初中数学(人教版)第二十二章-一元二次方程教案设计
- 格式:doc
- 大小:348.50 KB
- 文档页数:22
《一元二次方程》数学教案8篇作为一位兢兢业业的人民教师,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
那么什么样的教案才是好的呢?这里作者为大家分享了8篇《一元二次方程》数学教案,希望在一元二次方程教案的写作这方面对您有一定的启发与帮助。
元二次方程教案篇一一、教材分析:1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。
本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;(2)能根据具体问题的实际意义,检验结果是否合理;(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
二.教法、学法分析:1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。
教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。
还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。
同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。
因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
三.教学流程分析:本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:活动1复习回顾解决课前参与活动2封面设计问题的探究活动3草坪规划问题的延伸活动4课堂回眸这有名程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
《一元二次方程》数学教案(优秀5篇)元二次方程教案篇一一、素质教育目标(一)知识教学点:1.使学生了解一元二次方程及整式方程的意义;2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.(二)能力训练点:1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.二、教学重点、难点1.教学重点:一元二次方程的意义及一般形式.2.教学难点:正确识别一般式中的“项”及“系数”.三、教学步骤(一)明确目标1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.(二)整体感知通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.(三)重点、难点的学习及目标完成过程1.复习提问(1)什么叫做方程?曾学过哪些方程?(2)什么叫做一元一次方程?九年级数学《一元二次方程》教案篇二教学目标:知识与技能目标:经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。
第二十二章一元二次方程教材内容1.本单元教学的主要内容.一元二次方程概念;解一元二次方程的方法;一元二次方程的应用题.2.本单元在教材中的地位与作用.一元二次方程是在学习《一元一次方程》、《二元一次方程组》、《分式方程》等基础之上学习的,它也是一种数学建模的方法.学好一元二次方程是学好二次函数不可或缺的,应该说,一元二次方程是本书的重点内容.教学目标1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.(6)提出问题、分析问题,建立一元二次方程的数学模型,•并用该模型解决实际问题.3.情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.教学重点1.一元二次方程及其它有关的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3.利用实际问题建立一元二次方程的数学模型,并解决这个问题.教学难点1.一元二次方程配方法解题.2.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.课时划分本单元教学时间约需13课时,具体分配如下:22.1 一元二次方程 2课时22.2 降次──解一元二次方程 4课时(直接开方法1、配方法1、公式法1、因式分解法1)习题课 1课时22.3 实际问题与一元二次方程 3课时小结 1课时22.1一元二次方程(第1课时)22.1一元二次方程(第2课时)教学任务分析22.2.降次——解一元二次方程22.2.1配方法(第1课时)教学任务分析22.2.降次——解一元二次方程22.2.1配方法(第2课时)教学任务分析22.2.降次——解一元二次方程22.2.2公式法教学任务分析22.2.降次——解一元二次方程22.2.3因式分解法教学任务分析教学过程22.2.降次——解一元二次方程22.2.4一元二次方程的根与系数的关系教学任务分析22.3实际问题与一元二次方程(第1课时)教学任务分析22.3实际问题与一元二次方程(第2课时)教学任务分析。
一元二次方程(复习课)学习单【学习目标】1、识记一元二次方程的相关概念;2、掌握用直接开平方法、配方法、公式法、因式分解法解一元二次方程;3、能够灵活运用一元二次方程解决简单的实际问题;学习重难点:运用一元二次方程解决问题.【自主学习】阅读教材相关内容,完成以下练习。
知识梳理:1、一元二次方程的概念:等号两边都是,只含有个求知数(一元),并且未知数的最高次数是(二次)的方程,叫做一元二次方程。
2、一元二次方程的一般形式是:,其中是二次项,是二次项系数,是一次项,是一次项系数,是常数项。
3、一元二次方程的解法:①法、②法、③法、④法。
4、一元二次方程ax2+bx+c=0(a≠0)的根的判别式是,当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当Δ<0时,;当Δ≥0时,。
5、一元二次方程的应用。
质疑探究1、下列方程是关于x的一元二次方程的有: (填序号)(1)ax2+bx+c=0;(2)x2﹣4x=8+x2;(3)1+(x﹣1)(x+1)=0;(4)(k2+1)x2+kx+1=0中,(5)x+3=;(6)x2=2y﹣32、选择适当的方法解下列方程:(1)3x2﹣7x=0 (2)x2﹣6x+8=0.(3)x2+2x=1.(4)(x+1)2=6x+6.3、下列所给方程中,没有实数根的是()A. x2+x=0B. 5x2-4x-1=0C.3x2-4x+1=0D. 4x2-5x+2=04、若关于x的一元二次方程x2-x+m=0有两个不相等的实数根,则m的值可能是(写出一个即可).【互评点拨】(1)用配方法解方程x2-2x-5=0时,原方程应变为()A. (x-1)2=6B.(x+2)2=9C. (x+1)2=6D.(x-2)2=9(2)三角形两边长分别为3和6,第三边的长是方程x2﹣13x+36=0的根,则该三角形的周长为()A.13 B. 15 C.18 D.13或18(3)菜农小王种植的某种蔬菜,计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该种蔬菜滞销.小王为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.求平均每次下调的百分率是多少4)如图1,在宽为20米,长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540平方米,求道路的宽.【巩固提升】1.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=282.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=23.为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,依此类推,已知经过两轮传播后,共有111人参与了传播活动,则列出方程为4. 2015年,某市某楼盘以每平方米4000元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2017年的均价为每平方米3240元.(1)求平均每年下调的百分率;(2)假设2018年的均价仍然下调相同的百分率,李老师准备购买一套100平方米的住房,他持有现金10万元,可以在银行贷款20万元,李老师的愿望能否实现(房价每平方米按照均价计算)。
人教版数学九年级上册22.1《一元二次方程》教学设计一. 教材分析人教版数学九年级上册22.1《一元二次方程》是整个初中数学的重要内容,也是学生首次接触二次方程。
本节课的主要内容是一元二次方程的定义、解法以及应用。
教材通过引入实际问题,让学生理解一元二次方程的概念,学会用因式分解和求根公式解一元二次方程,并能运用一元二次方程解决实际问题。
二. 学情分析九年级的学生已经具备了一定的代数基础,能够理解字母表示数的概念,掌握了方程、不等式等基本知识。
但学生对二次方程的概念和解法可能还比较陌生,因此需要通过具体实例让学生感知和理解一元二次方程。
同时,学生应该具备一定的逻辑思维能力和问题解决能力,能够将实际问题转化为数学问题,并用一元二次方程进行解答。
三. 教学目标1.理解一元二次方程的概念,掌握一元二次方程的解法。
2.能够运用一元二次方程解决实际问题。
3.培养学生的逻辑思维能力和问题解决能力。
四. 教学重难点1.重点:一元二次方程的概念,一元二次方程的解法。
2.难点:一元二次方程的解法,实际问题的转化和解答。
五. 教学方法1.采用问题驱动的教学方法,通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.采用合作交流的教学方法,鼓励学生之间相互讨论,共同解决问题。
3.采用案例分析的教学方法,通过具体实例,让学生理解一元二次方程的概念和解法。
4.采用总结归纳的教学方法,引导学生总结一元二次方程的解法和应用。
六. 教学准备1.准备相关的一元二次方程的案例和实际问题。
2.准备一元二次方程的解法演示道具或课件。
3.准备练习题和测试题,用于巩固和检验学生的学习效果。
七. 教学过程1.导入(5分钟)通过引入实际问题,如一元二次方程的应用场景,让学生感知一元二次方程的存在。
引导学生思考如何解决这个问题,激发学生的学习兴趣。
2.呈现(15分钟)讲解一元二次方程的概念,通过具体实例,让学生理解一元二次方程的定义。
展示一元二次方程的解法,包括因式分解和求根公式,并进行演示。
《一元二次方程》一元二次方程是中学数学的主要内容之一在初中数学中占有重要地位学生通过一元二次方程的学习可以对已学过实数一元一次方程整式二次根式等知识加以巩固同时一元二次方程又是今后学生学习可化为一元二次方程的分式方程二次函数等知识的基础。
本节课通过实际生活出发,用数学解决生活中的问题,以此激发学生的学习热情,体会数学的严谨性以及结论的确定性,提升学生的综合能力。
【知识与能力目标】1. 通过设置问题,建立数学模型,模仿一元一次方程的概念给一元二次方程下定义;2. 一元二次方程的一般形式及其有关概念。
【过程与方法目标】1. 通过观察,归纳一元二次方程概念的教学;2. 使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式。
【情感态度价值观目标】1. 通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情;2. 感受数学的严谨性以及数学结论的确定性。
【教学重点】一元二次方程的概念及其一般形式和用一元二次方程有关概念解决问题。
【教学难点】通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。
(1)每人一份印刷练习题;(2)教师自制的多媒体课件;(3)上课环境为多媒体大屏幕环境。
1.创设情境,引入新知教师展示教科书本章的章前图,请同学们阅读章前问题,并回答:问题1.这个方程属于我们学过的某一类方程吗?师生活动:学生整理已经学过的方程类型,复习方程的概念,元与次的概念,观察新方程,分析此方程的元与次,尝试为新方程命名.【设计意图】使学生认识到一元二次方程是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识的体系中合理的构建一元二次方程这一新知识.问题2.这样的方程在其他实际问题中是否还存在呢?你能再想出一个例子吗?师生活动:学生思考二次项产生的原因,从熟悉的实际背景中,很有可能从矩形的面积出发,设计情境.【设计意图】让学生从“接受式”的学习方式中走出来,走向对一元二次方程产生的根源的探求,在编制情境的过程中,他们将加深对一元二次方程概念的理解.部分学生能够独立解决问题,自己编制情境并列出方程,部分学生可以根据同学给出的情境去列方程,或者阅读课本上的实际问题.2.拓宽情境,概括概念给出课本问题1、问题2的两个实际问题,设未知数,建立方程.问题1 如图21.1-1,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,你说组织者应邀请多少个队参赛?教师引导学生思考并回答以下几个问题:全部比赛共有______场.若设应邀请个队参赛,则每个队要与其他____个队各赛一场,全部比赛共有___ 场.由此,我们可以列出方程______________,化简得________________.问题3.这些方程是几元几次方程?师生活动:学生将实际问题中的语言转化成数学的符号语言,体会运算关系,寻找等量关系,学习建模.将列得的方程化简整理,判断出方程的次数.【设计意图】在建模的过程中不仅加强学生的数学思维能力,而且对二次项产生的根源将更加明晰,加深对一元二次方程的理解.让学生回答方程的元与次,一是让他们体会统一成一般形式的必要性,为概念的形成做铺垫,分解教学的难点;二是让他们明确教学的主线,从被动学习走向主动学习.问题4.这些方程是什么方程?师生活动:观察本课得出的一些方程,思考它们的共性,同学们尝试给出一元二次方程的定义,并且概括出一元二次方程的一般形式.(1)一元二次方程的概念:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2(二次)的方程叫做一元二次方程.(2)一元二次方程的一般形式是.其中是二次项,a是二次项系数;是一次项,b是一次项系数;c是常数项.【设计意图】让学生自己给出定义就是对过去所学一元一次方程的定义的类比和对比,概括一般形式是对一元二次方程另一个角度的理解,是对数学符号语言的应用能力的提升.3.辨析应用,加深理解问题5.请你说出一个一元二次方程,和一个不是一元二次方程的方程.师生活动:可以由学生举手回答,也可以随机选择学生回答,调动学生广泛地参与.追问学生所举的反例为什么不是一元二次方程?是什么方程?【设计意图】学生自己举例,应用概念,从正反两个方向强化了对概念的理解,在追问的过程中,帮助学生将已有的方程梳理成比较清晰的知识体系,如下:开发学生认识的资源,激发学生从不同角度、不同形式去深入理解同一概念,让不同的学生在此过程中获得不同的收获,实现分层教学分层指导的效果.问题6.下列方程哪些是一元二次方程?例1.下列方程哪些是一元二次方程?(1);(2);(3);(4);(5);(6).答案(2)(5)(6).师生活动:用概念指导辨析,方程(3)与(4)同学们可能会产生争议,(3)帮助学生明确一元二次方程是整式方程,(4)体会化为一般形式的必要性,对a≠0条件加深认识.【设计意图】补足学生所举正反例的缺漏,追问:有二次项的一元方程就是一元二次方程吗?帮助学生进一步巩固概念,深化对一元、二次的认识.问题7.指出下列方程的二次项、一次项和常数项及它们的系数.例2.将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:(1);(2).师生活动: (1)将方程去括号得:,移项,合并同类项得:,其中二次项是,二次项系数是3;一次项是,一次项系数是,常数项是.教师应及时分析可能出现的问题(比如系数的符号问题).(2)一元二次方程的一般形式是,过程略.例3.关于x的方程,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?答案:时此方程为一元二次方程;,时此方程为一元一次方程.【设计意图】在形式比较复杂的方程面前,通过辨析方程的元、次、项看清方程的本质,深化理解,淡化对一元二次方程概念的记忆.4.巩固概念,学以致用教科书第4页:练习【设计意图】巩固性练习,同时检验一元二次方程概念的掌握情况.5.归纳小结,反思提高请学生总结今天这节课所学内容,通过对比之前所学其他方程,谈对一元二次方程概念的认识,反思学习过程中的典型错误.6.布置作业教科书习题21.1略。
初中数学(人教版)第二十二章一元二次方程教案1000字
一、教学目标
1.了解一元二次方程的概念及特征。
2.学会解一元二次方程,掌握常用解法。
3.掌握应用一元二次方程解决实际问题的方法。
4.发扬实验探究科学精神,培养探究和创新能力。
二、教学重难点
1.重点:一元二次方程的解法及问题应用。
2.难点:运用一元二次方程解决实际问题。
三、教学内容及方法
1.内容:一元二次方程
2.方法:实验探究法、讲练结合法、归纳总结法。
四、教学过程
(一)热身阶段
通过学生简单生活例子引入,旨在让学生了解一元二次方程的学习目的。
(二)学习阶段
1.学生进行实验探究,探究一元二次方程和一元二次方程的特征。
2.通过教师讲解和学生自主探究,学习一元二次方程的解,并更深入地了解一元二次方程的解法。
3.学习如何选取合适的解法,提高解决问题的能力。
(三)巩固阶段
1.教师提供一些实际问题,让学生进行解决。
2.通过真实场景展示,引导学生应用所学知识,将数学与现实联系起来。
(四)拓展阶段
对于已掌握知识的学生,教师可以提供更复杂的问题,以扩展知识面。
五、教学手段
1.教师讲解
2.实验探究
3.讨论交流
4.试题分析
六、教学评价
1.学生的课堂参与情况。
2.学生的问题解决能力。
3.学生的实际应用能力。
一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
第二十二章一元二次方程主备人:刘鸿智教材内容本单元教学的主要内容:1.一元二次方程及其有关概念,一元二次方程的解法(开平方法、配方法、公式法、分解因式法),一元二次方程根与系数的关系,运用一元二次方程分析和解决实际问题.2.本单元在教材中的地位和作用:教学目标1.一分析实际问题中的等量关系并求解其中未知数为背景,认识一元二次方程及其有关概念。
2.根据化归思想,抓住“降次”这一基本策略,熟练掌握开平方法、配方法、公式法和分解因式法等一元二次方程的基本解法.3.经历分析和解决问题的过程,体会一元二次方程的教学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。
教学重点、难点重点:1.一元二次方程及其有关概念2.一元二次方程的解法(开平方法、配方法、公式法、分解因式法)3.一元二次方程根与系数的关系以及运用一元二次方程分析和解决实际问题。
难点:1.一元二次方程及其有关概念2.一元二次方程的解法(配方法、公式法、分解因式法),3.一元二次方程根与系数的关系以及灵活运用课时安排本章教学时约需课时,具体分配如下(供参考)22.1 一元二次方程 1课时22.2 降次 7 课时22.3 实际问题与一元二次方程 3 课时教学活动、习题课、小结22.1 一元二次方程教学目的1.使学生理解并能够掌握整式方程的定义.2.使学生理解并能够掌握一元二次方程的定义.3.使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式.教学重点、难点重点:一元二次方程的定义.难点:一元二次方程的一般形式及其二次项系数、一次项系数和常数项的识别.教学过程复习提问1.什么叫做方程?什么叫做一元一次方程?2.指出下面哪些方程是已学过的方程?分别叫做什么方程?(l)3x+4=l; (2)6x-5y=7;3.结合上述有关方程讲解什么叫做“元”,什么叫做“次”.引入新课1.方程的分类:(通过上面的复习,引导学生答出)学过的几类方程是没学过的方程有x2-70x+825=0, x(x+5)=150.这类“两边都是关于未知数的整式的方程,叫做整式方程.”像这样,我们把“只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程.”据此得出复习中学生未学过的方程是(4)一元二次方程:x2-70x+825=0, x(x+5)=150.同时指导学生把学过的方程分为两大类:2.一元二次方程的一般形式注意引导学生考虑方程x2-70x+825=0和方程x(x+5)=150,即x2+5x=150,可化为:x2+5x-150=0.从而引导学生认识到:任何一个一元二次方程,经过整理都可以化为ax2+bx+c=0(a≠0)的形式.并称之为一元二次方程的一般形式.其中ax2,bx,c分别称为二次项、一次项、常数项;a,b分别称为二次项系数、一次项系数.【注意】二次项系数a是不等于0的实数(a=0时,方程化为bx+c=0,不再是二次方程了);b,c可为任意实数.例把方程5x(x+3)=3(x-1)+8化成一般形式.并写出它的二次项系数、一次项系数及常数项.课堂练习 P27 1、2题归纳总结1.方程分为两大类:判别整式方程与分式方程的关键是看分母中是否含有未知数;判别一元一次方程,一元二次方程的关键是看方程化为一般形式后,未知数的最高次数是一次还是二次.2.一元二次方程的定义:一个整式方程,经化简形成只含有一个未知数且未知数的最高次数是2,则这样的整式方程称一元二次方程.其一般形式是ax2+bx+c=0(a≠0),其中b,c均可为任意实数,而a不能等于零.布置作业:习题22.1 1、2题.达标测试1.在下列方程中,一元二次方程的个数是( )5+4=0,①3x2+7=0,②ax2+bx+c=0,③(x+2)(x-3)=x2-1,④x2-x⑤x 2-(2+1)x+2=0,⑥3x 2-x4+6=0 A.1个 B.2个 C.3个 D.4个2.关于x 的一元二次方程3x 2=5x-2的二次项系数,一次项和常数项,下列说法完全正确的是( )A.3,-5,-2B.3,-5x,2C.3,5x,-2D.3,-5,23.方程(m+2)m x +3mx+1=0是关于x 的一元二次方程,则( )A.m=±2B.m=2C.m=-2D.m ≠±24.若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是5.方程4x 2=3x-2+1的二次项是 ,一次项是 ,常数项是 课后反思:22.2解一元二次方程第一课时直接开平方法教学目的1.使学生掌握用直接开平方法解一元二次方程.2.引导学生通过特殊情况下的解方程,小结、归纳出解一元二次方程ax 2+c=0(a >0,c <0)的方法. 教学重点、难点重点:准确地求出方程的根.难点:正确地表示方程的两个根.教学过程复习过程回忆数的开方一章中的知识,请学生回答下列问题,并说明解决问题的依据.求下列各式中的x :1.x 2=225; 2.x 2-169=0;3.36x 2=49; 4.4x 2-25=0.一元二次方程的解也叫做一元二次方程的根.解题的依据是:一个正数有两个平方根,这两个平方根互为相反数.即 一般地,如果一个数的平方等于a(a ≥0),那么这样的数有两个,它们是互为相反数.引入新课我们已经学过了一些方程知识,那么上述方程属于什么方程呢?新课例1 解方程 x 2-4=0.解:先移项,得x 2=4.即x 1=2,x 2=-2.这种解一元二次方程的方法叫做直接开平方法.例2 解方程 (x+3)2=2.练习:P28 1、2归纳总结1.本节主要学习了简单的一元二次方程的解法——直接开平方法.2.直接法适用于ax 2+c=0(a >0,c <0)型的一元二次方程.布置作业:习题22.1 4、6题达标测试1.方程x 2-0.36=0的解是A.0.6B.-0.6C.±6D.±0.62.解方程:4x 2+8=0的解为A.x 1=2 x 2=-2B.2,221-==x xC.x 1=4 x 2=-4D.此方程无实根3.方程(x+1)2-2=0的根是 A.21,2121-=+=x x B. 21,2121+-=+=x x C. 21,2121+=--=x x D. 21,2121--=+-=x x4.对于方程(ax+b)2=c 下列叙述正确的是A.不论c 为何值,方程均有实数根B.方程的根是ab c x -=C.当c ≥0时,方程可化为:c b ax c b ax -=+=+或 D.当c=0时,ab x =5.解下列方程: ①.5x 2-40=0 ②.(x+1)2-9=0③.(2x+4)2-16=0 ④.9(x-3)2-49=0课后反思第二课时配方法教学目的1.使学生掌握用配方法解一元二次方程的方法.2.使学生能够运用适当变形的方法,转化方程为易于用配方法求解的形式,来解某些一元二次方程.并由此体会转化的思想.教学重点、难点重点:掌握配方的法则.难点:凑配的方法与技巧.教学过程复习过程用开平方法解下列方程:(1)x 2=441; (2)196x 2-49=0;引入新课我们知道,形如x 2-A=0的方程,可变形为x 2=A(A ≥0),再根据平方根的意义,用直接开平方法求解.那么,我们能否将形如ax 2+bx+c=0(a >0)的一类方程,化为上述形式求解呢?这正是我们这节课要解决的问题.新课我们研究方程x 2+6x+7=0的解法:将方程视为:x 2+2·x ·3=-7, 即 x 2+2·x ·3+32=32-7,∴ (x+3)2=2,这种解一元二次方程的方法叫做配方法.这种方法的特点是:先把方程的常数项移到方程的右边,再把左边配成一个完全平方式,如果右边是非负数,就可以进一步通过直接开平方法来求出它的解.例1 解方程x 2-4x-3=0.配方法解之.在解的过程中,注意介绍配方的法则.例2 解方程2x 2+3=7x .练习:P34 1、2题归纳总结应用配方法解一元二次方程ax 2+bx+c=0(a ≠0)的要点是:(1)化二次项系数为1;(2)移项,使方程左边为二次项和一次项,右边为常数;(3)方程两边各加上一次项系数一半的平方,使左边配成一个完全平方式.布置作业:习题22.2 1、3题达标测试1.方程x 2-a 2=(x-a)2(a≠0)的根是A.aB.0C.1或aD.0或a2.已知关于x 的方程(m+3)x 2+x+m 2+2m-3=0一根为0,另一根不为0,则m 的值为A.1B.-3C.1或-3D.以上均不对3.若x 2-mx+41是一个完全平方式,则m= A.1 B.-1 C.±1 D.以上均不对4.方程x 2=5的解是 ,方程(x-1)2=5的解是 ,方程(3x-1)2=5的解是5.①+-x x 212 =(x- )2 ②++x x 252 =(x+ )2 课后反思:第三课时求根公式法教学目的1.使学生掌握一般一元二次方程的求根公式的推导过程,并由此培养学生的分析、综合和计算能力.2.使学生掌握公式法解一元二次方程的方法.教学重点、难点重点:要求学生正确运用求根公式解一元二次方程.难点:1.求根公式的推导过程.2.含有字母参数的一元二次方程的公式解法.教学过程复习提问提问:当x2=c时,c≥0时方程才有解,为什么?练习:用配方法解下列一元二次方程(1)x2-8x=20; (2)2x2-6x-1=0.引入新课我们思考用配方法解一般形式的一元二次方程,应如何配方来进行求解?新课(引导学生讨论)用配方法解一元二次方程ax2+bx+c=0(a≠0)的步骤.解:∵a≠0,两边同除以a,得把常数项移到方程右边,并两边各加上一次项系数的一半的平方,得(a ≠0)的求根公式.用此公式解一元二次方程的方法叫做公式法.应用求根公式解一元二次方程的关键在于:(1)将方程化为一般形式ax 2+bx+c=0(a ≠0);(2)将各项的系数a ,b ,c 代入求根公式.例1 解方程x 2-3x+2=0.例2 解方程2x 2+7x=4.例5 解关于x 的方程 x 2-m(3x-2m+n)-n 2=0.练习P37 1题归纳总结1.本节课我们推导出了一元二次方程ax 2+bx+c=0(a ≠0)的求根公式,即要重点让学生注意到应用公式的大前提,即b 2-4ac ≥0.2.应注意把方程化为一般形式后,再用公式法求解.布置作业:习题22.2 5、8、10题达标测试1.若代数式4x 2-2x-5与2x 2+1的值互为相反数,则x 的值为A.1或23-B.1或32- C.-1或32 D.1或23 2.对于一元二次方程ax 2+bx+c=0,下列叙述正确的是A.方程总有两个实数根B.只有当b 2-4ac ≥0时,才有两实根C.当b 2-4ac<0时,方程只有一个实根D.当b 2-4ac=0时,方程无实根3.已知三角形两边长分别是1和2,第三边的长为2x 2-5x+3=0的根,则这个三角形的周长是 A.4 B.214 C.4或214 D.不存在 4.如果分式3322---x x x 的值为0,则x 值为 A.3或-1 B.3 C.-1 D.1或-35.把2)3(32x x +=+化成ax 2+bx+c=0(a ≠0)的形式后,则a= ,b= ,c=6.若分式222---x x x 的值为0,则x=7.已知x=-1是关于x 的一元二次方程ax 2+bx+c=0的根,则a c ab -=__________. 8.若a 2+b 2+2a-4b+5=0,则关于x 的方程ax 2-bx+5=0的根是___________.课后反思:第四课时因式分解法教学目的使学生掌握应用因式分解法解某些系数较为特殊的一元二次方程的方法.教学重点、难点重点:用因式分解法解一元二次方程.难点:将方程化为一般形式后,对左侧二次三项式的因式分解.教学过程复习提问1.在初一时,我们学过将多项式分解因式的哪些方法?2.方程x 2=4的解是多少?引入新课方程x 2=4还有其他解法吗?新课众所周知,方程x 2=4还可用公式法解.此法要比开平方法繁冗.本课,我们将介绍一种较为简捷的解一元二次方程的方法——因式分解法. 我们仍以方程x 2=4为例.移项,得 x 2-4=0,对x 2-4分解因式,得 (x+2)(x-2)=0.我们知道:∴ x+2=0,x-2=0.即 x 1=-2,x 2=2.由上述过程我们知道:当方程的一边能够分解成两个一次因式而另一边等于0时,即可解之.这种方法叫做因式分解法.例1 解下列方程:(1)x 2-3x-10=0; (2)(x+3)(x-1)=5.在讲例1(1)时,要注意讲应用十字相乘法分解因式;讲例1(2)时,应突出讲将方程整理成一般形式,然后再分解因式解之.例2 解下列方程:(1)3x(x+2)=5(x+2); (2)(3x+1)2-5=0.在讲本例(1)时,要突出讲移项后提取公因式,形成(x+2)(3x-5)=0后求解;再利用平方差公式因式分解后求解.注意:在讲完例1、例2后,可通过比较来讲述因式分解的方法应“因题而宜”.例3 解下列方程:(1)3x 2-16x+5=0 ;(2)3(2x 2-1)=7x .练习:P40 1、2题归纳总结对上述三例的解法可做如下总结:因式分解法解一元二次方程的步骤是1.将方程化为一般形式;2.把方程左边的二次三项式分解成两个一次式的积;(用初一学过的分解方法)3.使每个一次因式等于0,得到两个一元一次方程;4.解所得的两个一元一次方程,得到原方程的两个根.布置作业:习题22.2 6、10题达标测试1.对方程(1)(2x-1)2=5,(2)x 2-x-1=0,(3)x x x -=-3)3(选择合适的解法是A.分解因式法、公式法、分解因式法B.直接开平方法、公式法、分解因式法C.公式法、配方法、公式法D.直接开平方法、配方法、公式法2.方程2x(x-3)=5(x-3)的根为A.25=x B.x=3 C.3,2521==x x D.52=x 3.若x 2-5∣x ∣+4=0,则所有x 值的和是A .1 B.4 C.0 D.1或45.若方程x 2+ax-2a=0的一根为1,则a 的取值和方程的另一根分别是A.1,-2B.-1,2C.1,2D.-1,-25.已知3x 2y 2-xy-2=0,则x 与y 之积等于6.关于x 的一元二次方程(m+2)x 2+x-m 2-5m-6=0有一根为0,则m= 。