认识图形的平移
- 格式:pptx
- 大小:3.35 MB
- 文档页数:12
几何变换的特点认识平移旋转和对称的性质几何变换的特点:认识平移、旋转和对称的性质几何变换是数学中对图形进行变换、移动或者改变形状的操作。
它是研究几何性质和图像的重要方法之一。
本文将重点讨论几何变换中的平移、旋转和对称三种基本变换,并阐述它们的特点和性质。
一、平移平移是指将图形在平面上沿着某个方向移动一定的距离,保持图形内部各点之间的相对位置不变。
平移的特点有:1. 平移是保形变换,即图形的形状不发生改变,只是位置发生了移动。
例如,一个正方形经过平移后仍然是一个正方形。
2. 平移是等距变换,即原图形和移动后的图形之间的距离保持不变。
例如,一个直角三角形经过平移后,各边之间的夹角大小不变。
3. 平移满足能够叠加的性质,即若干次平移变换的次序可以改变,但最终的结果是相同的。
例如,图形先向右平移再向上平移,与先向上平移再向右平移的结果是相同的。
二、旋转旋转是指将图形围绕某个点进行旋转,使得图形的各点相对于旋转中心点保持一定的角度不变。
旋转的特点有:1. 旋转同样是保形变换,即图形的形状不发生改变,只是位置和旋转方向发生变化。
例如,一个正三角形经过旋转后仍然是一个正三角形。
2. 旋转是等角变换,即旋转前后的角度大小保持不变。
例如,一个矩形经过旋转后,各个顶点之间的角度大小仍然相等。
3. 旋转也满足能够叠加的性质,即若干次旋转变换的次序可以改变,但最终的结果是相同的。
例如,图形先顺时针旋转90°再逆时针旋转90°,与先逆时针旋转90°再顺时针旋转90°的结果是相同的。
在旋转中,旋转中心点的选择对于结果有重要影响。
三、对称对称是指图形围绕某条直线或者点对称,使得图形在这条直线或者点上的两侧是完全相同的。
对称的特点有:1. 对称是保形变换,即图形的形状不发生改变,只是位置发生了变化。
例如,一个圆经过对称后仍然是一个圆。
2. 对称是等距变换,即对称前后图形内部各点之间的距离保持不变。
认识图形的平移-冀教版五年级数学下册教案
一、教学目标
1.了解图形的平移变换;
2.能够进行简单的图形平移;
3.能够通过观察图形的位置变化,判断是否进行了平移变换;
4.了解图形变换对图形位置及大小的影响;
5.培养学生的观察力、判断力和动手能力。
二、教学内容
1.图形的平移;
2.通过观察判断图形是否进行了平移变换;
3.图形变换对图形位置及大小的影响。
三、教学重点与难点
1.重点:图形的平移;
2.难点:图形变换对图形位置及大小的影响。
四、教学过程
1. 教师引入
教师将一张小猫的图形放在黑板上(小猫图形要求明显,便于学生观察)。
教师问:看一下这张图形,它有没有发生任何变化?
2. 观察判断
学生观察小猫图形,判断有没有变化。
如果有变化,请说出变化的原因。
3. 引入平移概念
•通过小猫图形的例子引入平移概念:如果在黑板上用手移动小猫,小猫的位置发生了变化,这种变化就是平移。
•教师将一张有明显特征的图形放在黑板上,告诉学生,要将这张图形移动,但不能用手。
这时,教师介绍图片上的直线,告诉学生,直线具有方向性和长度。
•教师让学生自行想办法将图形平移并找出平移时所用的。
平移的认识与平移变换在几何学中,平移是一种基本的几何变换,它是指将一个图形沿着直线方向保持大小和形状不变地移动。
平移变换在日常生活和数学研究中起着重要的作用。
本文将介绍平移的概念、性质以及平移变换的应用。
一、平移的概念与性质平移是指将物体沿着某一方向按照一定距离移动,而不改变其形状、大小和方向。
平移可以用一个向量来表示,这个向量称为平移向量。
在平面几何中,平移变换有以下几个性质:1. 平移变换前后图形的大小和形状保持不变;2. 平移变换前后图形的方向保持不变;3. 平移变换前后,图形上各点之间的距离保持不变;4. 平移变换是可逆的,即可以通过逆向平移变换将图形还原。
平移变换有着广泛的应用,包括数学、物理学、计算机图形学和工程等领域。
在数学中,平移变换是最基本的几何变换之一,它被广泛地运用在数学证明和问题求解中。
在计算机图形学中,平移变换是实现图像移动和动画效果的重要手段。
在工程领域中,平移变换被用于设计和模拟机械装置、移动机器人等。
二、平移变换的应用1. 图像处理平移变换在图像处理中被广泛应用。
通过对图像进行平移变换,可以实现图像的移动和定位。
例如,在数字摄影中,通过对图像进行平移变换,可以调整图像的位置和角度,使图像更加美观和合适。
此外,平移变换还可以用于图像的拼接、融合和修复等操作,提高图像处理的效果和质量。
2. 数学建模在数学建模中,平移变换是一种常用的手段。
通过平移变换,可以将数学问题转化为更简单和易解的形式。
例如,在平面几何中,通过对图形进行平移变换,可以简化图形的形状,便于研究和推导几何性质。
在数学模型中,通过平移变换可以改变坐标系的原点,使模型更加简洁和易于理解。
3. 机械设计与控制在机械设计和控制领域,平移变换被用于描述物体的运动和变换。
通过平移变换,可以确定机械装置的位置、速度和加速度等关键参数,便于设计和控制机器人和自动化装置的运动方式。
此外,平移变换还可以用于机器人视觉导航和路径规划,实现智能化和自主化的机器人系统。
2021—2022学年度第二学期冀教版五年级数学第三课认识图形的平移教案教学内容:教材第6、7页认识图形的平移教学目标:1.结合生活实例,使学生初步认识平移现象。
2.通过动手操作,使学生能在纸上画简单图形的平移。
3.培养学生观察和动手的能力4.培养学生的合作意识。
5.渗透生活中处处有数学的思想。
教学重点:初步认识平移现象。
教学难点:学会在方格纸上画出一个简单图形沿水平,竖直方向平移后的图形。
教学用具:挂图、箱子等。
教学过程:一.创设情境、引入新课。
1、移动课本和文具盒(创设感知情景)师:请同学们把课本移到自己的左边,把文具盒移到自己的右边,使自己面前的桌面空一块位置来。
2、推窗户(创设感知情景)师:教室里需要通风,请同学们把窗户推开。
师:如果教室很冷,我们得把窗户怎么样呢?生:推上师:对,请同学们把窗户推上。
在生活中我们会碰到很多像这样需要移动的工作。
3、移动纸盒(创设感知情景)师:同学们,这有一个大纸箱,现在要把它放到另一边,你们有什么办法?(学生操作,用不同的方法把纸箱放到中一边)师:刚才,同学们有的用推、有的用拖、有的用搬,用了很多方法,这些方法都能把箱子移到另一边去。
生活中像我们移动箱子这样的例子也是太多了。
4、出示生活场景挂图(创设感知情景)师:(出示:(1)建筑工地升降机图。
(2)观光缆车图,启发学生思考)它们是怎样移动的?它们移动的时候,什么变了?什么没有变?师:(在学生回答之后进行总结)像把课本和文具盒移动、窗子推开和关上、纸箱移到另一边、升降机升降、缆车开动等等现象。
这些物体都沿着直线方向移动,移动的过程只是位置变了,其他什么都没变,这样的现象就叫做“平移”。
这节课,我们就一起来学习有关“平移”的知识,好吗?(板书课题)设计意图:通过生活中简单的实际例子简单明了的切入主题,激发学生学习的兴趣。
二、合作探究、认识平移的特点:1、小组讨论(巩固对平移的初步认识)师:刚才我们观察了那么多的平移现象,现在请小组同学互相说一说,你们各自见过的平移现象。
《图形的平移》教案1教学目标:1.通过具体实例认识图形的平移;2.了解图形平移变换的概念;3.理解平移变换的性质;教学重、难点:重点:平移变换的概念和性质.难点:探求平移变换的性质.教学过程:一、创设情境,引入新知.教师以谈话的口吻询问学生:小时候是否滑过滑梯?学生的回答是肯定的,同时此问也必然会引发学生的好奇心去猜测教师提问的意图.此时,教师安排活动一:看看想想:请学生观察多媒体演示卡通小朋友保持一定的姿势沿一段直行的滑梯滑下的过程,并思考两个问题.1.在滑梯过程中,小朋友身体各部分运动的方向相同吗?2.小朋友各部分的运动距离怎样变化?学生通过观察运动过程并结合自身的体验经历,不难回答以上问题.紧接着教师继续利用多媒体演示;缆车在直轨上的运动过程;传送带上的箱子的运动过程等并提问:这些图形的运动过程与小朋友滑滑梯的运动过程,是否有共同点?若有是什么?二、师生互动,探索新知.1.概括形成平移变换的概念.教师在学生观察分析描述以上所演示的各运动过程的共同点的基础上锁定传送带上箱子的运动为例展开计论,以两个问题来引导学生探索:(1)为若传送带上的箱子的某个顶点(可在图中指定)向前移动50cm,则箱子的其他部位会向什么方向移动?移动了多少距离?(2)上的观察和讨论,你认为我们应从哪几方面来说明平移变换?在学生计论的基础上师生共同概括出平移变换的概念:(板书)由一个图形改变为另一个图形,在改变的过程中,原图形上所有的点都沿同一个方向运动,且运动相等的距离,这样的图形改变叫做图形的平移变换,简称平移.提问:由平移变换的意义,你认为描述一个平移变换需要几个条件?学生回答. 教师肯定:描述一个平移变换必须指出两个要素平移的方向和平移的距离. 2.探求平移变换的性质.教师仍锁定传送带上的箱子的运动,通过几个间题来引导学生继续探索.H(1)送带上的箱子在运动过程中,什么改变?什么仍不变?(2)如果把移动前后同一箱子的某同一面记作四边形ABCD 和四边形EFGH 那么它们的形状,大小是否相同.(3)(结合图形来说明)图中点A 经平移到了点E ,则点A 和点E 是一对对应点,你能在图中找出其他各对对应点吗?(4)请连结各对对应点得线段,这些线段之间有什么关系?你可从哪些方面来说明.请简述理由.通过学生的独立思考及相互之间的讨论,师生可共同总结平移变换的性质(板书) 平移变换不改变图形的形状、大小和方向;连结对应点的线段平行且相等.提问:平移变换不改变图形的形状、大小,这意味着平移前后两图形具有怎样的图形关系?3.例题分析.例1如图4-3所示,△ABC 沿射线XY 的方向平移一段距离,△DEF 为平移后的图形.找出图中三组平行且相等的线段和一组全等三角形.解:如图4-3所示,点A ,B ,C 的对应点分别为D ,E ,F ,因为经过平移,对应线段平行(或在同一条直线上)且相等,所以AB ∥DE ,BC ∥EF ,AC ∥DF ,且AB=DE ,BC=EF ,A C=DF .由于平移不改变图形的形状和大小,所以△ABC ≌△DEF .在平面内,一个图形平移后得到的图形与原图形的对应线段相等,对应角相等,对应点所连接的线段平行(或在同一直线上)且相等.三、课堂小结1、平移变换意义;2、理解和掌握平移变换的性质;《图形的平移》教案2 学习目标:1.简单平面图形平移后的图形的作法;2.确定一个图形平移的位置的条件.学习重难点:1.简单平面图形平移后的图形的作法;2.简单平面图形平移后的图形的作法.学习过程:第一环节复习回顾平移的基本性质,引入课题B'A'BA如图,将线段AB平移,得到线段A′B′,则图中的线段有怎样的位置关系?有哪些相等的线段?如果给出了线段AB,也给出了平移方向和平移距离,你能作出选段AB经平移后的对应选段A′B′吗?第二环节探索归纳平移的作法1.已知线段AB和平移距离及方向,求作AB的对应线段A′B′.BA2.已知线段AB和平移后点A的对应点A′,求作AB的对应线段A′B′.A'BA3.将2中的图形略微复杂化一些.已知平面图形以及该图形上的某一点经平移后的对应点,求作平移后的平面图形.例题1经过平移,△ABC的顶点A移到了点D,作出平移后的三角形.分析:设顶点B、C分别平移到了点E、F,根据“经过平移,对应点所连的线段平行且相等”,可知线段BE、CF与AD平行且相等.注意:作图时可用尺规进行作图,也可用三角板与直尺进行作图.解:如上图,过点B、C分别作线段BE、CF,使得它们与线段AD平行并且相等,连结DE、DF、EF,则△DEF就是△ABC平移后的图形.①还有什么其他方法,作出△DEF吗?②确定一个图形平移后的位置,除需知道原来图形的位置外,还需要什么条件?对于②,确定一个图形平移后的位置的全部条件为:(1)_____________________;(2)_____________________;(3)_____________________.这三个条件缺一不可.只有这三个条件都具备,我们才能准确地找到一个图形平移后的位置,进而作出它平移后的图形.[例2]如图,将字母A按箭头所指的方向平移3cm,作出平移后的图形.[师生共析]平移字母A的条件:字母A的位置,平移的方向——箭头所指,平移的距离——3cm,三个条件都具备,所以可以确定字母A平移后的位置.那如何作图呢?一般情况下,画图时,先确定点,然后就可以作出所要求的图形.因此本题可以在原图形上找几个能反映本图形的关键的点,根据“经过平移对应点所连的线段平行且相等”,确定出这几个关键点的对应点,然后按原来的方式连接,即可得到字母A平移后的图形.解:在字母A上,找出关键的5个点(如图所示),分别过这5个点按箭头所指的方向作5条长3cm的线段,将所作线段的另5个端点按原来的方式连接,即可得到字母A平移后的图形.[师]在这个例题的解题过程中,通过确定几个关键点平移后的位置,得到字母A平移后的图形,这是一种“以局部带整体”的平移作图方法,同学们要掌握.第三环节课时小结本节课我们通过作平面图形平移的图形,进一步理解了平移的性质,并且还知道要确定一个图形平移后的位置,需要有:①此图形原来的位置;②平移方向;③平移距离等三个条件.在作图时,要注意语言的表达.《图形的平移》教案3教学目标:1、知识与技能:掌握图形平移与坐标变化的关系,能利用点的平移规律将平面图形进行平移.2、过程与方法:经历点的坐标变化与图形变化之间关系的探索过程,感受并了解图形的平移变化与点的坐标变化之间的关系.3、情感态度价值观:培养学生主动探索,敢于实践的创新精神,让学生学会主动寻求解决问题的途径,从成功中体会研究数学问题的乐趣,从而增强学生学习数学的兴趣,树立学好数学的信心.教学重点、难点:教学重点:掌握图形平移与坐标变化的关系;教学难点:利用图形平移与坐标变化的关系解决实际问题.教学过程:(一)温故知新,复习引入展示雪人平移,来复习平移概念及性质.(1)什么叫平移?(2)平移之后得到的新图形与原图形有什么关系?设计说明:从学生已有的数学知识出发,回顾平移的相关知识,为新知识、新课题的学习奠定了基础,从而也很自然地过渡到新课题的学习中去.(二)合作交流,探究新知探究点的平移与坐标的变化1、如图,将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出这个点,并写出它的坐标,点A的坐标发生了什么变化?2、把点A向左平移2个单位长度呢?3、把点A 向上或向下平移2个单位长度,点A 的坐标发生了什么变化?_______________________________________________________________________. 填表:进一步的探究,请再找几个点试一试,对它们进行平移,观察它们的坐标的变化,问:你上面发现的规律还成立吗?在此基础上可以归纳出:点的左右平移点的横坐标变化,纵坐标不变.点的上下平移点的横坐标不变,纵坐标变化.4、归纳一般结论在前面对特殊情况探究的基础上,通过教师启发引导,由学生归纳出一般结论. 规律:在平面直角坐标系中,将点(x ,y )向右(或左)平移a 个单位长度,可以得到对应点(x +a ,y )(或(_____,_____));将点(x ,y )向上(或下)平移b 个单位长度,可以得到对应点(x ,y +b )(或(_______,_______)).简单地表示为:例4 如图4-10,点A 的坐标为(-3,4),点B 的坐标为(3,2),将线段AB 沿x 轴方向向左平移4个单位长度,得到线段A ′B ′,分别求点A ′与B ′的坐标,并画出A ′B ′.点(x ,y )( , )向右平移a 个单位长度点(x ,y )( , )向左平移a 个单位长度点(x ,y )( , )向上平移b个单位长度点(x ,y )( , )向下平移b个单位长度解:将线段AB沿x轴方向向左平移4个单位长度,得到线段A′B′,点A′,B′的坐标分别为A′(-3-4,4),B′(3-4,2),即A′(-7,4),B′(-1,2).作出A′(-7,4),B′(-1,2),连接A′B′(如图4-11).线段A′B′就是要求画的线段.(三)总结反思,提高升华情意发展学完本节课你有什么收获,谈谈自己的体会,最后师生共同总结归纳.设计说明:师生进行合作小结,体现了教学的民主性,学生通过自我评价,逐渐形成正确的价值观和科学的学习观,同时养成良好的反思习惯.通过总结,培养学生归纳、概括能力,有助于学生清理知识的脉络,使新旧知识形成体系,教师做为组织者与引导者.(四)布置作业作业题:必做题:课本85页第1题,86页第2题.选做题:课本86页第5题作业分为必做题与选做题,目的是为了兼顾不同层次学生的学习需要,同时也让学生能及时巩固本节课的知识与技能.《图形的平移》教案4教学目标:1、知识与技能:能利用点的平移规律将平面图形进行平移.2、过程与方法:感受并了解图形的平移变化与点的坐标变化之间的关系.3、情感态度价值观:培养学生主动探索,敢于实践的创新精神,让学生学会主动寻求解决问题的途径,从成功中体会研究数学问题的乐趣,从而增强学生学习数学的兴趣,树立学好数学的信心.教学重点、难点:教学重点:掌握图形平移与坐标变化的关系;教学难点:利用图形平移与坐标变化的关系解决实际问题.教学过程:1.如图(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?解:如图(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC向下平移5个单位长度得到.(1)如果将这个问题中的“横坐标都减去6”“纵坐标都减去5”相应的变为“横坐标都加3”“纵坐标都加2”,分别能得出什么结论?画出得到的图形.(2)如果将三角形ABC三个顶点的横坐标都减去6,同时纵坐标都减去5,能得到什么结论?画出得到的图形.归纳上面的作图与分析,你能得到什么结论?在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,得到的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a ,得到的新图形就是把原图形向上(或下)平移a 个单位长度.简单地表示为2.探究图形的平移与坐标的变化正方形ABCD 四个顶点的坐标分别是点A (–2,4),B (–2,3),C (–1,3),D (–1,4),将正方形ABCD 向下平移7个单位长度,再向右平移8个单位长度,两次平移后四个顶点相应变为点E ,F ,G ,H ,它们的坐标分别是什么?如果直接平移正方形ABCD ,使点A 移到点E ,它和我们前面得到的正方形位置相同吗? A DB C一般地,将一个图形依次沿两个坐标轴方向平移所得到的图形,可以通过将原来的图形作一次平移得到.例5:如图4-14,点A ,B ,C 的坐标分别为A (1,-1),B (3,1),C (2,3),将△ABC 平移后得到△A ′B ′C ′,已知点A 平移到点A ′(-3,1).(1)写出B ′,C ′两点的坐标;点(x +a ,y )图形向右平移a 个单位长度 点(x -a ,y )图形向左平移a 个单位长度 点(x ,y +b )图形向上平移a 个单位点(x ,y -b ) 图形向下平移a 个单位长度(2)画出△A′B′C′.分析:点A(1,-1)平移到点A′(-3,1)时,横坐标减小了4,纵坐标增加了2,所以B′,C′两点的横坐标比B,C两点的横坐标也应分别减小4,而纵坐标分别增加2.解:(1)点B′的坐标为(3-4,1+2),即(-1,3);点C′的坐标为(2-4,3+2),即(-2,5).(2)画出点B′,C′,分别连接A′B′,B′C′,C′A′(如图4-15),△A′B′C′就是所求的三角形.对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.3.总结反思,提高升华情意发展学完本节课你有什么收获,谈谈自己的体会,最后师生共同总结归纳.。