基于预估比较原理的动态自寻最优控制系统
- 格式:pdf
- 大小:243.87 KB
- 文档页数:5
最优控制理论的发展与展望[1]最优控制理论是20 世纪60 年代迅速发展起来的现代控制理论中的主要内容之一,它研究和解决的是如何从一切可能的方案中寻找一个最优的方案。
1948 年维纳等人发表论文,提出信息、反馈和控制等概念,为最优控制理论的诞生和发展奠定了基础。
我国著名学者钱学森在1954 年编著的《工程控制论》直接促进了最优控制理论的发展。
美国著名学者贝尔曼的“动态规划”和原苏联著名学者庞特里亚金的“最大值原理”是在最优控制理论的形成和发展过程中,最具开创性的研究成果,并开辟了求解最优控制问题的新途径。
此外,库恩和图克共同推导的关于“不等式约束条件下的非线性最优必要条件(库恩—图克定理) ”及卡尔曼的关于“随机控制系统最优滤波器”等是构成最优控制理论及现代最优化技术理论基础的代表作。
[1][1]鲁棒控制是针对不确定性系统的控制系统的设计方法,其理论主要研究的问题是不确定性系统的描述方法、鲁棒控制系统的分析和设计方法以及鲁棒控制理论的应用领域。
鲁棒控制理论发展的最突出的标志之一是H∞控制。
H∞控制从本质上可以说是频域内的最优控制理论。
鲁棒控制与最优控制结合解决许多如线性二次型控制、电机调速、跟踪控制、采样控制、离散系统的镇定、扰动抑制等实际问题。
[2]近年来,最优控制理论[1,2]的研究,无论在深度和广度上,都有了很大的发展,已成为系统与控制领域最热门的研究课题之一,取得了许多研究成果。
同时,也在与其他控制理论相互渗透,出现了许多新的最优控制方式,形成了更为实用的学科分支。
例如鲁棒最优控制[3]、随机最优控制[4]、分布参数系统的最优控制[5]、大系统的次优控制[6]、离散系统的最优控制及最优滑模变结构控制[7,8]等。
而对于非线性系统,其最优控制求解相当困难,需要求解非线性HJB 方程或非线性两点边值问题,除简单情况外[9],这两个问题都无法得到解析解。
因此,许多学者都致力于寻求近似的求解方法[10~13],通过近似解得到近似的最优控,即次优控制。
Hefei University《过程控制工程》课程综述班级_______09级自动化(2)班______姓名___________蔡长永______________ 学号________0905075007____________ 授课老师___________王庆龙______________ 完成时间______ 2012-12-2摘要:过程控制工程是自动化专业的必修课程,本文主要概述我们对过程控制工程理论的认识,了解了过程控制理论的基本定义,把握过程控制理论的重要实用意义及发展的方向与趋势;同时概括性的说明了现代工业发展的环境与挑战,以及把过程控制理论应用在现代工业生产中的重大意义。
关键词:过程控制工程工业生产智能控制一、课程内容介绍1.1内容概述本书系统地论述了(1)过程控制系统的要求、组成、性能指标和发展。
(2)被控工业过程的数学模型及其获取方法,包括对象数学模型动态特性的基本描述形式及获取方法。
执行器的种类、选型和计算。
(3)简单控制系统的基本概念、分析和设计,包括被控变量与控制变量的选择,控制器和测量变送器的选型,控制器参数整定的常用方法与控制系统投入运行。
(4)串级控制系统的结构组成、工作原理和方案设计,包括主、副被控变量和操作变量的选择、主回路和副回路的设计及主回路和副控制器的选择,常用的串级控制系统的参数整定方法。
(5)补偿控制系统的原理和前馈控制的几种结构形式,包括静态、动态前馈控制、复合前馈控制,各种前馈控制系统的设计,前馈补偿器的设计与实现,常用的工程整定方法;以及大迟延生产过程的概念,常规仪表控制方案的实现,补偿控制方案的设计与实现。
(6)比值控制系统、均匀控制系统、分程控制系统、选择性控制系统的基本概念,系统设计与实现和参数整定。
(7)解耦控制系统,包括多变量系统的分析(相对增益的概念与计算、耦合系统中的变量匹配)、控制器参数整定和常用的解耦控制系统设计方法等。
1.2各章详细内容第一章的内容是过程控制的发展和特点,第二章讲述的是过程建模和过程检测,有简单过程的建模和仪表检测。
最优控制问题的动态规划法动态规划法是一种常用的最优控制问题求解方法。
它通过将问题分解为子问题,并保存子问题的最优解,最终得到整体问题的最优解。
本文将介绍最优控制问题的动态规划法及其应用。
一、概述最优控制问题是指在给定控制目标和约束条件下,通过选择一组最优控制策略来实现最优控制目标。
动态规划法通过将问题分解为若干个阶段,并定义状态和决策变量,来描述问题的动态过程。
并且,动态规划法在求解过程中通过存储子问题的最优解,避免了重复计算,提高了计算效率。
二、最优控制问题的数学模型最优控制问题通常可以表示为一个关于状态和控制的动态系统。
假设系统的状态为$x(t)$,控制输入为$u(t)$,动态系统可以表示为:$$\dot{x}(t) = f(x(t), u(t))$$其中,$\dot{x}(t)$表示状态$x(t)$的变化率,$f$为状态方程。
此外,系统还有一个终止时间$T$,以及初始状态$x(0)$。
最优控制问题的目标是找到一个控制策略$u(t)$,使得系统在给定时间$T$内,从初始状态$x(0)$演化到最终状态$x(T)$,同时使得性能指标$J(x,u)$最小化。
性能指标通常表示为一个积分的形式:$$J(x,u) = \int_0^T L(x(t), u(t)) dt + \Phi(x(T))$$其中,$L$表示运动代价函数,$\Phi$表示终端代价函数。
三、最优控制问题的动态规划求解最优控制问题的动态规划求解包括两个主要步骤:状态方程的离散化和动态规划递推。
1. 状态方程的离散化将状态方程离散化可以得到状态转移方程。
一般来说,可以使用数值方法(如欧拉方法、龙格-库塔方法)对状态方程进行离散化。
通过选择适当的时间步长,可以平衡计算精度和计算效率。
2. 动态规划递推动态规划递推是最优控制问题的关键步骤。
假设状态函数$V(t,x)$表示从时刻$t$起,状态为$x$时的最优性能指标。
动态规划递推过程通常可以描述为以下几个步骤:(1)递推起点:确定最终时刻$T$时的值函数$V(T,x)$,通常可以根据终端代价函数$\Phi$直接得到。
自适应控制和最优控制的基本原理和应用在现代控制理论中,自适应控制和最优控制是两个重要的概念。
自适应控制是指根据被控对象的运动情况及其参数变化,调整控制器的参数,使得被控对象满足预先设定的控制性能要求。
最优控制是指在满足控制性能的基础上,使控制器的能耗最小,系统响应最快。
自适应控制和最优控制的基本原理是以被控对象的数学模型为基础。
对于自适应控制,需要对被控对象进行建模,以确定控制器参数的调整方向。
对于最优控制,需要对被控对象的数学模型进行优化,以找到最优的控制方案。
在自适应控制中,最常用的方法是模型参考自适应控制。
这种方法通过建立一个参考模型,将被控对象的运动与参考模型的运动进行比较,然后根据比较结果调整控制器的参数。
这种方法的优点是简单易懂,容易实现。
不过,这种方法要求被控对象的数学模型必须非常精确,否则会导致控制器参数调整不准确。
另一种常用的自适应控制方法是基于模糊逻辑的自适应控制。
该方法通过将控制器的参数用模糊集合形式表示,以适应被控对象模型的不确定性。
这种方法虽然参数调整方向不如模型参考自适应控制精确,但是可以适应更广泛的控制情况。
最优控制中,最常用的方法是线性二次型控制(LQR)。
这种方法通过对被控对象的数学模型进行优化,确定最优的控制器参数,以使系统的能耗最小。
该方法的优点是在满足控制性能的前提下,能够有效降低系统的能耗,提高系统的效率。
最优控制还可以用于求解动态优化问题。
在这种情况下,被控对象的状态会随时间变化,需要在每个时刻对控制器参数进行优化,以获得最优的控制方案。
这种方法可以应用于许多领域,包括经济系统、交通运输、动力系统等。
自适应控制和最优控制都有广泛的应用。
例如,在机械加工、机器人控制、电力系统等领域中,自适应控制可以有效提高系统的稳定性和控制性能。
而在航空航天、汽车控制、自动驾驶等领域中,最优控制可以降低系统的能耗,提高系统的效率。
总的来说,自适应控制和最优控制是现代控制理论中非常重要的概念,它们的应用范围广泛,可以有效地提高系统的效率和控制性能。
控制系统中的最优控制理论及应用控制系统是现代工程中不可或缺的一部分,它能够将输入信号转化为相应的输出信号,以实现对系统行为的调整和控制。
而在控制系统中,最优控制是一种关键的理论和方法,它能够在给定的条件下寻找到最优的控制策略,以使系统的性能达到最佳。
最优控制理论的核心是最优化问题,即在给定一组约束条件下,寻找能使某个性能指标达到最优的控制策略。
常见的性能指标有能耗最小、系统响应最快、误差最小等。
为了解决这类问题,最优控制理论通常利用微积分和变分法等数学工具来建立系统的数学模型,并通过求解最优化问题得到最优控制策略。
在最优控制理论中,常用的方法有数学规划、动态规划和最优化方法。
其中,数学规划是在一组约束条件下,通过建立目标函数的数学模型,利用数学优化算法求解最优解。
动态规划是一种递推算法,它通过将复杂的最优控制问题分解为一系列子问题,并利用最优化原理逐步递推求解。
最优化方法则是一类数学求解算法,通过迭代优化搜索来找到目标函数的最优解。
除了理论研究,最优控制理论在实际应用中也具有广泛的价值。
例如,在工程领域中,最优控制可应用于航空航天、自动化控制、能源管理等方面。
在航空航天领域,最优控制可以用于飞行器的轨迹规划和姿态控制,以实现飞行器的安全、高效运行。
在自动化控制领域,最优控制可以用于工业生产中的过程控制和优化,以提高生产效率和降低能源消耗。
在能源管理领域,最优控制可以用于电力系统的调度和优化,以合理分配能源资源和提高能源利用效率。
此外,在生物学、经济学和社会科学等领域中,最优控制理论也有广泛的应用。
在生物学中,最优控制可用于模拟和研究生物系统的行为和进化规律。
在经济学中,最优控制可用于确定最佳的生产方案和资源配置,以实现社会效益的最大化。
在社会科学中,最优控制可用于指导社会政策和管理决策,以实现社会资源的合理分配。
综上所述,最优控制理论是控制系统中的重要组成部分,它通过数学建模和优化算法,为控制系统提供了有效的解决方案。
控制系统的最优控制理论与方法在控制系统中,最优控制理论与方法是一种重要的技术手段,旨在通过优化控制策略,使系统性能达到最佳状态。
本文将介绍最优控制理论的基本概念、主要方法以及在实际应用中的一些案例。
一、最优控制理论的基本概念最优控制理论是一种应用数学理论,研究如何确定控制系统中的最优控制策略,以使系统性能指标达到最佳。
最优控制理论的核心是优化问题的解决方法,通过最小化或最大化某种性能指标,如系统响应时间、稳定性、能耗等,来获取最优控制策略。
在最优控制理论中,有两个基本概念需要了解:动态系统和性能指标。
动态系统是指由一组动态方程描述的系统,其中包含控制变量和状态变量。
性能指标是衡量系统性能的指标,根据不同的要求可以选择不同的性能指标,如最小化过程中的能耗、最大化系统的稳定性等。
二、最优控制方法最优控制方法主要包括动态规划、最优化方法和参数整定等。
下面将详细介绍这三种方法。
1. 动态规划动态规划是最优控制理论中最基本的方法之一。
它通过将控制问题划分为若干子问题,并逐步求解每个子问题的最优解,最终得到整体的最优控制策略。
动态规划方法适用于动态系统模型已知、状态空间离散化的情况。
2. 最优化方法最优化方法是一种通过优化目标函数求解最优解的方法。
其中,目标函数可以是系统的性能指标,通过最小化或最大化目标函数来确定最优控制策略。
最优化方法适用于动态系统模型复杂、状态空间连续的情况。
3. 参数整定参数整定是指根据系统的数学模型和性能指标,确定控制器的参数值,以实现最优控制。
参数整定方法可以根据系统的特性和要求选择不同的方法,例如经验公式、频域分析、优化算法等。
参数整定在工程实践中具有重要的应用价值,可以使系统在不同工况下都能达到最佳性能。
三、最优控制理论与方法的应用案例最优控制理论与方法在各个领域都有广泛的应用,以下列举几个案例来说明。
1. 自动驾驶汽车自动驾驶汽车是近年来亟待解决的重要问题之一。
最优控制理论与方法可以应用于自动驾驶汽车的路径规划和控制中,通过优化控制方法确定最佳行驶路径和速度,从而提高驾驶安全性和行驶效率。