⎢⎥⎣⎦⎣⎦, ……………………10分故min ()112f x a =-++=,所以2a =. ……………………13分 16.(本小题满分13分)解:(I )由题意知,7名队员中分为两部分,3人为女棋手,4人为男棋手,设事件A =“恰有1位女棋手”,则()1334471235C C P A C ==,………………………4分 所以参加第一阶段的比赛的队员中,恰有1位女棋手的概率为1235.…………5分 (II )随机变量X 的所有可能取值为0,2,4.其中()22344718035C C P X C ===, ()133134344716235C C C C P X C +===, ()0434471435C C P X C ===. ………………………………9分 所以,随机变量X 分布列为随机变量X 的数学期望()181613602435353535E X =⨯+⨯+⨯=. ………………………………13分 17.(本小题满分13分)解:(Ⅰ)法一:∵△AGD △CGE ,知23DG AD AG GE EC GC ===,且AC =故35GC AC ==.同理可得35GE DE ==,且3EC =,222GC GE EC +=,ED AC ⊥. ………2分又∵PA ⊥平面ABCD ∴PA ED ⊥ ……3分 而PA AC A = ∴ED ⊥平面PAC .ED ⊂平面PDE ,故平面PDE ⊥平面PAC ; ……4分法二:∵PA ⊥平面ABCD ∴AB PA ⊥ 又∵AB AD ⊥,故可建立建立如图所示坐标系.由已知(0,2,0)D ,(2,1,0)E ,(2,4,0)C ,(0,0,)P λ(0λ>)∴(2,4,0)AC = ,(0,0,)AP λ= ,(2,1,0)DE =-∴4400DE AC ⋅=-+= ,0DE AP ⋅=.……3分,∴DE AC ⊥,DE AP ⊥,∴ED ⊥平面PAC ,ED ⊂平面PDE ,平面PDE ⊥平面PAC ;……4分(Ⅱ)(i )由(Ⅰ),平面PAC 的一个法向量是(2,1,0)DE =-,因为PAB ∆为等腰直角三角形,故2PA =,(2,1,2)PE =-.设直线PE 与平面PAC 所成的角为θ,则sin cos ,PE DE θ=<>= ………8分(ii )设平面PCD 的一个法向量为n 000(,,)x y z =,(2,2,0)DC = ,(0,2,2)DP =-由n DC ⊥ ,n DP ⊥ ∴0000220220x y y z +=⎧⎨-+=⎩,令01x =,则n (1,1,1)=--, ………10分∴cos <n,DE >==.………11分 显然二面角A PC D --的平面角是锐角, ∴二面角A PC D --的余弦值为515.………13分(其他方法可酌情给分) 18.(本小题满分13分)解:(I )当2n ≥时,2=n A n ,21(1)-=-n A n , 两式相减:121-=-=-n n n a A A n ;当1n =时,111==a A ,也适合21=-n a n ,故数列{}n a 的通项公式为21=-n a n ;. ………3分(II )由题意知:2122-==n n n na n c ,12n n C c c c =+++ ,123135212222-=++++ n n n C ,23411352122222+-=++++ n n C n ,两式相减可得:1231122221222222+-=++++- n n n C n , ……… 4分 即123-111111121()2222222+-=+++++- n n n C n ,-111121(1)2222+-=+--n n n C n ,2332+=-n n n C . ………7分 (III )21212121-+=++-n n n b n n,显然212122121-++>=+-n n n n , 即2n b >,122n n B b b b n =+++> ; ………9分 另一方面,21212222112212*********-++=-++=+-+-+--+n n n n n n n n , 即122213=+-b ,222235=+-b ,…,11222121⎛⎫=+- ⎪-+⎝⎭n b n n ,2222222(2)(2)(2)22221335212121=+-++-+++-=+-<+-++ n B n n n n n , 即:222<<+n n B n . ………13分19.(本小题满分14分)解:(Ⅰ)由已知得2222262c a cb ab a b c ⎧+=⎪=⎨⎪=+⎩,解得21a b c =⎧⎪=⎨⎪=⎩所以椭圆C 的方程为22143x y +=. ……………5分(Ⅱ)由题意知12(2,0),(2,0)A A -, ……………6分 设00(,)P x y ,则100:(2)2A P y l y x x =++,得00(,(2))2yM m m x ++. 且由点P 在椭圆上,得22003(1)4x y =-. ……………8分 若以MP 为直径的圆过点2A ,则220A M A P ⋅=, ……………9分所以20000000(2,(2))(2,)(2)(2)(2)022y y m m x y m x m x x -+⋅-=--++=++2000000033(4)(2)(2)44(2)(2)(2)(2)(2)(2)022x x x m x m m x m x x --+--++=---+=++ ……………12分因为点P 是椭圆C 上不同于12,A A 的点,所以02x ≠±. 所以上式可化为3(2)(2)04m m --+=,解得14m =. ……………14分 20.(本小题满分14分)解法一:(I )2()2f x x x c '=-+,当[0,)x ∈+∞时2()20f x x x c '=-+≥所以2min (2)0x x c -+≥,而22x x c -+在1x =处取得最小值,所以120c -+≥,1c ≥;……………4分 (II )因为x α=为()f x 的极值点,所以21()20k f c ααα'==-+=,所以22c αα=-+, 又因为()y f x m =-有不同的零点,αβ,所以()()f f αβ=,即32321133c d c d ααααββ-++=-++,整理得:21(23)()03αβαβ+--=, 所以23αβ+=.……………9分 (III )满足条件的实数c 存在,由2()2f x x x c '=-+, 知过00(,())A x f x 点与曲线相切的直线1l 为:000()()+()y f x x -x f x '=,且21002k x x c =-+将000()()+()y f x x -x f x '=与()y f x =联立即得B 点得横坐标,所以000()()+(())f x x -x f x f x '=即:3223200000011(2)()+33x x cx d x x c x -x x x cx d -++=-+-++ 整理得:2001(23)()03x x x x +--=由已知0x x ≠,所以0230x x +-=所以032x x =-,即B 点的横坐标为032x - 所以过点B 的曲线的切线斜率为22()2k f x x x c '==-+200(32)2(32)x x c =---+2004(2)33x x c c =-++-1433k c =+-因此当且仅当 330c -=时,1k 、1k 成比例, 这时1c =即存在实数1c =,使12k k 为定值.……………14分解法二:(I )2()2f x x x c '=-+,当[0,)x ∈+∞时2()20f x x x c '=-+≥, 所以2(2)c x x ≥--对任意的[0,)x ∈+∞恒成立,故2max [(2)]c x x ≥--, 即2max [(2)]1x x --=,故c 的取值范围是[1,)+∞;…………… 4分(II )因为x α=为()f x 的极值点,且()y f x m =-有两个零点,()αβαβ≠, 所以()0f x m -=的三个实数根分别为,,ααβ, 由根与系数的关系得12313ααβαβ-++=+=-=;……………9分 (III )满足条件的实数c 存在,因为2()2f x x x c '=-+,所以过00(,())A x f x 点且与曲线C 相切的直线1l 为:000()()+()y f x x -x f x '=,其中21002k x x c =-+.设1l 与C 交于另一点11(,)B x y ,则001,,x x x 必为方程'000()()()+()f x f x x -x f x =的三个实数根由'000()()()+()f x f x x -x f x =得32200001(2)()+()3x x cx d x x c x -x f x -++=-+ 因为上述方程的右边不含三次项和二次项,所以0011313x x x -++=-= ,所以1032x x =- 所以'22111()2k f x x x c ==-+200(32)2(32)x x c =---+2004(2)33x x c c =-++-1433k c =+-.因此当且仅当 330c -=时,1k 、1k 成比例, 这时1c =,即存在实数1c =,使12k k 为定值. ……………14分。
绝密★启用前天津市部分区2016~2017学年度第一学期期末考试高三数学(文科)试卷温馨提示:使用答题卡的区,学生作答时请将答案写在答题卡上;不使用答题卡的区,学生作答时请将答案写在试卷上.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第I 卷1至2页,第Ⅱ卷3至8页.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘帖考试用条形码.答卷时,考生务必将答案涂写在答题卡上.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题,共40分)注意事项:1.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共8小题,每小题5分,共40分. 参考公式:如果事件,A B 互斥,那么()()()P A B P A P B =+U . 如果事件,A B 相互独立,那么()()()P A B P A P B =I . 锥体的体积公式13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高. 柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合2{0,1,4},{|,}A B y y x x A ===∈,则A B =U(A ){}0,1,16 (B ){}0,1 (C ){}1,16(D ){}0,1,4,16(2)从数字1,2,3,4,5,6中任取两个数,则取出的两个数的乘积为奇数的概率为(A )115(B )215(C )15(D )415(3)已知某几何体的三视图如图,则该几何体的体积是(A )48 (B )36 (C )24(D )12(4)设x ∈R ,则“2x >”是“11x ->”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件(5)已知3log 0.5a =,0.3log 0.2b =,0.30.5c =,则(A )a c b >> (B )b c a >> (C )b a c >>(D )c a b >>(6)已知双曲线22221x y a b-=(0,0a b >>)的焦点到渐近线的距离为2,且双曲线的一条渐近线与直线230x y -+=平行,则双曲线的方程为(A )221164x y -=(B )22184x y -= (C )2214-=x y(D )2214y x -= (7)已知向量(cos 40,sin 40)=︒︒a ,(sin 20,cos 20)=︒︒b ,3λ=+u a b (其中λ∈R ),则u 的最小值为第3题图(A )62 (B )34(C )32(D )3(8)已知函数21||,1,()(1), 1.x x f x x x -≤⎧=⎨->⎩若方程(1)0f x m --=有三个不相等的实数根,则实数m 的取值范围为(A )(,1)-∞ (B )3(,)4+∞(C )(0,2) (D )(0,1)第Ⅱ卷(非选择题,共110分)注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上. 2.本卷共12小题,共110分.二、填空题:本大题共有6小题,每小题5分,共30分.(9)已知i 是虚数单位,若(2i)24i z -=+,则复数z =___________. (10)阅读右边的程序框图,运行相应的程序, 则输出v 的值为___________. (11)已知2()(2)e xf x x x =-(其中e 是自 然对数的底数),()f x '为()f x 的导 函数,则(0)f '的值为___________. (12)在等比数列{n a }中,已知114a =,3544(1)a a a =-, 则{n a }的前10项和10S =___________. (13)如图,ABC ∆为边长为1的正三角形,D 为AB 的中点,E 在BC 上,且:1:2BE EC =,连结DE并延长至F ,使EF DE =,连结FC .则FC AC ⋅uu u r uuu r的值为________.第13题(14)已知()sin 3cos f x x x ωω=+(0,x ω>∈R ),若函数()f x 在区间(0,4)π内恰有5个零点,则ω的取值范围是___________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分)在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,且满足2cos cos -=a b cB C. (I )求角C 的值;(II )若7c =,ABC ∆的面积为103,求a b +的值. (16)(本小题满分l3分)某石材加工厂可以把甲、乙两种类型的大理石板加工成,,A B C 三种规格的小石板,每种类型的大理石板可同时加工成三种规格小石板的块数如下表所示:板材类型甲型石板(块) 乙型石板(块)某客户至少需要订购,A B 两种规格的石板分别为20块和22块,至多需要C 规格的石板100块.分别用,x y 表示甲、乙两种类型的石板数.(I )用,x y 列出满足客户要求的数学关系式,并画出相应的平面区域;(II )加工厂为满足客户的需求,需要加工甲、乙两种类型的石板各多少块,才能使所用石板总数最少?(17)(本小题满分13分)如图,在四棱锥P ABCD -中,PCD ∆为等边三角形,底面ABCD 为直角梯形,AB AD ⊥,//AD BC ,22AD BC ==,3AB =,点E 、F 分别为AD 、CD的中点.(I )求证:直线//BE 平面PCD ;(II )求证:平面PAF ⊥平面PCD ; (III)若PB =PB 与平面PAF 所成的角.(18)(本小题满分13分)已知数列{}n a 的前n 项和2=n A n (n *∈N ),11n n n n na ab a a ++=+(n *∈N ),数列{}n b 的前n 项和为n B .(I )求数列{}n a 的通项公式; (II )设2nn n a c =(n *∈N ),求数列{}n c 的前n 项和n C ; (III )证明: 222<<+n n B n (n *∈N ). (19)(本小题满分14分)已知椭圆2222: 1 (0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,上顶点为B ,若12BF F ∆的周长为6,且点1F 到直线2BF 的距离为b .(Ⅰ)求椭圆C 的方程;(Ⅱ)设12,A A 是椭圆C 长轴的两个端点,点P 是椭圆C 上不同于12,A A 的任意一点,直线1A P 交直线14x =于点M ,求证:以MP 为直径的圆过点2A .(20)(本小题满分14分) 已知函数325()2f x x x ax b =+++(,a b ∈R ),函数()f x 的图象记为曲线C . (I )若函数()f x 在1x =-时取得极大值2,求,a b 的值; (II )若函数25()2()(21)32F x f x x a x b =----存在三个不同的零点,求实数b 的取值范围;(III )设动点00(,())A x f x 处的切线1l 与曲线C 交于另一点B ,点B 处的切线为2l ,两切线的斜率分别为12,k k ,当a 为何值时存在常数λ使得21k k λ=?并求出λ的值.天津市部分区2016~2017学年度第一学期期末考试 高三数学(文科)参考答案一、选择题:1-4 DCDA 5-8 BACD二、填空题:9. 10. 11. 12. 13. 14.三、解答题:15.(本小题满分13分)解:(Ⅰ)已知可化为,…………………………3分整理得,,又…………………………6分(Ⅱ)由得,由(Ⅰ),所以由余弦定理得:,,即,…………………………9分所以 . …………………………13分16.(本小题满分13分)解:(I)由题意得………………………………3分二元一次不等式组所表示的区域为图中的阴影部分.………………………………6分(Ⅱ)解:设需要加工甲、乙两种类型的板材数为,则目标函数,作出直线,平移直线,如图,易知直线经过点A时,取到最小值,解方程组得点的坐标为,………………………………10分所以最少需要加工甲、乙两种类型的板材分别8块和6块.答:加工厂为满足客户需求,最少需要加工甲、乙两种类型的板材分别8块和6块.………………………………13分17.(本小题满分13分)解:(Ⅰ),且为的中点, .又因为,则四边形是平行四边形,∴,平面,平面,直线平面. ……………4分(II)∵在等边中,是的中点,;又,;又,,又,,又,平面,故平面平面;……8分(III)设与交于点,由(II)知平面,,故平面,连结,为直线与平面所成的角.在中,,,. ………………………13分18.(本小题满分13分)解:(I)当时,,,两式相减:;当时,,也适合,故数列的通项公式为;………………………………….3分(II),,,,两式相减可得:,…………………………………4分即,,. …………………7分(III),显然,即,;………………………………. 9分另一方面,,即,,…,,,即: . ……………………….. 13分19.(本小题满分14分)解:(Ⅰ)由已知得,解得.所以椭圆的方程为. ……………5分(Ⅱ)由题意知,……………6分设,则,得.且由点在椭圆上,得. ……………9分所以…………13分以为直径的圆过点. ……………14分20.(本小题满分14分)解:函数的导函数为.(I)当时极大值2,则,解得;……4分(II)由题意可得有三个不同的零点,即方程有三个实数解.令,则,由可得或,且是其单调递增区间,是其单调递减区间,.因此,实数的取值范围是. 9分(III)由(I)知点处的切线的方程为,与联立得,即,所以点的横坐标是,可得,即,等价于,解得 .综上可得,当时存在常数使得 . ……………14分天津市部分区2016~2017学年度第一学期期末考试高三数学(文科)参考答案一、选择题:1-4 DCDA 5-8 BACD二、填空题:9. 2i 10. 6 11.2- 12. 10234 13. 112-1712ω<≤三、解答题:15.(本小题满分13分)解:(Ⅰ)已知0cos cos )2(=--B c C b a 可化为0cos sin cos )sin sin 2(=--B C C B A , …………………………3分整理得B C C B C A cos sin cos sin cos sin 2+=A C B sin )sin(=+=,,0sin π,0≠∴<<A A Θ21cos =∴C , 又.3ππ,0=∴<<C C Θ …………………………6分(Ⅱ)由11πsin sin 223ABC S ab C ab ∆===40=ab ,由(Ⅰ)21cos =C , 所以由余弦定理得:222222cos ()3()340c a b ab C a b ab a b =+-=+-=+-⨯,249()340a b ∴=+-⨯,即,2()169a b += …………………………9分所以13a b +=. …………………………13分 16.(本小题满分13分)解:(I )由题意得0,02200,2220,451000,.y x y x y x y x +-⎧⎪+-⎪⎨+-⎪⎪⎩≥≥≤≥≥………………………………3分二元一次不等式组所表示的区域为图中的阴影部分.………………………………6分(Ⅱ)解:设需要加工甲、乙两种类型的板材数为z ,则目标函数z x y =+,作出直线0:0l x y +=,平移直线0l ,如图, 易知直线经过点A 时,z 取到最小值,解方程组220222x y x y +=⎧⎨+=⎩得点A 的坐标为(8,6)A ,………………………………10分所以最少需要加工甲、乙两种类型的板材分别8块和6块.答:加工厂为满足客户需求,最少需要加工甲、乙两种类型的板材分别8块和6块.………………………………13分17.(本小题满分13分)解:(Ⅰ)Q 22AD BC ==,且E 为AD 的中点,BC ED ∴=.又因为//AD BC ,则四边形BCDE 是平行四边形,∴ //BE CD ,CD ⊂Q 平面PCD ,BE ⊄平面PCD ,∴直线//BE 平面PCD . ……………4分(II )∵在等边PCD ∆中,F 是CD 的中点,CD PF ∴⊥; 又//,BC AD AB AD ⊥,AB BC ∴⊥; 又3,1AB BC ==,2AC ∴=,又2AD =,CD AF ∴⊥,又PF AF F =Q I ,CD ∴⊥平面PAF , 故平面PAF ⊥平面PCD ; ……8分(III )设AF 与BE 交于点G ,由(II )知CD ⊥平面PAF ,//BE CD ,故BG ⊥平面PAF ,连结PG ,BPG ∴∠为直线BP 与平面PAF 所成的角.在Rt PBG ∆中,32BG =,3sin BG BPG PB ∠=== 3BPG π∴∠=. ………………………13分18.(本小题满分13分)解:(I )当2n ≥时,2=n A n ,21(1)-=-n A n ,两式相减:121-=-=-n n n a A A n ;当1n =时,111==a A ,也适合21=-n a n ,故数列{}n a 的通项公式为21=-n a n ;………………………………….3分(II )2122-==n n n na n c ,12n n C c c c =+++L , 123135212222-=++++L n n n C ,23411352122222+-=++++L n n C n ,两式相减可得: 1231122221222222+-=++++-L n n n C n , ………………………………… 4分 即123-111111121()2222222+-=+++++-L n n n C n , -111121(1)2222+-=+--n n n C n ,2332+=-n n n C . ………………… 7分 (III )21212121-+=++-n n n b n n,显然212122121-++>=+-n n n n , 即2n b >,122n n B b b b n =+++>L ;………………………………. 9分 另一方面,21212222112212121212121-++=-++=+-+-+--+n n n n n n n n , 即122213=+-b ,222235=+-b ,…,11222121⎛⎫=+- ⎪-+⎝⎭n b n n ,2222222(2)(2)(2)22221335212121=+-++-+++-=+-<+-++L n B n n n n n , 即:222<<+n n B n . ……………………….. 13分19.(本小题满分14分)解:(Ⅰ)由已知得2222262c a cb ab a b c ⎧+=⎪=⎨⎪=+⎩,解得21a b c =⎧⎪=⎨⎪=⎩所以椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ)由题意知12(2,0),(2,0)A A -, ……………6分设00(,)P x y ,则100:(2)2A P y l y x x =++,得0016(14,))2y M x +. 且由点P 在椭圆上,得22003(1)4x y =-. ……………9分 所以20022000001616(12,)(2,)12(2)22y y A M A P x y x x x ⋅=⋅-=-+++u u u u u r u u u u r 2000000012(4)12(2)(2)12(2)12(2)022x x x x x x x --+=-+=--=++ …………13分 以MP 为直径的圆过点2A . ……………14分20.(本小题满分14分) 解:函数325()2f x x x ax b =+++的导函数为2()35f x x x a '=++. (I )当1x =-时极大值2,则(1)0,(1)2f f '-=-=,解得52,2a b ==;…… 4分 (II )由题意可得25()2()(21)32F x f x x a x b =----有三个不同的零点,即方程325202x x x b ++-=有三个实数解. 令325()22g x x x x =++,则2()651(21)(31)g x x x x x '=++=++,由()0g x '=可得12x =-或13x =-,且11(,),(,)23-∞--+∞是其单调递增区间,11(,)23--是其单调递减区间,1117(),()28354g g -=--=-.因此,实数b 的取值范围是71(,)548--. 9分 (III )由(I )知点00(,())A x f x 处的切线1l 的方程为000()()()y f x f x x x '-=-,与()y f x =联立得000()()()()f x f x f x x x '-=-,即2005()(2)02x x x x -++=,所以点B的横坐标是05(2)2B x x =-+,可得221002005535,3(2)5(2)22k x x a k x x a =++=+-++,即22002512204k x x a =+++,21k k λ=等价于20025(35)(4)(1)4x x a λλ+-=--,解得254,12a λ==. 综上可得,当2512a =时存在常数4λ=使得21k k λ=. ……………14分。
2016—2017学年天津市和平区高三(上)期末数学试卷(文科)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|x2﹣x﹣6<0},B={x|﹣3≤x≤1},则A∪B等于()A.[﹣2,1) B.(﹣2,1] C.[﹣3,3) D.(﹣3,3]2.一个袋子里装有红、黄、绿三种颜色的球各2个,这6个球除颜色外完全相同,从中摸出2个球,则这2个球中至少有1个是红球的概率是()A.B. C.D.3.如图的三视图所对应的立体图形可以是( )A.B.C.D.4.若双曲线的左焦点在抛物线y2=2px的准线上,则p的值为( )A.2 B.3 C.4 D.5.“x<1”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知f(x)和g(x)分别是定义在R上的奇函数和偶函数,且f (x)﹣g(x)=2x3+x2+3,则f(2)+g(2)等于()A.﹣9 B.﹣7 C.7 D.97.如图,在平行四边形ABCD中,,AB=2,AD=1,若M、N分别是边BC、CD上的点,且满足,其中λ∈[0,1],则的取值范围是()A.[0,3]B.[1,4]C.[2,5]D.[1,7]8.设函数,则函数f(x)的最大值和最小值分别为()A.13和﹣11 B.8和﹣6 C.1和﹣3 D.3和﹣1二、填空题已知复数z=1﹣2i,那么复数的虚部是.10.已知函数,f’(x)为f(x)的导函数,则f'(2)的值为.11.阅读如图的程序框图,运行相应的程序,则输出T的值为.12.直线y=kx+3(k≠0)与圆(x﹣3)2+(y﹣2)2=4相交于A、B 两点,若,则k 的值为.13.已知a>b>0,那么a2+的最小值为.14.已知函数若关于x的方程恰有三个不相等的实数解,则m的取值范围是.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)在△ABC中,若a=2,b+c=7,.(1)求b的值;(2)求△ABC的面积.16.(13分)某单位生产A、B两种产品,需要资金和场地,生产每吨A种产品和生产每吨B种产品所需资金和场地的数据如表所示:资源产品资金(万元)场地(平方米)A2100。
天津市五区县2017届高三上学期期末考试(理)数学试卷第Ⅰ卷(选择题,共40分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{1,4},{|log ,}A B y y x x A ===∈,则A B =U ( )A .{}1,4B .{}0,1,4C .{}0,2D .{}0,1,2,42.设变量x ,y 满足约束条件240,330,10.x y x y x y +-⎧⎪+-⎨⎪--⎩≤≥≤则目标函数2z x y =-的最小值为( )A .165-B .3-C .0D .13.阅读程序框图,运行相应的程序,则输出v 的值为( )A .4B .5C .6D .74.已知ABC △是钝角三角形,若1,2AC BC ==,且ABC △,则AB =( ) ABC. D .3 5.设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为单调递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知双曲线22221x y a b-=(0,0a b >>)的焦点到渐近线的距离为2,且双曲线的一条渐近线与直线230x y -+=平行,则双曲线的方程为( )A .221164x y -=B .22194x y -=C .22149x y -=D .22184x y -= 7.在ABC △中,D 在AB 上,:1:2AD DB=,E 为AC 中点,CD 、BE 相交于点P ,连结AP .设AP x AB y AC =+u u u r u u u r u u u r ,x y ∈R (),则x ,y 的值分别为( )A .11,23 B .12,33 C .12,55 D .11,368.已知2()(3)e x f x x =-(其中x ∈R ,e 是自然对数的底数),当10t >时,关于x 的方程12[()][()]0f x t f x t --=恰好有5个实数根,则实数2t 的取值范围是( )A .(2e,0)-B .(]2e,0-C .32e,6e -⎡⎤-⎣⎦D .(32e,6e -⎤-⎦ 第Ⅱ卷(非选择题,共110分)二、填空题:本大题共有6小题,每小题5分,共30分.9.已知a ,b ∈R ,i 是虚数单位,若(12i)(2i)2i a b -+=-,则a b +的值为__________.10.在261(4)x x-的展开式中,3x -的系数为__________.(用数字作答)11.某空间几何体的三视图如图所示,则该几何体的表面积是__________.12.在平面直角坐标系xOy 中,由曲线1y x=(0x >)与直线y x =和3y =所围成的封闭图形的面积为__________. 13.在直角坐标系xOy 中,已知曲线1:C 11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),曲线2:C cos sin x a y θθ=⎧⎨=⎩(θ为参数,1a >),若1C 恰好经过2C 的焦点,则a 的值为__________.14.已知24,1,()e ,1.x x x x f x x ⎧-<⎪=⎨≥⎪⎩若方程()f x kx =有且仅有一个实数解,则实数k 的取值范围为__________. 242 44正视图 侧视图 俯视图三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知函数()2cos (cos 3sin )f x x x x a =++(a ∈R ).(Ⅰ)求()f x 的最小正周期;(Ⅱ)当π[0,]2x ∈时,()f x 的最小值为2,求a 的值.16.(本小题满分13分)某区选派7名队员代表本区参加全市青少年围棋锦标赛,其中3名来自A 学校且1名为女棋手,另外4名来自B 学校且2名为女棋手.从这7名队员中随机选派4名队员参加第一阶段的比赛.(I )求在参加第一阶段比赛的队员中,恰有1名女棋手的概率;(II )设X 为选出的4名队员中A 、B 两校人数之差的绝对值,求随机变量X 的分布列和数学期望.17.(本小题满分13分)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,AB AD ⊥,//AD BC ,122AD BC ==,E 在BC 上,且112BE AB ==,侧棱PA ⊥平面ABCD . (Ⅰ)求证:平面PDE ⊥平面PAC ;(Ⅱ)若PAB △为等腰直角三角形.(i )求直线PE 与平面PAC 所成角的正弦值;(ii )求二面角A PC D --的余弦值.18.(本小题满分13分)已知数列{}n a 的前n 项和2n A n =(n *∈N ),11n n n n n a a b a a ++=+(n *∈N ),数列{}n b 的前n 项和为n B . (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2n n n a c =(n *∈N ),求数列{}n c 的前n 项和n C ; (Ⅲ)证明:222n n B n <<+(n *∈N ).19.(本小题满分14分)PABE C D已知椭圆2222: 1 (0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,上顶点为B ,若12BF F △的周长为6,且点1F 到直线00(,())A x f x 的距离为1l .(Ⅰ)求椭圆C 的方程;(Ⅱ)设12,A A 是椭圆C 长轴的两个端点,点P 是椭圆C 上不同于12,A A 的任意一点,直线1A P 交直线x m =于点M ,若以MP 为直径的圆过点2A ,求实数m 的值.20.(本小题满分14分) 已知函数321()3f x x x cx d =-++(,c d ∈R ),函数()f x 的图象记为曲线C .(Ⅰ)若函数()f x 在[0,)+∞上单调递增,求c 的取值范围; (Ⅱ)若函数()y f x m =-有两个零点,()αβαβ≠,且x α=为()f x 的极值点,求(,e)-∞的值; (Ⅲ)设曲线C 在动点00(,())A x f x 处的切线1l 与C 交于另一点B ,在点B 处的切线为2l ,两切线的斜率分别为12,k k ,是否存在实数c ,使得12k k 为定值?若存在,求出c 的值;若不存在,说明理由.。
天津市部分区2016~2017学年度第一学期期末考试高三数学(文科)试卷第Ⅰ卷(选择题,共40分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合2{0,1,4},{|,}A B y y x x A ===∈,则A B =U(A ){}0,1,16 (B ){}0,1 (C ){}1,16(D ){}0,1,4,16【答案】D【解题思路】本题主要考查集合的运算。
易错选B.(2)从数字1,2,3,4,5,6中任取两个数,则取出的两个数的乘积为奇数的概率为(A )115(B )215(C )15(D )415【答案】C【解题思路】本题主要考查古典概型。
由题意可得,共有6×5=30种取法,其中若取出的两个数成绩为奇数,则所取的两个数肯定都为奇数,共有3×2=6种取法。
故答案选C 。
(3)已知某几何体的三视图如图,则该几何体的体积是(A )48 (B )36 (C )24(D )12 【答案】D【解题思路】本题主要考查空间几何体。
有三视图可得,该几何体是以底面长宽为4,3的矩形,高是3的四棱锥。
故答案易选D 。
第3题图(4)设x ∈R ,则“2x >”是“11x ->”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件 【答案】A【解题思路】本题主要考查充分、必要条件。
充分性:当X>2时,X -1>1,故X>2是可以推出|X -1|>1的。
必要性:当|X -1|>1时,则X>2或X<0,故推不出。
即答案易选A.(5)已知3log 0.5a =,0.3log 0.2b =,0.30.5c =,则(A )a c b >> (B )b c a >> (C )b a c >>(D )c a b >>【答案】B【解题思路】本题主要考查指数函数与对数函数。
数形结合。
画出函数图像易选B 。
(6)已知双曲线22221x y a b-=(0,0a b >>)的焦点到渐近线的距离为2,且双曲线的一条渐近线与直线230x y -+=平行,则双曲线的方程为(A )221164x y -=(B )22184x y -= (C )2214-=x y(D )2214y x -=【答案】A【解题思路】本题为解析几何范畴。
直线与圆锥曲线。
主要点在点到直线的距离公式、双曲线渐近线方程,两等式联立即可求出a 、b 。
随之双曲线方程就显然。
本题易错选B 。
(7)已知向量(cos40,sin 40)=︒︒a ,(sin 20,cos 20)=︒︒b ,λ=+u b(其中λ∈R ),则u 的最小值为(A )2(B )34(C )2(D 【答案】C【解题思路】本题主要考查平面向量的应用。
首先先用坐标来表示向量,因为题中所求的是向量的模,故进行下一步向量的平方。
然后进行化简,最终化成关于λ的一元二次方程,随后化成顶点式。
易选C 。
(8)已知函数21||,1,()(1), 1.x x f x x x -≤⎧=⎨->⎩若方程(1)0f x m --=有三个不相等的实数根,则实数m 的取值范围为 (A )(,1)-∞ (B )3(,)4+∞(C )(0,2)(D )(0,1)【答案】D【解题思路】本题主要考查函数的综合。
数形结合。
分段函数问题,谨记绝对值问题。
三个不相等实数根可以转换成交点问题即可。
易选D.第Ⅱ卷(非选择题,共110分)二、填空题:本大题共有6小题,每小题5分,共30分.(9)已知i 是虚数单位,若(2i)24i z -=+,则复数z =___________. 【答案】2i【解题思路】本题主要考查复数的四则运算。
谨记‘一一对应’法则。
(10)阅读右边的程序框图,运行相应的程序, 则输出v 的值为___________. 【答案】6【解题思路】本题主要考查算法的含义、程序框图。
循环语句,经历三次循环可得答案。
(11)已知2()(2)e xf x x x =-(其中e 是自 然对数的底数),()f x '为()f x 的导 函数,则(0)f '的值为___________.【答案】-2【解题思路】本题主要考查导数的计算。
乘法的求导公式,随后代入即可。
(12)在等比数列{n a }中,已知114a =,3544(1)a a a =-, 则{n a }的前10项和10S =___________. 【答案】41023 【解题思路】本题主要考查等比数列及数列的求和。
利用等比中项可求出a4,再根据a 1可求出公比,然后再利用等比数列求和公式即可。
(13)如图,ABC ∆为边长为1的正三角形,D 为AB 的中点,E 在BC 上,且:1:2BE EC =,连结DE并延长至F ,使EF DE =,连结FC .则⋅的值为________.【答案】—121【解题思路】本题主要考查平面向量的应用。
(14)已知()sin f x x x ωω=(0,x ω>∈R ),若函数()f x 在区间(0,4)π内恰有5个零点,则ω的取值范围是___________. 【答案】121767≤<ω 【解题思路】本题主要考查三角函数。
根据周期公式,随后进行化简以及三角函数常识可以得出。
三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.第13题(15)(本小题满分13分)在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,且满足2cos cos -=a b cB C. (I )求角C 的值;(II )若7c =,ABC ∆的面积为a b +的值. 【答案】解:(Ⅰ)已知0cos cos )2(=--B c C b a 可化为0cos sin cos )sin sin 2(=--B C C B A ,整理得B C C B C A cos sin cos sin cos sin 2+=A C B sin )sin(=+=,,0sin π,0≠∴<<A A 21cos =∴C , 又.3ππ,0=∴<<C C(Ⅱ)由11πsin sin 223ABC S ab C ab ∆===40=ab ,由(Ⅰ)21cos =C ,所以由余弦定理得: 222222cos ()3()340c a b ab C a b ab a b =+-=+-=+-⨯, 249()340a b ∴=+-⨯,即,2()169a b +=所以13a b +=. (16)(本小题满分l3分)某石材加工厂可以把甲、乙两种类型的大理石板加工成,,A B C 三种规格的小石板,每种类型的大理石板可同时加工成三种规格小石板的块数如下表所示:某客户至少需要订购,A B 两种规格的石板分别为20块和22块,至多需要C 规格的石板100块.分别用,x y 表示甲、乙两种类型的石板数.(I )用,x y 列出满足客户要求的数学关系式,并画出相应的平面区域;(II )加工厂为满足客户的需求,需要加工甲、乙两种类型的石板各多少块,才能使所用石板总数最少?【答案】解:(I )由题意得0,02200,2220,451000,.y x y x y x y x +-⎧⎪+-⎪⎨+-⎪⎪⎩≥≥≤≥≥二元一次不等式组所表示的区域为图中的阴影部分.(Ⅱ)解:设需要加工甲、乙两种类型的板材数为z ,则目标函数z x y =+,作出直线0:0l x y +=,平移直线0l ,如图, 易知直线经过点A 时,z 取到最小值, 解方程组220222x y x y +=⎧⎨+=⎩得点A 的坐标为(8,6)A ,所以最少需要加工甲、乙两种类型的板材分别8块和6块.答:加工厂为满足客户需求,最少需要加工甲、乙两种类型的板材分别8块和6块. (17)(本小题满分13分)如图,在四棱锥P ABCD -中,PCD ∆为等边三角形,底面ABCD 为直角梯形,AB AD ⊥,//AD BC ,22AD BC ==,AB =E 、F 分别为AD 、CD的中点.(I )求证:直线//BE 平面PCD ; (II )求证:平面PAF ⊥平面PCD ;(III)若PB =PB 与平面PAF 所成的角.【答案】解:(Ⅰ)22AD BC ==,且E 为的中点,BC ED ∴=.又因为,则四边形BCDE 是平行四边形,∴//BE CD ,CD ⊂ 平面PCD ,BE ⊄平面PCD ,直线//BE 平面PCD .(II )∵在等边PCD ∆中,F 是CD 的中点,CD PF ∴⊥; 又//,BC AD AB AD ⊥,AB BC ∴⊥;又1AB BC =,2AC ∴=,又2AD =,CD AF ∴⊥,又PF AF F = ,CD ∴⊥平面PAF ,故平面PAF ⊥平面PCD ; (III )设AF 与BE 交于点G ,由(II )知CD ⊥平面PAF ,//BE CD ,故BG ⊥平面PAF ,连结PG ,BPG ∴∠为直线BP 与平面PAF 所成的角.在Rt PBG ∆中,32BG =,3sin BG BPG PB ∠===3BPG π∴∠=. 【解题思路】(18)(本小题满分13分)已知数列{}n a 的前n 项和2=n A n (n *∈N ),11n n n n na ab a a ++=+(n *∈N ),数列{}n b 的前n 项和为n B .(I )求数列{}n a 的通项公式; (II )设2n n na c =(n *∈N ),求数列{}n c 的前n 项和n C ; AD //AD BC∴(III )证明:222<<+n n B n (n *∈N ).【答案】解:(I )当2n ≥时,2=n A n ,21(1)-=-n A n , 两式相减:121-=-=-n n n a A A n ;当1n =时,111==a A ,也适合21=-n a n , 故数列{}n a 的通项公式为21=-n a n ; (II )2122-==n n n n a n c ,12n n C c c c =+++ , 123135212222-=++++ n n n C ,23411352122222+-=++++ n n C n ,两式相减可得: 1231122221222222+-=++++- n n n C n , 即123-111111121()2222222+-=+++++- n n n C n , -111121(1)2222+-=+--n n n C n ,2332+=-n n n C .(III )21212121-+=++-n n n b n n ,显然212122121-++>=+-n n n n , 即2n b >,122n n B b b b n =+++> ; 另一方面,21212222112212*********-++=-++=+-+-+--+n n n n n n n n , 即122213=+-b ,222235=+-b ,…,11222121⎛⎫=+- ⎪-+⎝⎭n b n n ,2222222(2)(2)(2)22221335212121=+-++-+++-=+-<+-++ n B n n n n n , 即:222<<+n n B n .【解题思路】本题主要考察数列综合。