浅议小学数学中几个运算定律的文字表述
- 格式:doc
- 大小:14.00 KB
- 文档页数:3
小学六年级数学运算定律相关知识点汇总1、加法运算定律⑴加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
⑵加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
2、乘法运算定律⑴乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
⑵乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变。
即(a×b)×c=a×(b×c)。
⑶乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加,即(a+b)×c=a×c+b×c 。
⑷乘法分配律扩展:两个数的差与一数相乘,可以先把它们与这个数分别相乘,再相减,即(a-b) ×c=a×c-b×c3、减法运算定律⑴从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。
⑵一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数,即a-b-c=a-c-b。
4、除法运算定律⑴一个数连续除以两个数,可以除以这两个数的集,即a÷b÷c=a ÷(b×c)。
⑵一个数连续除以两个数,可以先除以第二除数,再除以第一个除数,即a÷b÷c=a÷c÷b。
5、其它a-b+c=a+c-ba-b+c=a+(b-c)a÷b×c=a×c÷ba÷b×c=a÷(b÷c)6、积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。
小学数学公式大全之定律大全加法交换律:简介在两个数的加法运算中,在从左往右算的顺序,两个加数相加,交换加数的位置,和不变。
此定律为小学四年级的学习内容。
公式a+b=b+a加法结合律:定义三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,但和不变法则a+b+c=a+(b+c)=(a+c)+b三个数相加,先把前两个数相加,或者先把后两。
例题78+56+44=78+(56+44)=78+100=178乘法交换律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
它是一种简算定律,在小学四年级均有涉及。
乘法交换律是乘法运算的一种运算定律。
主要公式为ab=ba (注意,在乘法与数字中,乘号用·表示,列:a·b=b·a或:ab=ba)。
作用它可以改变乘法运算当中的运算顺序,在日常生活中乘法交换律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
应用(1)因数中间有零或者未尾有零交换位置相乘一般情况下可以简便计算过程。
(2)其中一个因数由重复的数字组成的,利用交换律计算也有简便。
运算例题如: 3×4×5=3×5×4=605.5×9×10=5.5×10×9=55×9=495乘法结合律:定义:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
运算方法主要公式为(a×b)×c=a×(b×c),它可以改变乘法运算当中的运算顺序 .在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
乘法结合律是三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
注意:乘法结合律不适用于向量的计算。
例子:69×125×8=69×(125×8)=69×1000=69000乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
关于 5 个运算律的意义
加法交换律就是交换两个加数的位置,和不变;加法结合律就是三个数相加,可以先加
两个数,也可以先加后两个数,和不变;乘法交换律是交换两个因数的位置,积不变;乘法
结合律是三个数相乘,可以先乘前两个因数,也可以先乘后两个因数,积不变;乘法分配律
是两个数的和与一个数相乘,可以把这两个加数分别和这个数相乘,结果不变。
这个就是小学阶段 5 个运算律的基本内容,我们可以从以下三个方面来把握。
第一,运算律的表达形式是一个恒等式,是对原来的算式进行等值变形。
第二,变化过程中,加法和乘法交换律变化特点是只改变数的位置,其他都不变化;加
法结合律和乘法结合律的变化特点是只改变运算顺序,其他都不变化;而乘法分配律变化比
较多:运算的步数变多了,运算顺序也改变了,数的位置也改变。
所以它是学生学习的难点。
第三,这 5 个运算律都是最基本的,可以拓展,如交换律与结合律可以拓展
为 3 、 4 个数等;乘法分配律可以拓展为多个数的和与一个数相乘;或拓展为两个数
的差与一个数相乘。
也就是说乘法可以对加法进行分配,也可以对减法进行分配,还可以根
据除以一个数等于乘一个数的倒数,可以拓展到除法商,即两个数的和或差除以一个数的算
式,可以应用分配律。
小学阶段学习运算律,更多的是让学生经历探索的过程,加深对意义的理解;二是关于
运算,一般都不超过三步,所以基本的就够用了。
对有余力的学生教师可以适当拓展。
实质
上如果学生能理解得好,将来需要,自然会主动迁移拓展。
导读:很多孩子的数学不好,尤其是女孩子.家长往往认定为数学不好就是孩子不擅长,能力差.其实未必,有的孩子数学不好的原因并不在于智商,而是没有理解到数学的方法与逻辑,比如小学的运算中,很多孩子并没有了解到运算的定律、法则以及运算顺序,导致运算出现了很多毛病,导致孩子对数学兴趣降低,以后能补上来但是会影响接下来的学习,这里老师整理了小学数学的运算三个要点,希望对孩子有帮助.运算定律1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a .2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) .3. 乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a.4. 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) .5. 乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c .6. 减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) .运算法则1. 整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一.2. 整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减.3. 整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来.4. 整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面.如果哪一位上不够商1,要补“0”占位.每次除得的余数要小于除数.5. 小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足.6. 除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除.7. 除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算.8. 同分母分数加减法计算方法:同分母分数相加减,只把分子相加减,分母不变.9. 异分母分数加减法计算方法:先通分,然后按照同分母分数加减法的的法则进行计算.10. 带分数加减法的计算方法:整数部分和分数部分分别相加减,再把所得的数合并起来.11. 分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母.12. 分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数.运算顺序1. 小数四则运算的运算顺序和整数四则运算顺序相同.2. 分数四则运算的运算顺序和整数四则运算顺序相同.3. 没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法.4. 有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的.5. 第一级运算:加法和减法叫做第一级运算.6. 第二级运算:乘法和除法叫做第二级运算.。
加、减法的速算与巧算( 基础篇 )1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
即:(a+b)+c = a+(b+c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35 =(65+35)+(28+72)=100+98 =488+100 =93+(165+35) = 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a-b-c=a-c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。
如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序运算定律1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。
字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。
字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。
字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。
字母表示:a—b—c=a—c—b;a—b+c=a+c—b7、连除定律:①一个数连续除以两个数, 等于这个数除以后两个数的积,得数不变。
字母表示:a÷b÷c=a÷(b×c);a÷(b×c)=a÷b÷c;②在三个数的乘除法运算中,交换后两个数的位置,得数不变。
运算律总结知识点一、加法运算律1. 加法结合律:a+(b+c)=(a+b)+c这个运算律就是加法的结果不受加数的次序的影响,即改变加数的次序,其和不变。
例如:2+(3+4)=(2+3)+4=9。
2. 加法交换律:a+b=b+a这个运算律就是加法的结果不受加数次序的影响,即相加的两数次序实质上不影响其和。
例如:2+3=3+2=5。
3. 零的作用:0+a=a+0=a这个运算律就是任何数与零相加都等于原来的数。
例如:0+5=5+0=5。
二、减法运算律1. 减法的性质:a-b≠b-a减法不满足交换律与结合律。
例如:3-2≠2-3。
2. 减法的相反性:a-b=a+(-b)这个运算律就是减法可以看作是加法的一个特例,减去一个数等于加上它的相反数。
例如:3-2=3+(-2)=1。
三、乘法运算律1. 乘法结合律:a*(b*c)=(a*b)*c这个运算律就是乘法的结果不受乘数的次序的影响,即改变乘数的次序,其积不变。
例如:2*(3*4)=(2*3)*4=24。
2. 乘法交换律:a*b=b*a这个运算律就是乘法的结果不受乘数次序的影响,即相乘的两数次序实质上不影响其积。
例如:2*3=3*2=6。
3. 乘法分配律:a*(b+c)=a*b+a*c这个运算律就是乘法对加法的分配律,即一个数乘以两个数的和等于这个数乘以这两个数的和。
例如:2*(3+4)=2*3+2*4=14。
四、除法运算律1. 除法的性质:a÷b≠b÷a除法不满足交换律与结合律。
例如:3÷2≠2÷3。
2. 除法的相反性:a÷b=a*1/b这个运算律就是除法可以看作是乘法的一个特例,除以一个数等于乘以它的倒数。
例如:3÷2=3*1/2=1.5。
五、指数运算律1. 乘幂运算律:a^m*a^n=a^(m+n)这个运算律就是相同底数的幂相乘,指数相加。
例如:3^2*3^3=3^(2+3)=3^5。
2. 乘幂数乘法运算律:(a^m)^n=a^(m*n)这个运算律就是幂的幂,指数相乘。
小学四年级数学运算定律、法则与顺序大全,给孩子收藏!1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4. 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)。
5. 乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
6. 减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。
1. 整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2. 整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。
3. 整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。
4. 整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。
如果哪一位上不够商1,要补“0”占位。
每次除得的余数要小于除数。
5. 小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。
6. 除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
小学数学定律【梳理汇总】1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、方程式:含有未知数的等式叫方程式。
9、一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
小学四年级数学7个运算定律一、加法交换律两个数相加,交换两个加数的位置,和不变,叫做加法交换律。
a+b=b+a二、加法结合律三个数相加,先把前二个数相加,再加第三个数,或者,先把后二个数相加,再加上第一个数,其和不变。
这叫做加法结合律。
a+b+c=(a+b)+c或a+b+c =a+(b+c)三、减法性质(1)在减法中,被减数、减数同时加上或者减去一个数,差不变。
a-b=(a+c)-(b+c)或a-b=(a-c)-(b-c)(2)在减法中,被减数增加多少或者减少多少,减数不变,差随着增加或者减少多少。
反之,减数增加多少或者减少多少,被减数不变,差随着减少或者增加多少。
a-b=(a+c)-b=差+c或a-b=(a-c)-b=差-ca-b=a-(b+c)=差-c或a-b=a-(b-c)=差+c(3)在减法中,被减数减去若干个减数,可以把这些减数先加,差不变。
a–b-c= a-(b + c)四、乘法交换律两个数相乘,交换两个因数的位置,积不变,叫做乘法的交换律。
a×b = b×a五、乘法结合律三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。
这叫做乘法结合律。
a×b×c =(a×b)×c或a×b×c = a×(b×c)六、乘法分配律两个数的和(或差)与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积相加(或相减)。
这叫做乘法分配律。
(a + b) ×c= a×c+b×c 或(a - b)×c= a×c-b×c七、乘法的其他运算性质一个因数扩大若干倍,必须把另一个因数缩小相同的倍数,其积不变。
a×b = (a×c) ×( b÷c)八、除法的运算性质(1)商不变性质,两个数相除,被除数和除数同时扩大或者缩小相同的一个数(0除外),商的大小不变。
浅议小学数学中几个运算定律的文字表述数学运算定律,是计算法则的理论基础,在学生学习过程中应用相当广泛,是学生必须掌握的基础知识,根据这些运算定律可以使一些运算简便。
因此,在教学中让学生很好的掌握,灵活地应用这些运算定律是非常重要的,我们应该详细、精练、准确地对运算定律加以概括,从而使学生更好的掌握运算定律。
但现行人教版六年制小学数学教材中几个定律的文字表述,经多年的教学实践,笔者认为不利于学生识记、理解和掌握,下面谈一些粗浅的认识。
1.加法交换律。
现行教材结合实例,交换了两个加数的位置,而得到的两个结果没有变,由此而概括表述出加法交换律的运算定律:“两个数相加,交换加数的位置,它们的和不变”,对此笔者认为这里用两个做定义,是不是范围太窄了或者是太呆板了。
因为学习加法交换律其目的是让学生明白,交换算式中加数的位置和不变,这里重点是位置而不是两个。
其次如果用两个做定义,一些学生会认为加法交换律只适合于两个数相加,而对多个数相加即连加不适合,这不利于学生归纳、推理能力的培养与提高。
其实交换律对于连加更适合。
2.加法结合律。
加法结合律,教材安排与交换律类似,通过观察例子,进一步加以抽象概括,“三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。
”对此,笔者认为,这样表述欠精练,学生读起来觉得啰嗦,且这里的三个是
不是太死板了,加法结合律关键是要训练学生善于分析各个加数的特点,能够较快的看出哪几个数可以结合起来,凑成整十整百整千的数。
因此是否可以这样表述,“几个数相加先把其中的几个数相加,再同其它几个数相加,它们的和不变”。
这样表述,学生能更好的识记,而且有利于学生思维能力的发展。
3.乘法交换律、结合律及分配律。
教材对乘法这三个定律是这样用文字表述的:
交换律:“两个数相乘,交换因数的位置,它们的积不变”。
结合律:“三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变”。
分配律:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把积相加,结果不变”。
笔者认为:学习这些运算定律,主要是让学生进行简算,即几个数相乘,其中两数的积能凑成整十整百整千数的简算,即乘法中一个因数可以化成几个数的和的简便运算,其目的就是根据这些规律观察每个因数之特点,如何去简算。
而用“两个”“三个”定义有“框定”之嫌,会压抑阻碍学生思维的延伸;而且在实际生活中往往遇到的数不至“两个”或“三个”;还有乘法结合律的表述太长,不利于学生记忆。
笔者认为这三个定律这样表述也许会好些:
交换律:几个数相乘,交换因数的位置,积不变。
结合律:几个数相乘,把其中的两个数先相乘,再与其它的数相乘,积不变。
分配律:几个数的和与一个数相乘,可以用这个数去分别乘每一个加数,再把积相加,结果不变。
这样表述,有利于学生掌握定律;有利于学生发散思维的培养;使运算定律表述更精练、更具概括性、科学性。