广西贵港市2020年中考数学二模试卷(含答案)
- 格式:doc
- 大小:477.00 KB
- 文档页数:28
广西省贵港市2019-2020学年中考数学仿真第二次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,小颖为测量学校旗杆AB 的高度,她在E 处放置一块镜子,然后退到C 处站立,刚好从镜子中看到旗杆的顶部B .已知小颖的眼睛D 离地面的高度CD =1.5m ,她离镜子的水平距离CE =0.5m ,镜子E 离旗杆的底部A 处的距离AE =2m ,且A 、C 、E 三点在同一水平直线上,则旗杆AB 的高度为( )A .4.5mB .4.8mC .5.5mD .6 m2.下列实数中,无理数是( )A .3.14B .1.01001C .39D .2273. “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( ) A .567×103 B .56.7×104 C .5.67×105 D .0.567×1064.在,90ABC C ∆∠=o 中,2AC BC =,则tan A 的值为( )A .12B .2C .5D .25 5.如图,在△ABC 中,过点B 作PB ⊥BC 于B ,交AC 于P ,过点C 作CQ ⊥AB ,交AB 延长线于Q ,则△ABC 的高是( )A .线段PB B .线段BC C .线段CQD .线段AQ6.计算(x -l)(x -2)的结果为( )A .x 2+2B .x 2-3x +2C .x 2-3x -3D .x 2-2x +27.下面运算结果为6a 的是( )A .33a a +B .82a a ÷C .23•a aD .()32a -8.,a b 是两个连续整数,若7a b <,则,a b 分别是( ). A .2,3 B .3,2 C .3,4 D .6,89.如图钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,钓者想看看鱼钓上的情况,把鱼竿AC 逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是( )A .3mB .33 mC .23 mD .4m10.如图,在ABC V 中,30B ∠=︒,BC 的垂直平分线交AB 于点E ,垂足为D .如果8CE =,则ED 的长为( )A .2B .3C .4D .611.如图所示,将矩形ABCD 的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH ,若EH=3,EF=4,那么线段AD 与AB 的比等于( )A .25:24B .16:15C .5:4D .4:312.如图,二次函数y=ax 1+bx+c (a≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=1,且OA=OC .则下列结论:①abc >0;②9a+3b+c >0;③c >﹣1;④关于x 的方程ax 1+bx+c=0(a≠0)有一个根为﹣1a;⑤抛物线上有两点P (x 1,y 1)和Q (x 1,y 1),若x 1<1<x 1,且x 1+x 1>4,则y 1>y 1.其中正确的结论有( )A .1个B .3个C .4个D .5个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,直线a ∥b ,∠P=75°,∠2=30°,则∠1=_____.14.计算1x x +﹣11x +的结果为_____. 15.如图,在平面直角坐标系中,矩形ABCD 的边AB :BC=3:2,点A (-3,0),B (0,6)分别在x 轴,y 轴上,反比例函数y=k x (x >0)的图象经过点D ,且与边BC 交于点E ,则点E 的坐标为__.16.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数的图像上,OA=1,OC=6,则正方形ADEF 的边长为 .17.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.18.如图,Rt △ABC 中,∠ABC =90°,AB =BC ,直线l 1、l 2、l 1分别通过A 、B 、C 三点,且l 1∥l 2∥l 1.若l 1与l 2的距离为5,l 2与l 1的距离为7,则Rt △ABC 的面积为___________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线y=ax 2+bx+c 与x 轴的交点分别为A (﹣6,0)和点B (4,0),与y 轴的交点为C(0,3).(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M 在线段AB上,点N在线段AC上.①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.20.(6分)如图所示,AB是⊙O的一条弦,DB切⊙O于点B,过点D作DC⊥OA于点C,DC与AB 相交于点E.(1)求证:DB=DE;(2)若∠BDE=70°,求∠AOB的大小.21.(6分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.22.(8分)解不等式组:1(1)1213x x ⎧-≤⎪⎨⎪-<⎩,并求出该不等式组所有整数解的和.23.(8分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.九宫格24.(10分)如图,在平面直角坐标系中有Rt △ABC ,∠A=90°,AB=AC ,A (﹣2,0),B (0,1). (1)求点C 的坐标;(2)将△ABC 沿x 轴的正方向平移,在第一象限内B 、C 两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.(3)若把上一问中的反比例函数记为y 1,点B′,C′所在的直线记为y 2,请直接写出在第一象限内当y 1<y 2时x 的取值范围.25.(10分)如图,M 、N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M 、N 两点之间的直线距离,选择测量点A 、B 、C ,点B 、C 分别在AM 、AN 上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M 、N 两点之间的距离.26.(12分)直角三角形ABC 中,BAC 90∠=o ,D 是斜边BC 上一点,且AB AD =,过点C 作CE AD ⊥,交AD 的延长线于点E ,交AB 延长线于点F .()1求证:ACB DCE ∠∠=;()2若BAD 45o ∠=,AF 22=+,过点B 作BG FC ⊥于点G ,连接DG.依题意补全图形,并求四边形ABGD 的面积.27.(12分)解方程组:222232()x y x y x y ⎧-=⎨-=+⎩.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据题意得出△ABE ∽△CDE ,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE =2m ,CE =0.5m ,DC =1.5m ,∵△ABC ∽△EDC ,∴,即,解得:AB =6,故选:D .【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.2.C【解析】【分析】先把能化简的数化简,然后根据无理数的定义逐一判断即可得.【详解】A、3.14是有理数;B、1.01001是有理数;CD、227是分数,为有理数;故选C.【点睛】本题主要考查无理数的定义,属于简单题.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】567000=5.67×105,【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.A【解析】【分析】本题可以利用锐角三角函数的定义求解即可.【详解】解:tanA=BC AC,∵AC=2BC,∴tanA=12.故选:A.【点睛】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键.5.C【解析】【分析】根据三角形高线的定义即可解题.【详解】解:当AB为△ABC的底时,过点C向AB所在直线作垂线段即为高,故CQ是△ABC的高,故选C.【点睛】本题考查了三角形高线的定义,属于简单题,熟悉高线的作法是解题关键.6.B【解析】【分析】根据多项式的乘法法则计算即可.【详解】(x-l)(x-2)= x2-2x-x+2= x2-3x+2.故选B.【点睛】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.7.B【解析】【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】A.3332+=,此选项不符合题意;a a aB.826÷=,此选项符合题意;a a aC.235⋅=,此选项不符合题意;a a aD .236()a a -=-,此选项不符合题意;故选:B .【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.8.A【解析】【分析】<< 【详解】<<a=2,b=1. 故选A .【点睛】< 9.B【解析】【分析】因为三角形ABC 和三角形AB′C′均为直角三角形,且BC 、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB ,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.【详解】解:∵sin ∠CAB =62BC AC == ∴∠CAB =45°.∵∠C′AC =15°,∴∠C′AB′=60°.∴sin60°=''6B C =解得:B′C′=故选:B .【点睛】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.10.C【解析】【分析】先利用垂直平分线的性质证明BE=CE=8,再在Rt △BED 中利用30°角的性质即可求解ED .【详解】解:因为DE 垂直平分BC ,所以8BE CE ==,在Rt BDE V 中,30B ∠=︒, 则118422ED BE ==⨯=; 故选:C .【点睛】本题主要考查了线段垂直平分线的性质、30°直角三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.11.A【解析】【分析】先根据图形翻折的性质可得到四边形EFGH 是矩形,再根据全等三角形的判定定理得出Rt △AHE ≌Rt △CFG ,再由勾股定理及直角三角形的面积公式即可解答.【详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH 的其它内角都是90°,∴四边形EFGH 是矩形,∴EH=FG (矩形的对边相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt △AHE ≌Rt △CFG ,∴AH=CF=FN ,又∵HD=HN ,∴AD=HF ,在Rt △HEF 中,EH=3,EF=4,根据勾股定理得,又∵HE•EF=HF•EM ,∴EM=125, 又∵AE=EM=EB (折叠后A 、B 都落在M 点上),∴AB=2EM=245, ∴AD :AB=5:245=2524=25:1. 故选A【点睛】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.12.D【解析】【分析】根据抛物线的图象与系数的关系即可求出答案.【详解】解:由抛物线的开口可知:a <0,由抛物线与y 轴的交点可知:c <0,由抛物线的对称轴可知:2b a ->0,∴b >0,∴abc >0,故①正确;令x=3,y >0,∴9a+3b+c >0,故②正确;∵OA=OC <1,∴c >﹣1,故③正确;∵对称轴为直线x=1,∴﹣2b a=1,∴b=﹣4a . ∵OA=OC=﹣c ,∴当x=﹣c 时,y=0,∴ac 1﹣bc+c=0,∴ac ﹣b+1=0,∴ac+4a+1=0,∴c=41a a +-,∴设关于x 的方程ax 1+bx+c=0(a≠0)有一个根为x ,∴x ﹣c=4,∴x=c+4=1a-,故④正确; ∵x 1<1<x 1,∴P 、Q 两点分布在对称轴的两侧,∵1﹣x 1﹣(x 1﹣1)=1﹣x 1﹣x 1+1=4﹣(x 1+x 1)<0,即x 1到对称轴的距离小于x 1到对称轴的距离,∴y 1>y 1,故⑤正确.故选D .【点睛】 本题考查的是二次函数图象与系数的关系,二次函数y=ax 1+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.本题属于中等题型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.45°【解析】过P作PM∥直线a,根据平行线的性质,由直线a∥b,可得直线a∥b∥PM,然后根据平行线的性质,由∠P=75°,∠2=30°,可得∠1=∠P-∠2=45°.故答案为45°.点睛:本题考查了平行线的性质的应用,能正确根据平行线的性质进行推理是解此题的关键,注意:两直线平行,内错角相等.14.11 xx-+.【解析】【分析】根据同分母分式加减运算法则化简即可.【详解】原式=11 xx-+,故答案为11 xx-+.【点睛】本题考查了分式的加减运算,熟记运算法则是解题的关键.15.(-2,7).【解析】【详解】解:过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(﹣7,2),∴反比例函数的解析式为:y=﹣14 x①,点C的坐标为:(﹣4,8).设直线BC的解析式为:y=kx+b,则b=6-4k+b=8⎧⎨⎩解得:1k=-2b=6⎧⎪⎨⎪⎩∴直线BC的解析式为:y=﹣12x+6②,联立①②得:x=-2y=7⎧⎨⎩或x=14y=-1⎧⎨⎩(舍去),∴点E的坐标为:(﹣2,7).故答案为(﹣2,7).16.2【解析】试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,∴反比例函数的解析式为6yx=;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),∵点E 在抛物线上,∴61aa=+,整理得260a a+-=,解得2a=或3a=-(舍去),故正方形ADEF的边长是2.考点:反比例函数系数k的几何意义.17.4610⨯【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:6×1,故答案为:6×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.17【解析】过点B作EF⊥l2,交l1于E,交l1于F,如图,∵EF⊥l2,l1∥l2∥l1,∴EF⊥l1⊥l1,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,{AEB BFC EAB FCB AB BC∠=∠∠=∠=,∴△ABE≌△BCF,∴BE=CF=5,AE=BF=7,在Rt△ABE中,AB2=BE2+AE2,∴AB2=74,∴S△ABC=12AB⋅BC=12AB2=17.故答案是17.点睛:本题考查了全等三角形的判定和性质、勾股定理、平行线间的距离,三角形的面积公式,解题的关键是做辅助线,构造全等三角形,通过证明三角形全等对应边相等,再利用三角形的面积公式即可得解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣18x2﹣14x+3;(2)①点D坐标为(﹣32,0);②点M(32,0).【解析】【分析】(1)应用待定系数法问题可解;(2)①通过分类讨论研究△APQ和△CDO全等②由已知求点D坐标,证明DN∥BC,从而得到DN为中线,问题可解.【详解】(1)将点(-6,0),C (0,3),B (4,0)代入y=ax 2+bx+c ,得366016400a b c a b c c -+⎧⎪++⎨⎪⎩===, 解得:18143a b c ⎧-⎪⎪⎪-⎨⎪⎪⎪⎩=== , ∴抛物线解析式为:y=-18x 2-14x+3; (2)①存在点D ,使得△APQ 和△CDO 全等,当D 在线段OA 上,∠QAP=∠DCO ,AP=OC=3时,△APQ 和△CDO 全等,∴tan ∠QAP=tan ∠DCO ,OC OD OA OC=, ∴3 63OD =, ∴OD=32, ∴点D 坐标为(-32,0). 由对称性,当点D 坐标为(32,0)时, 由点B 坐标为(4,0),此时点D (32,0)在线段OB 上满足条件. ②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB ,∴BD=BC=5,∴OD=BD-OB=1,则点D 坐标为(-1,0)且AD=BD=5,连DN ,CM ,则DN=DM ,∠NDC=∠MDC ,∴∠NDC=∠DCB ,∴DN ∥BC , ∴1AN AD NC DB==, 则点N 为AC 中点.∴DN 时△ABC 的中位线,∵DN=DM=12BC=52, ∴OM=DM-OD=32 ∴点M (32,0) 【点睛】 本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合.20.(1)证明见解析;(2)110°.【解析】分析:(1)欲证明DB=DE ,只要证明∠BED=∠ABD 即可;(2)因为△OAB 是等腰三角形,属于只要求出∠OBA 即可解决问题;详解:(1)证明:∵DC ⊥OA ,∴∠OAB+∠CEA=90°,∵BD 为切线,∴OB ⊥BD ,∴∠OBA+∠ABD=90°,∵OA=OB ,∴∠OAB=∠OBA ,∴∠CEA=∠ABD ,∵∠CEA=∠BED ,∴∠BED=∠ABD,∴DE=DB.(2)∵DE=DB,∠BDE=70°,∴∠BED=∠ABD=55°,∵BD为切线,∴OB⊥BD,∴∠OBA=35°,∵OA=OB,∴∠OBA=180°-2×35°=110°.点睛:本题考查圆周角定理、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(4)500;(4)440,作图见试题解析;(4)4.4.【解析】【分析】(4)利用0.5小时的人数除以其所占比例,即可求出样本容量;(4)利用样本容量乘以4.5小时的百分数,即可求出4.5小时的人数,画图即可;(4)计算出该市中小学生一天中阳光体育运动的平均时间即可.【详解】解:(4)由题意可得:0.5小时的人数为:400人,所占比例为:40%,∴本次调查共抽样了500名学生;(4)4.5小时的人数为:500×4.4=440(人),如图所示:(4)根据题意得:1000.5200120 1.580210020012080⨯+⨯+⨯+⨯+++=4.4,即该市中小学生一天中阳光体育运动的平均时间为4.4小时.考点:4.频数(率)分布直方图;4.扇形统计图;4.加权平均数.22.1【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:() 111 213xx⎧-≤⎪⎨⎪-<⎩①②,解不等式①得:x≤3,解不等式②得:x>﹣2,所以不等式组的解集为:﹣2<x≤3,所以所有整数解的和为:﹣1+0+1+2+3=1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(1)12;(2)14【解析】试题分析:(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.试题解析:(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.考点:列表法与树状图法;概率公式.24.(1)C(﹣3,2);(2)y1=6x,y2=﹣13x+3;(3)3<x<1.【解析】分析:(1)过点C作CN⊥x轴于点N,由已知条件证Rt△CAN≌Rt△AOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3结合点C在第二象限即可得到点C的坐标;(2)设△ABC向右平移了c个单位,则结合(1)可得点C′,B′的坐标分别为(﹣3+c,2)、(c,1),再设反比例函数的解析式为y1=kx,将点C′,B′的坐标代入所设解析式即可求得c的值,由此即可得到点C′,B′的坐标,这样用待定系数法即可求得两个函数的解析式了;(3)结合(2)中所得点C′,B′的坐标和图象即可得到本题所求答案. 详解:(1)作CN⊥x轴于点N,∴∠CAN=∠CAB=∠AOB=90°,∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,∴∠CAN=∠OAB,∵A(﹣2,0)B(0,1),∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵ACN OABANC AOBAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt△CAN≌Rt△AOB(AAS),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵点C在第二象限,∴C(﹣3,2);(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1),设这个反比例函数的解析式为:y1=kx,又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=kx,得﹣1+2c=c,解得c=1,即反比例函数解析式为y1=6x,此时C′(3,2),B′(1,1),设直线B′C′的解析式y2=mx+n,∵32 61m nm n+=⎧⎨+=⎩,∴133mn⎧=-⎪⎨⎪=⎩,∴直线C′B′的解析式为y2=﹣13x+3;(3)由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(1,1),∴若y 1<y 2时,则3<x <1.点睛:本题是一道综合考查“全等三角形”、“一次函数”、“反比例函数”和“平移的性质”的综合题,解题的关键是:(1)通过作如图所示的辅助线,构造出全等三角形Rt △CAN 和Rt △AOB ;(2)利用平移的性质结合点B 、C 的坐标表达出点C′和B′的坐标,由点C′和B′都在反比例函数的图象上列出方程,解方程可得点C′和B′的坐标,从而使问题得到解决.25.1.5千米【解析】【分析】先根据相似三角形的判定得出△ABC ∽△AMN,再利用相似三角形的性质解答即可【详解】在△ABC 与△AMN 中,305549AC AB ==,151.89AM AN ==, ∴AC AM AB AN =,∵∠A=∠A ,∴△ABC ∽△ANM , ∴AC AM BC MN =,即30145MN =,解得MN=1.5(千米) ,因此,M 、N 两点之间的直线距离是1.5千米.【点睛】此题考查相似三角形的应用,解题关键在于掌握运算法则26.(1)证明见解析;(2)补图见解析;ABGD S 2四边形=【解析】【分析】()1根据等腰三角形的性质得到ABD ADB ∠=∠,等量代换得到ABD CDE ∠=∠,根据余角的性质即可得到结论;()2根据平行线的判定定理得到AD ∥BG ,推出四边形ABGD 是平行四边形,得到平行四边形ABGD 是菱形,设AB=BG=GD=AD=x ,解直角三角形得到22BF BG x == ,过点B 作BH AD ⊥ 于H ,根据平行四边形的面积公式即可得到结论.【详解】解:()1AB AD Q =, ABD ADB ∠∠∴=,ADB CDE ∠∠=Q ,ABD CDE ∠∠∴=,BAC 90∠=o Q ,ABD ACB 90∠∠∴+=o ,CE AE ⊥Q ,DCE CDE 90∠∠∴+=o ,ACB DCE ∠∠∴=;()2补全图形,如图所示:BAD 45∠=o Q ,BAC 90∠=o ,BAE CAE 45∠∠∴==o ,F ACF 45∠∠==o ,AE CF ⊥Q ,BG CF ⊥,AD //BG ∴,BG CF ⊥Q ,BAC 90∠=o ,且ACB DCE ∠∠=,AB BG ∴=,AB AD =Q ,BG AD ∴=,∴四边形ABGD 是平行四边形,AB AD =Q ,∴平行四边形ABGD 是菱形,设AB BG GD AD x ====,BF ∴==,AB BF x 2∴+==x ∴=过点B 作BH AD ⊥于H ,BH 1∴==.ABGD S AD BH ∴=⨯=四边形故答案为(1)证明见解析;(2)补图见解析;ABGD S 四边形.【点睛】本题考查等腰三角形的性质,平行四边形的判定和性质,菱形的判定和性质,解题的关键是正确的作出辅助线.27.111,1x y =⎧⎨=-⎩;223232x y ⎧=-⎪⎪⎨⎪=⎪⎩;331252x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】分析:把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.详解:由方程222()x y x y -=+可得,0x y +=,2x y -=;则原方程组转化为223,0.x y x y ⎧-=⎨+=⎩(Ⅰ)或223,2.x y x y ⎧-=⎨-=⎩ (Ⅱ), 解方程组(Ⅰ)得21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩, 解方程组(Ⅱ)得43341,1,21;5.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩,∴原方程组的解是21123,1,21;3.2xxyy⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩331,25.2xy⎧=-⎪⎪⎨⎪=-⎪⎩.点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y,即可得到关于x的一元二次方程.。
广西省贵港市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列各数中比﹣1小的数是( ) A .﹣2 B .﹣1C .0D .12.一、单选题如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .1253.函数y =ax 2与y =﹣ax+b 的图象可能是( )A .B .C .D .4.如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ).A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定5.下列图案中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .6.如图,在菱形ABCD 中,AB=BD ,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE=DF ,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A.4 B.3 C.2 D.17.如图中任意画一个点,落在黑色区域的概率是()A.1B.12C.πD.508.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是()A.a=b•co sA B.c=a•sinA C.a•cotA=b D.a•tanA=b9.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为()。
广西贵港市港南区中考数学二模试卷一、选择题(每题3分,共36分)1.﹣2017的倒数是()A.2017 B.C.﹣D.02.若点A(a﹣2,3)和点B(﹣1,b+5)关于y轴对称,则点C(a,b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知,则的值是()A.B.C.D.4.若等腰三角形的两条边的长分别为5cm和8cm,则它的周长是()A.13cm B.18cm C.21cm D.18cm或21cm5.下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个6.在同一直角坐标系中,若直线y=k1x与双曲线y=没有公共点,则()A.k1k2<0 B.k1k2>0 C.k1+k2<0 D.k1+k2>07.若一元二次方程ax2﹣c=0(ac>0)的两个根分别是n+1与2n﹣4,则=()A.﹣2 B.1 C.2 D.48.已知不等式组仅有2个整数解,那么a的取值范围是()A.a≥2 B.a<4 C.2≤a<4 D.2<a≤49.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是()A.B.C.D.10.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5°B.15° C.20° D.22.5°11.如图,正方形ABCD边长为4,点P从点A运动到点B,速度为1,点Q沿B﹣C﹣D运动,速度为2,点P、Q同时出发,则△BPQ的面积y与运动时间t(t≤4)的函数图象是()A.B.C.D.12.如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A折叠,使C落在AB 上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠CAE=﹣1;②图中共有4对全等三角形;③若将△PEF沿PF翻折,则点E一定落在AB上;④PC=EC;⑤S四边形DFEP=S△APF.正确的个数是()A.1个B.2个C.3个D.4个二、填空题(每题3分,共18分)13.36的算术平方根是.14.已知a2﹣b2=5,a+b=﹣2,那么代数式a﹣b的值.15.二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,则a的值为.16.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B= .17.如图,在Rt△ABC中,∠CAB=30°,∠C=90°.AD=AC,AB=8,E是AB上任意一点,F是AC上任意一点,则折线DEFB的最短长度为.18.如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x 轴的正半轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A6B7A7的周长是.三、解答题(本大题共8小题,满分66分)19.(1)(π﹣2017)0+|2﹣|﹣4cos30°+(2)先化简,再求值:﹣÷,其中a=.20.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4)、B(3,﹣2)、C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.(3)直接写出C2的坐标.21.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数(k≠0)的图象上.(1)求a的值;(2)直接写出点P′的坐标;(3)求反比例函数的解析式.22.2016年3月,我校举办了以“读城记”为主题的校读书节暨文化艺术节,为了解初中学生更喜欢下列A、B、C、D哪个比赛,从初中学生随机抽取了部分学生进行调查,每个参与调查的学生只选择最喜欢的一个项目,并把调查结果绘制了两幅不完整的统计图,请回答下列问题:A.“寻找星主播”校园主持人大赛B.“育才音超”校园歌手大赛C.阅读之星评选D.“超级演说家”演讲比赛(1)这次被调查的学生共有人.请你将统计图补充完整.(2)在此调查汇总,抽到了七年级(1)班3人.其中2人喜欢“育才音超”校园歌手大赛、1人喜欢阅读之星评选.抽到八年级(5)班2人,其中1人喜欢“超级演说家”演讲比赛、1人喜欢阅读之星评选.从这5人中随机选两人.用列表或用树状图求出两人都喜欢阅读之星评选的概率.23.小明所在的学校加强学生的体育锻炼,准备从某体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据实际情况,需从该商店一次性购买篮球和足球功60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?24.已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.25.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0).(1)求b、c的值;(2)如图1直线y=kx+1(k>0)与抛物线第一象限的部分交于D点,交y轴于F点,交线段BC于E点.求的最大值;(3)如图2,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.问在直线BC下方的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.26.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.广西贵港市港南区中考数学二模试卷参考答案与试题解析一、选择题(每题3分,共36分)1.﹣2017的倒数是()A.2017 B.C.﹣D.0【考点】17:倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:﹣2017的倒数是﹣.故选:C.2.若点A(a﹣2,3)和点B(﹣1,b+5)关于y轴对称,则点C(a,b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】P5:关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.【解答】解:点A(a﹣2,3)和点B(﹣1,b+5)关于y轴对称,得a﹣2=1,b+5=3.解得a=3,b=﹣2.则点C(a,b)在第四象限,故选:D.3.已知,则的值是()A.B.C.D.【考点】S1:比例的性质.【分析】根据等式的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由,得a=b,==﹣,故选:D.4.若等腰三角形的两条边的长分别为5cm和8cm,则它的周长是()A.13cm B.18cm C.21cm D.18cm或21cm【考点】KH:等腰三角形的性质;K6:三角形三边关系.【分析】等腰三角形两边的长为5cm和8cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是5cm,底边是8cm时,能构成三角形,则其周长=5+5+8=18cm;②当底边是5cm,腰长是8cm时,能构成三角形,则其周长=5+8+8=21cm.故选D.5.下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】根据平行线的性质对①进行判断;根据平行公理对②进行判断;根据等弧的定义对③进行判断;根据中点四边的判定方法可判断顺次连接菱形各边中点得到的四边形为平行四边形,加上菱形的对角线垂直可判断中点四边形为矩形.【解答】解:两直线平行,同位角相等,所以①错误;经过直线外一点有且只有一条直线与这条直线平行,所以②错误;在同圆或等圆中,长度相等的弧是等弧,所以③选项错误;顺次连接菱形各边中点得到的四边形是矩形,所以④正确.故选A.6.在同一直角坐标系中,若直线y=k1x与双曲线y=没有公共点,则()A.k1k2<0 B.k1k2>0 C.k1+k2<0 D.k1+k2>0【考点】G8:反比例函数与一次函数的交点问题.【分析】因为直线y=k1x(k1≠0)和双曲线y=(k2≠0)在同一坐标系内的图象无交点,那么方程k1x=无解,据此可得结果.【解答】解:依题意可得,方程k1x=无解,∴x2=<0,也就是k1和k2异号,即k1k2<0.故选A.7.若一元二次方程ax2﹣c=0(ac>0)的两个根分别是n+1与2n﹣4,则=()A.﹣2 B.1 C.2 D.4【考点】AB:根与系数的关系.【分析】根据题意得到n+1与2n﹣4互为相反数,求出n的值,确定出所求式子的值即可.【解答】解:∵一元二次方程ax2﹣c=0(ac>0)的两个根分别是n+1与2n﹣4,∴n+1与2n﹣4互为相反数,即n+1+2n﹣4=0,解得:n=1,∴方程的两根为2和﹣2,则=4,故选D8.已知不等式组仅有2个整数解,那么a的取值范围是()A.a≥2 B.a<4 C.2≤a<4 D.2<a≤4【考点】CC:一元一次不等式组的整数解.【分析】首先解不等式组确定不等式组的解集,然后根据不等式组仅有2个整数解即可得到关于a的不等式组,求得a的值.【解答】解:,解①得:x>3﹣a,解②得:x<4,则不等式组的解集是:3﹣a<x<4.不等式组仅有2个整数解,则是2,3.则1≤3﹣<2.解得:2<a≤4.故选D.9.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是()A.B.C.D.【考点】MO:扇形面积的计算;L5:平行四边形的性质.【分析】根据题意可以得到平行四边形底边AB上的高,由图可知图中阴影部分的面积是平行四边形的面积减去扇形的面积和△EBC的面积.【解答】解:作DF⊥AB于点F,∵AD=2,∠A=30°,∠DFA=90°,∴DF=1,∵AD=AE=2,AB=4,∴BE=2,∴阴影部分的面积是:4×1﹣=3﹣,故选A.10.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5°B.15° C.20° D.22.5°【考点】M5:圆周角定理;KM:等边三角形的判定与性质;L5:平行四边形的性质.【分析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【解答】解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=∠BOF=15°,故选:B.11.如图,正方形ABCD边长为4,点P从点A运动到点B,速度为1,点Q沿B﹣C﹣D运动,速度为2,点P、Q同时出发,则△BPQ的面积y与运动时间t(t≤4)的函数图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】本题应分两段进行解答,①点P在AB上运动,点Q在BC上运动,②点P在AB上运动,点Q在CD 上运动,依次得出y与t的关系式即可得出函数图象.【解答】解:①点P在AB上运动,点Q在BC上运动,即0≤t≤2,此时AP=t,BP=4﹣t,QB=2t,故可得y=PB•QB=(4﹣t)•2t=﹣t2+4t,函数图象为开口向下的抛物线;②点P在AB上运动,点Q在CD上运动,即2<t≤4此时AP=t,BP=4﹣t,△BPQ底边PB上的高保持不变,为正方形的边长4,故可得y=BP×4=﹣2t+8,函数图象为直线.综上可得全过程的函数图象,先是开口向下的抛物线,然后是直线;故选:B.12.如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A折叠,使C落在AB 上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠CAE=﹣1;②图中共有4对全等三角形;③若将△PEF沿PF翻折,则点E一定落在AB上;④PC=EC;⑤S四边形DFEP=S△APF.正确的个数是()A.1个B.2个C.3个D.4个【考点】KD:全等三角形的判定与性质;PB:翻折变换(折叠问题).【分析】①正确.作EM∥AB交AC于M.设CM=CE=a,则ME=AM=a,根据tan∠CAE=即可判断.②正确.根据△CDA≌△CDB,△AEC≌△AEF,△APC≌△APF,△PEC≌△PEF即可判断.③正确.由△PEC≌△PEF得到∠PFA=∠PFE=45°,由此即可判断.④正确.只要证明∠CPE=∠CEP=67.5°,⑤错误.假设结论成立,推出矛盾即可.【解答】解:①正确.作EM∥AB交AC于M.∵CA=CB,∠ACB=90°,∴∠CAB=∠CBA=45°,∵∠CAE=∠BAE=∠CA B=22.5°,∴∠MEA=∠EAB=22.5°,∴∠CME=45°=∠CEM,设CM=CE=a,则ME=AM=a,∴tan∠CAE===﹣1,故①正确,②正确.△CDA≌△CDB,△AEC≌△AEF,△APC≌△APF,△PEC≌△PEF,故②正确,③正确.∵△PEC≌△PEF,∴∠PCE=∠PFE=45°,∵∠EFA=∠ACE=90°,∴∠PFA=∠PFE=45°,∴若将△PEF沿PF翻折,则点E一定落在AB上,故③正确.④正确.∵∠CPE=∠CAE+∠ACP=67.5°,∠CEP=90°﹣∠CAE=67.5°,∴∠CPE=∠CEP,∴CP=CE,故④正确,⑤错误.∵△APC≌△APF,∴S△APC=S△APF,假设S△APF=S四边形DFPE,则S△APC=S四边形DFPE,∴S△ACD=S△AEF,∵S△ACD=S△ABC,S△AEF=S△AEC≠S△ABC,∴矛盾,假设不成立.故⑤错误.二、填空题(每题3分,共18分)13.36的算术平方根是 6 .【考点】22:算术平方根.【分析】根据算术平方根的定义,即可解答.【解答】解:36的算术平方根是6.故答案为:6.14.已知a2﹣b2=5,a+b=﹣2,那么代数式a﹣b的值﹣2.5 .【考点】54:因式分解﹣运用公式法.【分析】利用平方差公式可得a﹣b=(a2﹣b2)÷(a+b),然后把已知条件代入求值即可.【解答】解:∵a2﹣b2=5,a+b=﹣2,∴a﹣b=(a2﹣b2)÷(a+b)=5÷(﹣2)=﹣2.5.故答案为:﹣2.5.15.二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,则a的值为﹣1 .【考点】H5:二次函数图象上点的坐标特征.【分析】将(0,0)代入y=(a﹣1)x2﹣x+a2﹣1 即可得出a的值.【解答】解:∵二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,∴a2﹣1=0,∴a=±1,∵a﹣1≠0,∴a≠1,∴a的值为﹣1.故答案为:﹣1.16.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B= 36°.【考点】JA:平行线的性质.【分析】根据角平分线的定义可得∠BCD=2∠DCE,然后根据两直线平行,内错角相等可得∠B=∠BCD.【解答】解:∵CE平分∠BCD,∴∠BCD=2∠DCE=2×18=36°,∵AB∥CD,∴∠B=∠BCD=36°.故答案为:36°.17.如图,在Rt△ABC中,∠CAB=30°,∠C=90°.AD=AC,AB=8,E是AB上任意一点,F是AC上任意一点,则折线DEFB的最短长度为.【考点】PA:轴对称﹣最短路线问题.【分析】利用轴对称求最短路径的方法,重新构造直角三角形,进而利用勾股定理求出即可.【解答】解:作D点关于AB的对称点D′,B点关于AC的对称点B′,连接D′B′分别交AB于点E,AC 于点F,作B′R⊥AB,过点D′作D′W⊥B′R于点W,∵∠CAB=30°,∠C=90°.AD=AC,AB=8,∴BC=4,AC=4,则AD=,BB′=8,B′R=4,∴DT=AD=,AT==,BR=4,∴RW=,D′W=8﹣﹣4=,∴B′W=,B′D′===.故答案为:.18.如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x 轴的正半轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A6B7A7的周长是192.【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标.【分析】先根据直线的解析式求出直线l与两坐标轴的交点坐标,即得出OA=,OB=1,并求出∠OAB=30°,再由等边三角形和外角定理依次求出∠OB1A=∠AB2A1=∠AB3A2=30°,根据等角对等边得:A1A2=A1B2=AA1=2OA1=2,从而发现了规律得出等边△A6B7A7的边长为64,从而求得周长.【解答】解:当x=0时,y=1,则B(0,1),当y=0时,x=﹣,则A(﹣,0),∴OA=,OB=1,∵tan∠OAB===,∴∠OAB=30°,∵△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,∴∠A1OB1=∠A2A1B2=∠A3A2B3=60°,∴∠OB1A=∠AB2A1=∠AB3A2=30°,∴OB1=OA=,A1B2=AA1,A2B3=AA2,则OA1=OB1=,A1B2=AA1=2,∴A1A2=A1B2=AA1=2OA1=2,同理:A2A3=A2B3=2A1A2=4,A3A4=2A2A3=8,A4A5=2A3A4=16,A5A6=2A4A5=32∴A6A7=2A5A6=64,∴△A6B7A7的周长是:3×64=192,故答案为:192.三、解答题(本大题共8小题,满分66分)19.(1)(π﹣2017)0+|2﹣|﹣4cos30°+(2)先化简,再求值:﹣÷,其中a=.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】(1)根据零指数幂、绝对值、特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(1)(π﹣2017)0+|2﹣|﹣4cos30°+=1+﹣4×+4=1+2﹣+4=7﹣3;(2)﹣÷===,当a=时,原式=.20.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4)、B(3,﹣2)、C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.(3)直接写出C2的坐标.【考点】SD:作图﹣位似变换;P7:作图﹣轴对称变换.【分析】(1)作出A、B、C关于x轴的对称点A1,B1,C1,△A1B1C1即为所求;(2)延长OA1到A2使得OA2=2OA1,同法作出B2,C2,△A2B2C2即为所求;(3)观察图象即可解决问题;【解答】解:(1)△ABC关于x轴对称的△A1B1C1如图所示;(2)△A1B1C1的位似图形△A2B2C2如图所示,(3)由图象可知C2(11,4).21.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数(k≠0)的图象上.(1)求a的值;(2)直接写出点P′的坐标;(3)求反比例函数的解析式.【考点】G7:待定系数法求反比例函数解析式;F8:一次函数图象上点的坐标特征;P5:关于x轴、y轴对称的点的坐标.【分析】(1)把(﹣2,a)代入y=﹣2x中即可求a;(2)坐标系中任一点关于y轴对称的点的坐标,其中横坐标等于原来点横坐标的相反数,纵坐标不变;(3)把P′代入y=中,求出k,即可得出反比例函数的解析式.【解答】解:(1)把(﹣2,a)代入y=﹣2x中,得a=﹣2×(﹣2)=4,∴a=4;(2)∵P点的坐标是(﹣2,4),∴点P关于y轴的对称点P′的坐标是(2,4);(3)把P′(2,4)代入函数式y=,得4=,∴k=8,∴反比例函数的解析式是y=.22.2016年3月,我校举办了以“读城记”为主题的校读书节暨文化艺术节,为了解初中学生更喜欢下列A、B、C、D哪个比赛,从初中学生随机抽取了部分学生进行调查,每个参与调查的学生只选择最喜欢的一个项目,并把调查结果绘制了两幅不完整的统计图,请回答下列问题:A.“寻找星主播”校园主持人大赛B.“育才音超”校园歌手大赛C.阅读之星评选D.“超级演说家”演讲比赛(1)这次被调查的学生共有200 人.请你将统计图补充完整.(2)在此调查汇总,抽到了七年级(1)班3人.其中2人喜欢“育才音超”校园歌手大赛、1人喜欢阅读之星评选.抽到八年级(5)班2人,其中1人喜欢“超级演说家”演讲比赛、1人喜欢阅读之星评选.从这5人中随机选两人.用列表或用树状图求出两人都喜欢阅读之星评选的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1))根据A的人数为20人,所以占10%,可得总人数=20÷10%=200人,由此即可解决问题;(2)利用列表法,求出共有20种可能,其中所选两人都喜欢阅读之星有2种,再根据概率公式计算即可;【解答】解:(1)∵A的人数为20人,所以占10%,∴总人数=20÷10%=200人,∴B的人数为200×40%=80人,C的人数=200﹣80﹣20﹣40=60人,条形图如图所示,故答案为200.(2)设绿1,绿2表示喜欢阅读之星的学生,红1,红2,红3表示喜欢其他的学生,列表如下:由表格可知,共有20种可能,其中所选两人都喜欢阅读之星有2种,所以两人都喜欢阅读之星评选的概率==.23.小明所在的学校加强学生的体育锻炼,准备从某体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据实际情况,需从该商店一次性购买篮球和足球功60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设每个篮球x元,每个足球y元,根据买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元,列出方程组,求解即可;(2)设买m个篮球,则购买(60﹣m)个足球,根据总价钱不超过4000元,列不等式求出x的最大整数解即可.【解答】解:(1)设每个篮球x元,每个足球y元,由题意得,,解得:,答:每个篮球80元,每个足球50元;(2)设买m个篮球,则购买(60﹣m)个足球,由题意得,80,m+50(60﹣m)≤4000,解得:m≤33,∵m为整数,∴m最大取33,答:最多可以买33个篮球.24.已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.【考点】MD:切线的判定.【分析】(1)连接FO,由F为BC的中点,AO=CO,得到OF∥AB,由于AC是⊙O的直径,得出CE⊥AE,根据OF∥AB,得出OF⊥CE,于是得到OF所在直线垂直平分CE,推出FC=FE,OE=OC,再由∠ACB=90°,即可得到结论.(2)证出△AOE是等边三角形,得到∠EOA=60°,再由直角三角形的性质即可得到结果.【解答】证明:(1)如图1,连接FO,∵F为BC的中点,AO=CO,∴OF∥AB,∵AC是⊙O的直径,∴CE⊥AE,∵OF∥AB,∴OF⊥CE,∴OF所在直线垂直平分CE,∴FC=FE,OE=OC,∴∠FEC=∠FCE,∠0EC=∠0CE,∵∠ACB=90°,即:∠0CE+∠FCE=90°,∴∠0EC+∠FEC=90°,即:∠FEO=90°,∴FE为⊙O的切线;(2)如图2,∵⊙O的半径为3,∴AO=CO=EO=3,∵∠EAC=60°,OA=OE,∴∠EOA=60°,∴∠COD=∠EOA=60°,∵在Rt△OCD中,∠COD=60°,OC=3,∴CD=,∵在Rt△ACD中,∠A CD=90°,CD=,AC=6,∴AD=.25.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0).(1)求b、c的值;(2)如图1直线y=kx+1(k>0)与抛物线第一象限的部分交于D点,交y轴于F点,交线段BC于E点.求的最大值;(3)如图2,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.问在直线BC下方的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)将点A、B的坐标带入到抛物线解析式中,得出关于b、c的二元一次方程组,解方程组即可得出结论;(2)作DN∥CF交CB于N,由DN∥CF可得出△DEN∽△FEC,根据相似三角形的性质得出,由(1)可得出抛物线的解析式,令抛物线解析式中x=0则可得出点C的坐标,由点B、C的坐标可得出直线BC的解析式,设出点D的坐标,则可得出点N的坐标,由直线DF的解析式可得出点F的坐标,从而得出DN、CF 的长度,由DN的长度结合二次函数的性质即可得出结论;(3)假设存在符合题意的点Q.设PM与x轴交于点G,过点G作作直线BC的平行线.由抛物线的解析式可得出顶点P的坐标,由此得出对称轴的解析式,结合直线BC的解析式可得出点M的坐标,结合点G的坐标可知PM=GM,由此得出满足题意的点Q为“过点G与直线BC平行的直线和抛物线的交点”,由G点的坐标结合直线BC的解析式即可得出过点G与BC平行的直线的解析式,联立直线与抛物线解析式得出关于x、y的二元二次方程组,解方程即可得出结论.【解答】解:(1)将点A(﹣1,0)、B(3,0)带入到抛物线解析式中得:,解得:.(2)作DN∥CF交CB于N,如图1所示.∵DN∥CF,∴△DEN∽△FEC,∴.∵抛物线的解析式为y=﹣x2+2x+3,∴点C的坐标为(0,3).∴直线BC的解析式为y=﹣x+3.令直线y=kx+1中x=0,则y=1,即点F的坐标为(0,1).设点D的坐标为(m,﹣m2+2m+3),则点N的坐标为(m,﹣m+3),∴DN=﹣m2+3m,CF=3﹣1=2,∴=,∵DN=﹣m2+3m=﹣+的最大值为,∴的最大值为.(3)假设存在符合题意的点Q.∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴P点的坐标为(1,4),PM的解析式为x=1,∵直线BC的解析式为y=﹣x+3,∴M的坐标为(1,2),∵点G的坐标为(1,0),∴PM=GM=2.设PM与x轴交于点G,过点G作作直线BC的平行线,如图2所示.∴过点G与BC平行的直线为y=﹣x+1.联立直线与抛物线解析式得:,解得:或.∴点Q的坐标为(,﹣)或(,﹣).∵平行线间距离处处相等,且点M为线段PG的中点,∴点Q到直线BC的距离与点P到直线的距离相等.故在直线BC下方的抛物线上存在点Q,使得△QMB与△PMB的面积相等,点Q的坐标为(,﹣)或(,﹣).26.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:垂直.②BC,CD,CF之间的数量关系为:BC=CD+CF ;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.【考点】LO:四边形综合题.【分析】(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质以及等腰直角三角形的角的性质可得到结论.(3)根据等腰直角三角形的性质得到BC=AB=4,AH=BC=2,求得DH=3,根据正方形的性质得到AD=DE,∠ADE=90°,根据矩形的性质得到NE=CM,EM=CN,由角的性质得到∠ADH=∠DEM,根据全等三角形的性质得到EM=DH=3,DM=AH=2,等量代换得到CN=EM=3,EN=CM=3,根据等腰直角三角形的性质得到CG=BC=4,根据勾股定理即可得到结论.【解答】解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即BC⊥CF;故答案为:垂直;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°.∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC.(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,∴CD=BC=1,CH=BC=2,∴DH=3,由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADE=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.。
广西省贵港市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )A .13B .14C .15D .162.如图,已知直线AD 是⊙O 的切线,点A 为切点,OD 交⊙O 于点B ,点C 在⊙O 上,且∠ODA=36°,则∠ACB 的度数为( )A .54°B .36°C .30°D .27°3.下列运算结果是无理数的是( )A .32×2B .32⨯C .722÷D .22135- 4.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( )A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.5.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°6.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .15B .17C .19D .247.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是( )A .①②B .②③C .①③D .②④8.已知e r 是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( ) A .a e a v v v = B .e b b =v v v C .1a e a =v v v D .11a b a b=v v v v 9.如图,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果12C EAF C CDF =V V ,那么S EAF S EBCV V 的值是( )A .12B .13C .14D .1910.下列计算正确的是A .a 2·a 2=2a 4B .(-a 2)3=-a 6C .3a 2-6a 2=3a 2D .(a -2)2=a 2-411.如图,钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC'的位置,此时露在水面上的鱼线B′C′为33m ,则鱼竿转过的角度是( )A .60°B .45°C .15°D .90°12.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( ) A . B . C . D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(2017四川省攀枝花市)若关于x 的分式方程7311mx x x +=--无解,则实数m=_______.14.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b ,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于_____.15.分解因式:4m 2﹣16n 2=_____.16.已知'''ABC A B C ∆∆:且''':1:2ABC A B C S S ∆∆=,则:''AB A B =__________.17.在函数y=的表达式中,自变量x 的取值范围是 .18.如图,四边形ABCD 内接于⊙O ,AD 、BC 的延长线相交于点E ,AB 、DC 的延长线相交于点F .若∠E +∠F =80°,则∠A =____°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题: (1)共有 名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.20.(6分)如图,已知A 是⊙O 上一点,半径OC 的延长线与过点A 的直线交于点B ,OC=BC ,AC=12OB .求证:AB 是⊙O 的切线;若∠ACD=45°,OC=2,求弦CD 的长.21.(6分)先化简,再求值:(x+1y)1﹣(1y+x)(1y ﹣x)﹣1x 1,其中x =3+1,y =3﹣1.22.(8分)在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)k y k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).求该反比例函数和一次函数的解析式;求△AHO 的周长.23.(8分)定义:如果把一条抛物线绕它的顶点旋转180°得到的抛物线我们称为原抛物线的“孪生抛物线”.(1)求抛物线y =x 2﹣2x 的“孪生抛物线”的表达式;(2)若抛物线y =x 2﹣2x+c 的顶点为D ,与y 轴交于点C ,其“孪生抛物线”与y 轴交于点C′,请判断△DCC’的形状,并说明理由:(3)已知抛物线y =x 2﹣2x ﹣3与y 轴交于点C ,与x 轴正半轴的交点为A ,那么是否在其“孪生抛物线”上存在点P ,在y 轴上存在点Q ,使以点A 、C 、P 、Q 为顶点的四边形为平行四边形?若存在,求出P 点的坐标;若不存在,说明理由.24.(10分)如图,在△ABC 中,CD ⊥AB 于点D ,tanA =2cos ∠BCD ,(1)求证:BC =2AD ;(2)若cosB =34,AB =10,求CD 的长.25.(10分)小明遇到这样一个问题:已知:1b c a -=. 求证:240b ac -≥. 经过思考,小明的证明过程如下:∵1b c a-=,∴b c a -=.∴0a b c -+=.接下来,小明想:若把1x =-带入一元二次方程20ax bx c ++=(a ≠0),恰好得到0a b c -+=.这说明一元二次方程20ax bx c ++=有根,且一个根是1x =-.所以,根据一元二次方程根的判别式的知识易证:240b ac -≥.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目: 已知:42a c b+=-. 求证:24b ac ≥.请你参考上面的方法,写出小明所编题目的证明过程. 26.(12分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理.(1)填空m =_______,n =_______,数学成绩的中位数所在的等级_________.(2)如果该校有1200名学生参加了本次模拟测,估计D 等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A 级学生的数学成绩的平均分数.①如下分数段整理样本等级等级 分数段 各组总分 人数A110120X <≤ P 4 B 100110X <≤ 843n C 90100X <≤ 574m D 8090X <≤171 2 ②根据上表绘制扇形统计图27.(12分)如图,△ABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,4).(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1,并写出B 1点的坐标;(2)画出△ABC 绕原点O 旋转180°后得到的图形△A 2B 2C 2,并写出B 2点的坐标;(3)在x 轴上求作一点P ,使△PAB 的周长最小,并直接写出点P 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】解:如图所示,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、I .因为六边形ABCDEF 的六个角都是120°,所以六边形ABCDEF 的每一个外角的度数都是60°.所以AFI BGC DHE GHI V V V V 、、、都是等边三角形.所以31AI AF BG BC ====,.3317GI GH AI AB BG ∴==++=++=,7232DE HE HI EF FI ==--=--=,7124CD HG CG HD .=--=--= 所以六边形的周长为3+1+4+2+2+3=15;故选C .2.D【解析】解:∵AD 为圆O 的切线,∴AD ⊥OA ,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD 与∠ACB 都对AB u u u r,∴∠ACB=12∠AOD=27°.故选D . 3.B【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】A 选项:原式=3×2=6,故A 不是无理数;B ,故B 是无理数;C 6,故C 不是无理数;D =12,故D 不是无理数故选B .【点睛】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.4.A【解析】【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】由题意得:m ﹣1≠0,解得:m≠1,故选A .【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.5.D【解析】分析:依据AB ∥CD ,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.详解:如图,∵AB ∥CD ,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选D.点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.6.D【解析】【分析】由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.【详解】解:解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个(n>1时),则第⑦个图中三角形的个数是4×(7﹣1)=24个,故选D.【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出a n=4(n﹣1)是解题的关键.7.B【解析】【详解】A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选C.8.B【解析】【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a的方向不是单位向量,故错误;D. 左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.9.D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵12EAFCDFCCVV,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAFEBCSS⎛⎫==⎪⎝⎭VV,故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.10.B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A. a 2·a 2=a 4 ,故A 选项错误; B. (-a 2)3=-a 6 ,正确;C. 3a 2-6a 2=-3a 2 ,故C 选项错误;D. (a -2)2=a 2-4a+4,故D 选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.11.C【解析】试题解析:∵sin ∠CAB=62BC AC == ∴∠CAB=45°.∵B C sin C AB AC '''∠===' ∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C .考点:解直角三角形的应用.12.A【解析】【分析】根据轴对称图形的概念判断即可.【详解】A 、是轴对称图形;B 、不是轴对称图形;C 、不是轴对称图形;D 、不是轴对称图形.故选:A .【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3或1.【解析】解:方程去分母得:1+3(x ﹣1)=mx ,整理得:(m ﹣3)x=2.①当整式方程无解时,m ﹣3=0,m=3; ②当整式方程的解为分式方程的增根时,x=1,∴m ﹣3=2,m=1.综上所述:∴m 的值为3或1.故答案为3或1.14.5π【解析】【分析】 根据题意得出球在无滑动旋转中通过的路程为12圆弧,根据弧长公式求出弧长即可. 【详解】解:由图形可知,圆心先向前走OO 1的长度,从O 到O 1的运动轨迹是一条直线,长度为14圆的周长, 然后沿着弧O 1O 2旋转14圆的周长, 则圆心O 运动路径的长度为:112544π⨯⨯+×2π×5=5π, 故答案为5π.【点睛】本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度. 15.4(m+2n )(m ﹣2n ).【解析】【分析】 原式提取4后,利用平方差公式分解即可.【详解】解:原式=4(224m n - )()()422m n m n =+-.故答案为()()422m n m n +-【点睛】本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.16.2【解析】分析:根据相似三角形的面积比等于相似比的平方求解即可.详解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:2.点睛:本题的关键是理解相似三角形的面积比等于相似比的平方.17.x≥1.【解析】【分析】根据被开方数大于等于0列式计算即可得解.【详解】根据题意得,x﹣1≥0,解得x≥1.故答案为x≥1.【点睛】本题考查函数自变量的取值范围,知识点为:二次根式的被开方数是非负数.18.50【解析】试题分析:连结EF,如图,根据圆内接四边形的性质得∠A+∠BCD=180°,根据对顶角相等得∠BCD=∠ECF,则∠A+∠ECF=180°,根据三角形内角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形内角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,则∠A+80°+∠A=180°,然后解方程即可.试题解析:连结EF,如图,∵四边形ABCD内接于⊙O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°.考点:圆内接四边形的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)100;(2)补图见解析;(3)570人.【解析】【分析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【详解】(1)参与问卷调查的学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(1)见解析;(2)+【分析】(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.【详解】(1)直线AB是⊙O的切线,理由如下:连接OA.∵OC=BC,AC=12 OB,∴OC=BC=AC=OA,∴△ACO是等边三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切线.(2)作AE⊥CD于点E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,2;∵∠D=30°,∴2.【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.﹣2【分析】先利用完全平方公式、平方差公式进行展开,然后合并同类项,最后代入x、y的值进行计算即可得.【详解】原式=x1+2xy+2y1﹣(2y1﹣x1)﹣1x1=x1+2xy+2y1﹣2y1+x1﹣1x1=2xy,当,﹣1时,原式=2×)×1)=2×(3﹣2)=﹣2.【点睛】本题考查了整式的混合运算——化简求值,熟练掌握完全平方公式、平方差公式是解题的关键.22.(1)一次函数为112y x=-+,反比例函数为12yx=-;(2)△AHO的周长为12【解析】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.详解:(1)∵tan∠AOH=AH OH=43∴AH=43OH=4∴A(-4,3),代入kyx =,得k=-4×3=-12∴反比例函数为12 yx =-∴12 2m -=-∴m=6∴B(6,-2)∴43 62a ba b-+=⎧⎨+=-⎩∴a=12-,b=1∴一次函数为112y x=-+(2)5 OA===△AHO的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.23.(1)y=-(x-1)²=-x²+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).【解析】【分析】(1)当抛物线绕其顶点旋转180°后,抛物线的顶点坐标不变,只是开口方向相反,则可根据顶点式写出旋转后的抛物线解析式;(2)可分别求出原抛物线和其“孪生抛物线”与y轴的交点坐标C、C′,由点的坐标可知△DCC’是等腰直角三角形;(3)可求出A(3,0),C(0,-3),其“孪生抛物线”为y=-x2+2x-5,当AC为对角线时,由中点坐标可知点P不存在,当AC为边时,分两种情况可求得点P的坐标.【详解】(1)抛物线y=x2-2x化为顶点式为y=(x-1)2-1,顶点坐标为(1,-1),由于抛物线y=x2-2x绕其顶点旋转180°后抛物线的顶点坐标不变,只是开口方向相反,则所得抛物线解析式为y=-(x-1)2-1=-x2+2x-2;(2)△DCC'是等腰直角三角形,理由如下:∵抛物线y=x2-2x+c=(x-1)2+c-1,∴抛物线顶点为D的坐标为(1,c-1),与y轴的交点C的坐标为(0,c),∴其“孪生抛物线”的解析式为y=-(x-1)2+c-1,与y轴的交点C’的坐标为(0,c-2),∴CC'=c-(c-2)=2,∵点D的横坐标为1,∴∠CDC'=90°,由对称性质可知DC=DC’,∴△DCC'是等腰直角三角形;(3)∵抛物线y=x2-2x-3与y轴交于点C,与x轴正半轴的交点为A,令x=0,y=-3,令y=0时,y=x2-2x-3,解得x1=-1,x2=3,∴C(0,-3),A(3,0),∵y=x2-2x-3=(x-1)2-4,∴其“孪生抛物线”的解析式为y=-(x-1)2-4=-x2+2x-5,若A、C为平行四边形的对角线,∴其中点坐标为(32,−32),设P(a,-a2+2a-5),∵A、C、P、Q为顶点的四边形为平行四边形,∴Q(0,a-3),∴23252a a a--+-=−32,化简得,a2+3a+5=0,△<0,方程无实数解,∴此时满足条件的点P不存在,若AC为平行四边形的边,点P在y轴右侧,则AP∥CQ且AP=CQ,∵点C和点Q在y轴上,∴点P的横坐标为3,把x=3代入“孪生抛物线”的解析式y=-32+2×3-5=-9+6-5=-8,∴P1(3,-8),若AC为平行四边形的边,点P在y轴左侧,则AQ∥CP且AQ=CP,∴点P的横坐标为-3,把x=-3代入“孪生抛物线”的解析式y=-9-6-5=-20,∴P2(-3,-20)∴原抛物线的“孪生抛物线”上存在点P1(3,-8),P2(-3,-20),在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形.【点睛】本题是二次函数综合题型,主此题主要考查了根据二次函数的图象的变换求抛物线的解析式,解题的关键是求出旋转后抛物线的顶点坐标以及确定出点P的位置,注意分情况讨论.24.(1)证明见解析;(2)CD=.【解析】【分析】(1)根据三角函数的概念可知tanA=CDAD,cos∠BCD=CDBC,根据tanA=2cos∠BCD即可得结论;(2)由∠B的余弦值和(1)的结论即可求得BD,利用勾股定理求得CD即可.【详解】(1)∵tanA=CDAD,cos∠BCD=CDBC,tanA=2cos∠BCD,∴CDAD=2·CDBC,∴BC=2AD.(2)∵cosB=BDBC=34,BC=2AD,∴BDAD=32.∵AB=10,∴AD=25×10=4,BD=10-4=6,∴BC =8,∴CD .【点睛】本题考查了直角三角形中的有关问题,主要考查了勾股定理,三角函数的有关计算.熟练掌握三角函数的概念是解题关键.25.证明见解析【解析】 解:∵42a c b+=-,∴42a c b +=-.∴420a b c ++=. ∴2x =是一元二次方程20ax bx c ++=的根.∴240b ac -≥,∴24b ac ≥.26.(1)6;8;B ;(2)120人;(3)113分.【解析】【分析】(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m 、n 的值,从而可以得到数学成绩的中位数所在的等级;(2)根据表格中的数据可以求得D 等级的人数;(3)根据表格中的数据,可以计算出A 等级学生的数学成绩的平均分数.【详解】(1)本次抽查的学生有:72420360︒÷=︒(人), 2030%62043211m n =⨯==---=,,数学成绩的中位数所在的等级B ,故答案为:6,11,B ;(2)2120020⨯=120(人), 答:D 等级的约有120人;(3)由表可得,A 等级学生的数学成绩的平均分数:102208435741711134⨯---=(分), 即A 等级学生的数学成绩的平均分是113分.【点睛】本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.27.(1)画图见解析;(2)画图见解析;(3)画图见解析.【解析】【详解】试题分析:(1)、根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)、根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可;(3)、找出点A关于x轴的对称点A′,连接A′B与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置,然后连接AP、BP并根据图象写出点P的坐标即可.试题解析:(1)、△A1B1C1如图所示;B1点的坐标(-4,2)(2)、△A2B2C2如图所示;B2点的坐标:(-4,-2)(3)、△PAB如图所示,P(2,0).考点:(1)、作图-旋转变换;(2)、轴对称-最短路线问题;(3)、作图-平移变换.。
广西贵港市2020版中考数学二模考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019七上·泰州月考) 有理数a、b在数轴上对应点的位置如图所示,则下列判断正确的是()A . a<0B . b<0C . ab>0D . a-b>02. (2分)计算73+(-4)3之值为何()A . 9B . 27C . 279D . 4073. (2分) (2017九下·梁子湖期中) 如图所示的几何体为圆台,其俯视图正确的是()A .B .C .D .4. (2分) (2019七下·闽侯期中) 某班级为了奖励在期中考试中取得好成绩的同学,花了900元钱购买甲、乙两种奖品共50件,其中甲种奖品每件15元,乙种奖品每件20元,若设购买甲种奖品x件,乙种奖品y元,则所列方程组正确是()A .B .C .D .5. (2分)如图,在Rt△ABC中,OA=2,AB=1,把Rt△ABO绕着原点逆时针旋转90°,得△A'B'O,那么点A'的坐标为()A . (, 1)B . (1,)C . (-1,)D . (, -1)6. (2分)如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=75°,∠BDC=60°,CD=60米,并在点C测得塔顶A的仰角为60°,则塔高AB=()A .B . 90C .D .7. (2分)(2012·河池) 用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD 是菱形的依据是()A . 一组邻边相等的四边形是菱形B . 四边相等的四边形是菱形C . 对角线互相垂直的平行四边形是菱形D . 每条对角线平分一组对角的平行四边形是菱形8. (2分)如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为()A . 5B . 6C . 7D . 12二、填空题 (共6题;共6分)9. (1分)(2017·丰县模拟) 计算: =________.10. (1分)(2015·宁波模拟) 因式分解 = ________.11. (1分)(2017·柳江模拟) 如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是________.12. (1分) (2019七下·武昌期中) 如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=20°,∠C=30°,求∠DAE的度数________.13. (1分)(2018·东莞模拟) 如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为________.14. (1分) (2016九上·鼓楼期末) 某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是________m.三、解答题 (共10题;共88分)15. (6分) (2016七下·博白期中) 解不等式(组)(1)(在数轴上把解集表示出来)(2)(并写出不等式的整数解.)16. (5分)(2011·连云港) 一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)17. (5分)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25 000辆,租赁点600个.预计到2015年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?18. (6分)如图,PA,PB分别与⊙O相切于A,B两点,∠ACB=60°.(1)求∠P的度数(2)若⊙O的半径长为4cm,求图中阴影部分的面积19. (15分)用直尺和圆规按下列要求作图:(不写作法,保留作图痕迹)①作∠ABC的角平分线②过点P作L的垂线.20. (7分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,重庆一中在初三学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的两种统计图表.请结合统计图表,回答下列问题.(1)本次参与调查的学生共有________人,图2所示的扇形统计图中B部分对应的圆心角是________度,请补全图1所示的条形统计图________;(2)如果学校共有学生4800名,那么请你估计不了解雾霾天气知识的学生人数.21. (11分) (2019七下·简阳期中) 周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时后达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园.如图是他们离家路程s(km)与小明离家时间t(h)的关系图,请根据图回答下列问题:(1)图中自变量是________,因变量是________;(2)小明家到滨海公园的路程为________km,小明在中心书城逗留的时间为________h;(3)小明出发________小时后爸爸驾车出发;(4)图中A点表示________;(5)小明从中心书城到滨海公园的平均速度为________km/h,小明爸爸驾车的平均速度为________km/h;(补充;爸爸驾车经过________追上小明);(6)小明从家到中心书城时,他离家路程s与坐车时间t之间的关系式为________.22. (11分)(2017·永嘉模拟) 如图,在△ABC中,∠ACB=90°,点D是AB上一点,以BD为直径的⊙O和AB相切于点P.(1)求证:BP平分∠ABC;(2)若PC=1,AP=3,求BC的长.23. (16分)(2018·遵义模拟) 如图,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于点H,过点C作CD⊥AC,连接AD,点M为AC上一点,且AM=CD,连接BM交AH于点N,交AD于点E.(1)若AB=3,AD= ,求△BMC的面积;(2)点E为AD的中点时,求证:AD= BN .24. (6分)(2012·温州) 如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P (1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.(1)当m=3时,求点A的坐标及BC的长;(2)当m>1时,连接CA,问m为何值时CA⊥CP?(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共10题;共88分)15-1、15-2、16-1、17-1、18-1、18-2、19-1、20-1、20-2、21-1、21-2、21-3、21-4、21-5、21-6、22-1、22-2、23-1、23-2、24-1、24-2、。
广西贵港市2020版中考数学模拟试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分) (2019七上·绍兴期中) 如果表示运人仓库的大米吨数,那么运出大米表示为()A . -5tB . +5tC . -3tD . +3t2. (2分)下列各式中,计算正确的是()A . x(2x﹣1)=2x2﹣1B . x2﹣9=(x﹣3)( x+3 )C . (a+2)2=a2+4D . (x+2)(x﹣3)=x2+x﹣63. (2分)下列五种图形:①平行四边形②矩形③菱形④正方形⑤等腰梯形.其中既是中心对称图形又是轴对称图形的共有多少种()A . 2B . 3C . 4D . 54. (2分)赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下列方程中,正确的是()A .B .C .D .5. (2分) (2017九下·武冈期中) 一次函数y=﹣2x+3的图象不经过的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)已知在▱ABCD中,∠A+∠C=200°,则∠B的度数是()A . 100°B . 160°C . 80°D . 60°7. (2分)(2018·肇庆模拟) 函数y=的自变量x的取值范围是()A . x>-1B . x≠ -1C . x≠1D . x<-18. (2分)(2018·高阳模拟) 如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是()A . 甲B . 乙C . 丙D . 丁9. (2分)正六边形的每个内角都是()A . 60°B . 80°C . 100°D . 120°10. (2分)下列说法中错误的是()A . 矩形的对角线互相平分且相等B . 对角线互相垂直的四边形是菱形C . 等腰梯形的两条对角线相等D . 等腰三角形底边的中点到两腰的距离相等11. (2分) (2019七上·宝应期末) 已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是()A .B .C .D .12. (2分)在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000 个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装x个鸡蛋,根据题意下列方程正确的是()A . -=10B . =10C . -=10D . -=1013. (2分)三个正方形的面积如下图,正方形A的面积为()A . 6B . 36C . 64D . 814. (2分) (2017九上·江津期中) 一元二次方程配方后化为()A .B .C .D .15. (2分)(2017·毕节) 如图,在正方形ABCD中,点E,F分别在BC,CD上,且∠EAF=45°,将△ABE绕点A顺时针旋转90°,使点E落在点E'处,则下列判断不正确的是()A . △AEE′是等腰直角三角形B . AF垂直平分EE'C . △E′EC∽△AFDD . △AE′F是等腰三角形16. (2分)(2015•包头)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b2>8a;其中正确的结论是()A . ①③④B . ①②③C . ①②④D . ①②③④二、填空题: (共3题;共3分)17. (1分) (2017八下·西华期中) 实数a,b在数轴上的对应点如图所示,则|a﹣b|﹣ =________.18. (1分)若x2-y2=48,x+y=6,则3x-3y=________19. (1分)(2019·顺义模拟) 如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是________.三、计算题: (共2题;共25分)20. (5分) (2018七上·乌兰期末) 计算:21. (20分) (2017七上·大埔期中) 计算:(1) 20-17-(-7)(2)(3)(4)四、解答题: (共6题;共55分)22. (5分) (2017八上·安庆期末) 已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.23. (5分) (2017八下·萧山期中) 如图,已知,,点在上,且四边形是平行四边形.请你只用无刻度的直尺在图中画出的平分线(保留画图痕迹,不写画法),并说明理由.24. (10分) (2020九上·嘉陵期末) 同时抛掷3枚硬币做游戏,其中1元硬币1枚,5角硬币两枚(1)求3枚硬币同时正面朝上的概率。
广西贵港市2020年数学中考模拟试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·南平模拟) 中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为()A . ﹣3B . ﹣2C . ﹣6D . +62. (2分) (2020七下·大新期末) 若分式有意义,则x的取值范围是()A . x>﹣2B . x≠2C . x≠0D . x≠﹣23. (2分)计算﹣2ab+3ab的结果是()A . abB . ﹣abC . ﹣a2b2D . ﹣5ab4. (2分)(2016·浙江模拟) 在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是()A . 1B .C .D .5. (2分) t2﹣(t+1)(t﹣5)的计算结果正确的是()A . ﹣4t﹣5B . 4t+5C . t2﹣4t+5D . t2+4t﹣56. (2分)在平面直角坐标系中,点(4,-5)关于x轴对称点的坐标为()A . (4,5)B . (-4,-5)C . (-4,5)D . (5,4)7. (2分)(2019·广东模拟) 由若干个相同的正方体组成的几何体如图M2-1,则这个几何体的俯视图是()A .B .C .D .8. (2分) (2019九下·润州期中) 在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示则这些运动员成绩的中位数、众数分别是()A . 4.65、4.70B . 4.65、4.75C . 4.70、4.75D . 4.70、4.709. (2分) (2019七上·淮安期末) 大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如,,,,若分裂后,其中有一个奇数是63,则m的值是A . 5B . 6C . 7D . 810. (2分)将直角三角形三条边的长度都扩大同样的倍数后得到的三角形()A . 仍是直角三角形B . 可能是锐角三角形C . 可能是钝角三角形D . 不可能是直角三角形二、填空题 (共5题;共6分)11. (1分)方程 =0的解为________.12. (1分) (2017九上·芜湖期末) 四条木棒长为1,4,5,8,选其中三条组成三角形的概率是________.13. (1分)(2017·商丘模拟) 如图,▱ABCD,E是BA延长线上一点,AB=AE,连接CE交AD于点F,若CF 平分∠BCD,AB=3,则BC的长为________.14. (2分) (2019七下·吴江期末) 如图,已知长方形中, cm, cm,点为的中点.若点在线段上以1cm/s的速度由点向点运动,同时,点在线段上由点向点运动.若与全等,则点的运动速度是________cm/s.15. (1分) (2019九上·萧山月考) 抛物线的顶点坐标是________.三、解答题 (共9题;共72分)16. (5分) (2019八上·沙坪坝月考) 计算:(1)(2)(3)(4)17. (5分) (2017七下·钦北期末) 解方程组:.18. (5分) (2020八上·南京期末) 如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC 于点F.求证:AB=AC.19. (2分)(2016·曲靖) 根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如下统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天5路公共汽车平均每班的载客量;(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.20. (10分) (2019八上·嘉荫期末) 某街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.21. (10分) (2016·梧州) 如图,过⊙O上的两点A、B分别作切线,并交BO、AO的延长线于点C、D,连接CD,交⊙O于点E、F,过圆心O作OM⊥CD,垂足为M点.求证:(1)△ACO≌△BDO;(2) CE=DF.22. (10分) (2018八上·北京月考) 在等边△ABC外作射线AD,使得AD和AC在直线AB的两侧,∠BAD=α(0°<α<180°),点B关于直线AD的对称点为P,连接PB,PC.(1)依题意补全图1;(2)在图1中,求△BPC的度数;(3)直接写出使得△PBC是等腰三角形的α的值.23. (10分) (2019八下·东莞月考) 如图,在中,过点C作,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若,,,求AB的长.24. (15分)(2017·信阳模拟) 如图,已知抛物线y= (x+2)(x﹣4)与x轴交于点A,B(点A位于点B的左侧),与y轴交于点C,CD∥x轴交抛物线于点D,M为抛物线的顶点.(1)求点A,B,C的坐标;(2)设动点N(﹣2,n),求使MN+BN的值最小时n的值;(3) P是抛物线上一点,请你探究:是否存在点P,使以P,A,B为顶点的三角形与△ABD相似(△PAB与△ABD 不重合)?若存在,求出点P的坐标;若不存在,说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共72分)16-1、16-2、16-3、16-4、17-1、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、。
【文库独家】一、(共12小题,每小题3分,满分36分)每小题都给出标号为(A)、(B)、(C)、(D)的四个选项,其中只有一个是正确的.请考生用2B铅笔在答题卡上将选定的答案标号涂黑. 1.﹣2的绝对值是()A.2 B.﹣2 C.0 D.1【答案】A.【解析】试题分析:根据负数的绝对值是它的相反数,可得﹣2的绝对值是2.故选A.考点:绝对值.2.下列运算正确的是()A.3a+2b=5ab B.3a•2b=6ab C.(a3)2=a5 D.(ab2)3=ab6【答案】B.【解析】考点:单项式乘单项式;幂的乘方与积的乘方.3.用科学记数法表示的数是1.69×105,则原来的数是()A.169 B.1690 C.16900 D.169000【答案】D.【解析】试题分析:1.69×105=169000,则原来的数是169000,故选D.考点:科学记数法.4.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35°B.40°C.45°D.50°【答案】C.【解析】试题分析:在△ABC 中,∠A=95°,∠B=40°,根据三角形内角和是180度可得∠C=180°﹣∠A ﹣∠B=180°﹣95°﹣40°=45°,故选C .考点:三角形内角和定理.5.式子在实数范围内有意义,则x 的取值范围是( )A .x <1B .x ≤1C .x >1D .x ≥1【答案】C .【解析】试题分析:根据二次根式有意义的条件:被开方数是非负数,且分母不为零,可得到x ﹣1>0,解得x >1.故选C .考点:二次根式有意义的条件.6.在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)【答案】A .【解析】考点:坐标与图形变化-平移.7.从﹣,0,,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是( )A .B .52 C . D . 【答案】B .【解析】试题分析:题目中的五个数中,无理数有2个,所以随机抽取一个,则抽到无理数的概率是52,故选B . 考点:无理数;概率公式.8.下列命题中错误的是( )A .两组对角分别相等的四边形是平行四边形B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形【答案】C.【解析】试题分析:选项A,两组对角分别相等的四边形是平行四边形,命题正确,不合题意;选项B,矩形的对角线相等,命题正确,不合题意;选项C,对角线互相垂直的平行四边形是菱形,故此选项错误,符合题意;选项D,对角线互相垂直平分且相等的四边形是正方形,命题正确,不合题意.故选C.考点:命题与定理.9.若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣5【答案】D.【解析】考点:根与系数的关系.10.如图,点A在以BC为直径的⊙O内,且AB=AC,以点A为圆心,AC长为半径作弧,得到扇形ABC,剪下扇形ABC围成一个圆锥(AB和AC重合),若∠BAC=120°,BC=2,则这个圆锥底面圆的半径是()A .31B .32 C .2 D .3 【答案】B .【解析】试题分析:如图,连接AO ,∠BAC=120°,BC=23,∠OAC=60°,可得OC=3,即可求得AC=2,设圆锥的底面半径为r ,则2πr=1802120⨯π=34π, 解得:r=32,故选B .考点:圆锥的计算.11.如图,抛物线y=35321212++-x x 与x 轴交于A ,B 两点,与y 轴交于点C .若点P 是线段AC 上方的抛物线上一动点,当△ACP 的面积取得最大值时,点P 的坐标是( )A .(4,3)B .(5,1235) C .(4,1235) D .(5,3)【答案】B.【解析】故选B.考点:抛物线与x轴的交点;二次函数的最值.12.如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°;②S▱ABCD=AC•BC;③OE:AC=:6;④S△OCF=2S△OEF成立的个数有()A.1个B.2个C.3个D.4个【答案】D.【解析】考点:相似三角形的判定与性质;平行四边形的性质.二、填空题(共6小题,每小题3分,满分18分)13.8的立方根是.【答案】2.【解析】试题分析:根据立方根的定义可得8的立方根为2.考点:立方根.14.分解因式:a2b﹣b=.【答案】b(a+1)(a﹣1).【解析】试题分析:先提取公因式b,再利用平方差公式分解因式即可,即a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1).考点:提公因式法与公式法的综合运用.15.如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2的度数是.【答案】54°.【解析】考点:平行线的性质.16.如图,AB 是半圆O 的直径,C 是半圆O 上一点,弦AD 平分∠BAC ,交BC 于点E ,若AB=6,AD=5,则DE 的长为 .【答案】511. 【解析】考点:相似三角形的判定与性质;勾股定理;圆周角定理.17.如图,在Rt △ABC 中,∠C=90°,∠BAC=60°,将△ABC 绕点A 逆时针旋转60°后得到△ADE ,若AC=1,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是 (结果保留π).【答案】2π. 【解析】试题分析:由∠C=90°,∠BAC=60°,AC=1,可得AB=2,所以扇形BAD 的面积是: =32π, 在直角△ABC 中,BC=AB •sin60°=2×23=3,AC=1,所以S △ABC =S △ADE =21AC •BC=21×1×3=23. 再由扇形CAE 的面积是: =6π,则阴影部分的面积是:S 扇形DAB +S △ABC ﹣S △ADE ﹣S 扇形ACE =32π﹣6π=2π. 考点:扇形面积的计算;旋转的性质.18.已知a 1=,a 2=,a 3=,…,a n+1=(n 为正整数,且t ≠0,1),则a 2016= (用含有t 的代数式表示). 【答案】t 1-.【解析】试题分析:把a 1代入确定出a 2,把a 2代入确定出a 3,依此类推,得到一般性规律,由题意得a 1=,a 2=,a 3=,…,由此可知,3个一循环,因2016÷3=672,所以a 2016的值为t1-.考点:数字规律探究题.三、解答题(本大题共8小题,满分66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(1)计算:(21)﹣1﹣27﹣(π﹣2016)0+9tan30°; (2)解分式方程:23123-=+--x x x . 【答案】(1)原式=1;(2)x=4.【解析】(2)去分母得:x ﹣3+x ﹣2=3,解得:x=4,经检验x=4是分式方程的解.考点:零指数幂;负整数指数幂;特殊角的三角函数值;实数的运算;解分式方程. 20.如图,在▱ABCD 中,AC 为对角线,AC=BC=5,AB=6,AE 是△ABC 的中线. (1)用无刻度的直尺画出△ABC 的高CH (保留画图痕迹);(2)求△ACE 的面积.【答案】(1)详见解析;(2)6.【解析】∵BD 、AC 是▱ABCD 的对角线,∴点O 是AC 的中点,∵AE 、BO 是等腰△ABC 两腰上的中线,∴AE=BO ,AO=BE ,∵AO=BE ,∴△ABO ≌△BAE (SSS ),∴∠ABO=∠BAE ,△ABF 中,∵∠FAB=∠FBA ,∴FA=FB ,∵∠BAC=∠ABC ,∴∠EAC=∠OBC , 由可得△AFC ≌BFC (SAS )∴∠ACF=∠BCF ,即CH 是等腰△ABC 顶角平分线,所以CH 是△ABC 的高;(2)∵AC=BC=5,AB=6,CH ⊥AB ,∴AH=21AB=3, 由勾股定理可得CH=4, ∴S △ABC =21AB •CH=21×6×4=12, ∵AE 是△ABC 的中线,∴S △ACE =21S △ABC =6.考点:作图题;平行四边形的性质.21.如图,已知一次函数y=21x +b 的图象与反比例函数y=xk (x <0)的图象交于点A (﹣1,2)和点B ,点C 在y 轴上.(1)当△ABC 的周长最小时,求点C 的坐标;(2)当21x +b <x k 时,请直接写出x 的取值范围.【答案】(1)点C 的坐标为(0,1017);(2)当21x+25<﹣x2时,x 的取值范围为x <﹣4或﹣1<x <0.【解析】试题解析:(1)作点A 关于y 轴的对称点A ′,连接A ′B 交y 轴于点C ,此时点C 即是所求,如图所示.联立一次函数解析式与反比例函数解析式成方程组:, 解得:,或,∴点A 的坐标为(﹣1,2)、点B 的坐标为(﹣4,21). ∵点A ′与点A 关于y 轴对称,∴点A ′的坐标为(1,2),设直线A ′B 的解析式为y=mx+n , 则有,解得:,∴直线A ′B 的解析式为y=103x+1017. 令y=103x+1017中x=0,则y=1017, ∴点C 的坐标为(0,1017). (2)观察函数图象,发现:当x <﹣4或﹣1<x <0时,一次函数图象在反比例函数图象下方, ∴当21x+25<﹣x2时,x 的取值范围为x <﹣4或﹣1<x <0. 考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;反比例函数图象上点的坐标特征;轴对称-最短路线问题.22.在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是 ;(2)扇形统计图中,“了解”所对应扇形的圆心角的度数为 ,m 的值为 ;(3)若该校共有学生1500名,请根据上述调查结果估算该校学生对足球的了解程度为“基本了解”的人数.【答案】(1)120;(2)30°,25;(3)375.【解析】试题解析:(1)本次接受问卷调查的学生总人数是20+60+30+10=120(人);(2)“了解”所对应扇形的圆心角的度数为:360°×12010=30°;12030×100%=25%,则m 的值是25;(3)若该校共有学生1500名,则该校学生对足球的了解程度为“基本了解”的人数为:1500×25%=375.考点:折线统计图;用样本估计总体;扇形统计图.23.为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a 万元,请求出a 的取值范围.【答案】(1)20%;(2)720<a ≤828.【解析】考点:一元二次方程的应用;一元一次不等式组的应用.24.如图,在△ABC 中,AB=AC ,O 为BC 的中点,AC 与半圆O 相切于点D . (1)求证:AB 是半圆O 所在圆的切线;(2)若cos ∠ABC=32,AB=12,求半圆O 所在圆的半径.【答案】(1)详见解析;(2)358. 【解析】试题分析:(1)根据等腰三角形的性质,可得OA,根据角平分线的性质,可得OE,根据切线的判定,可得答案;(2)根据锐角三角函数,可得OB的长,根据勾股定理,可得OA的长,根据三角形的面积,可得OE的长.试题解析:(1)证明:如图1,作OD⊥AC于D,OE⊥AB于E,∵AB=AC,O为BC的中点,∴∠CAO=∠BAO.∵OD⊥AC于D,OE⊥AB于E,∴OD=OE,∵AB经过圆O半径的外端,∴AB是半圆O所在圆的切线;考点:切线的判定与性质.25.如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.【答案】(1)y=31x 2+32x ﹣5;(2)E 点坐标为(﹣2,﹣5);(3)存在满足条件的点P ,其横坐标为49或415. 【解析】试题解析:(1)把A 、B 两点坐标代入解析式可得,解得, ∴抛物线解析式为y=31x 2+32x ﹣5; (2)在y=31x 2+32x ﹣5中,令x=0可得y=﹣5, ∴C (0,﹣5),∵S △ABE =S △ABC ,且E 点在x 轴下方,∴E 点纵坐标和C 点纵坐标相同,当y=﹣5时,代入可得31x 2+32x=﹣5,解得x=﹣2或x=0(舍去), ∴E 点坐标为(﹣2,﹣5); (3)假设存在满足条件的P 点,其坐标为(m ,31m 2+32m ﹣5), 如图,连接AP 、CE 、AE ,过E 作ED ⊥AC 于点D ,过P 作PQ ⊥x 轴于点Q ,则AQ=AO +OQ=5+m ,PQ=|31m 2+32m ﹣5|, 在Rt △AOC 中,OA=OC=5,则AC=52,∠ACO=∠DCE=45°,考点:二次函数综合题.26.如图1,在正方形ABCD 内作∠EAF=45°,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,过点A 作AH ⊥EF ,垂足为H .(1)如图2,将△ADF 绕点A 顺时针旋转90°得到△ABG .①求证:△AGE ≌△AFE ;②若BE=2,DF=3,求AH 的长.(2)如图3,连接BD 交AE 于点M ,交AF 于点N .请探究并猜想:线段BM ,MN ,ND 之间有什么数量关系?并说明理由.【答案】(1)①详见解析;②6;(2)MN2=ND2+BM2,,理由见解析.【解析】试题解析:(1)①由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠FAE.在△GAE和△FAE中,∴△GAE≌△FAE.②∵△GAE≌△FAE,AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x﹣2,FC=x﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.解得:x=6.∴AB=6.∴AH=6.(3)如图所示:将△ABM逆时针旋转90°得△ADM′.∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°.考点:四边形综合题.。
广西省贵港市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若2<2a-<3,则a 的值可以是( ) A .﹣7B .163C .132D .122.单项式2a 3b 的次数是( ) A .2B .3C .4D .53.方程5x +2y =-9与下列方程构成的方程组的解为212x y =-⎧⎪⎨=⎪⎩的是( )A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-84.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB ,AD =2,BD =6,则边AC 的长为( )A .2B .4C .6D .85.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( ) A .73610⨯B .83.610⨯C .90.3610⨯D .93.610⨯6.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表: 步数(万步) 1.0 1.2 1.1 1.4 1.3 天数335712在每天所走的步数这组数据中,众数和中位数分别是( ) A .1.3,1.1B .1.3,1.3C .1.4,1.4D .1.3,1.47.根据北京市统计局发布的统计数据显示,北京市近五年国民生产总值数据如图1所示,2017年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示,根据以上信息,下列判断错误的是( )A.2013年至2017年北京市国民生产总值逐年增加B.2017年第二产业生产总值为5 320亿元C.2017年比2016年的国民生产总值增加了10%D.若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到33 880亿元8.二元一次方程组43624x yx y+=⎧⎨+=⎩的解为()A.32xy=-⎧⎨=⎩B.21xy=-⎧⎨=⎩C.32xy=⎧⎨=-⎩D.21xy=⎧⎨=-⎩9.如图,一次函数y=x﹣1的图象与反比例函数2yx=的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为()A.(0,1)B.(0,2)C.50,2⎛⎫⎪⎝⎭D.(0,3)10.关于x的不等式组24351xx-<⎧⎨-<⎩的所有整数解是()A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,211.不解方程,判别方程2x2﹣2x=3的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根12.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有()和黑子.A .37B .42C .73D .121二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若代数式4x -在实数范围内有意义,则实数x 的取值范围为_____. 14.已知∠α=32°,则∠α的余角是_____°.15.点A 到⊙O 的最小距离为1,最大距离为3,则⊙O 的半径长为_____. 16.反比例函数y =2k x- 的图像经过点(2,4),则k 的值等于__________. 17.若一段弧的半径为24,所对圆心角为60°,则这段弧长为____. 18.已知|x|=3,y 2=16,xy <0,则x ﹣y=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)化简:()()2a b a 2b a -+-.20.(6分)如图1,四边形ABCD ,边AD 、BC 的垂直平分线相交于点O .连接OA 、OB 、OC 、OD .OE 是边CD 的中线,且∠AOB+∠COD =180°(1)如图2,当△ABO 是等边三角形时,求证:OE =12AB ; (2)如图3,当△ABO 是直角三角形时,且∠AOB =90°,求证:OE =12AB ; (3)如图4,当△ABO 是任意三角形时,设∠OAD =α,∠OBC =β, ①试探究α、β之间存在的数量关系? ②结论“OE =12AB”还成立吗?若成立,请你证明;若不成立,请说明理由.21.(6分)如图,在⊙O 中,AB 是直径,点C 是圆上一点,点D 是弧BC 中点,过点D 作⊙O 切线DF ,连接AC 并延长交DF 于点E . (1)求证:AE ⊥EF ;(2)若圆的半径为5,BD =6 求AE 的长度.22.(8分)计算:8﹣(﹣2016)0+|﹣3|﹣4cos45°.23.(8分)已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF , 求证:△ABC ≌△DEF .24.(10分)已知关于x 的方程220x ax a ++-=.当该方程的一个根为1时,求a 的值及该方程的另一根;求证:不论a 取何实数,该方程都有两个不相等的实数根.25.(10分)先化简,再求值:22()11x x x x x x +÷-++,其中2.26.(12分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23. (1)请直接写出袋子中白球的个数.(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)27.(12分)计算:2﹣1|﹣2sin45°3821()2- 参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.【详解】解:∵2<2a-<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范围是6<a<1.观察选项,只有选项C符合题意.故选C.【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.2.C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C.点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.3.D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.4.B【解析】【分析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.【详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴AC AD AB AC=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.5.B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将360000000用科学记数法表示为:3.6×1.故选:B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.B【解析】【分析】在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.【详解】在这组数据中出现次数最多的是1.1,即众数是1.1.要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1.故选B.【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.7.C【解析】【分析】由条形图与扇形图中的数据及增长率的定义逐一判断即可得.【详解】A、由条形图知2013年至2017年北京市国民生产总值逐年增加,此选项正确;B、2017年第二产业生产总值为28000×19%=5 320亿元,此选项正确;C、2017年比2016年的国民生产总值增加了2800025669100%9.08%25669-⨯=,此选项错误;D、若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到2800×(1+10%)2=33 880亿元,此选项正确;故选C.【点睛】本题主要考查条形统计图与扇形统计图,解题的关键是根据条形统计图与扇形统计图得出具体数据. 8.C【解析】【分析】利用加减消元法解这个二元一次方程组.【详解】解:43624x yx y+=⋯⋯⎧⎨+=⋯⋯⎩①②①-②⨯2,得:y=-2,将y=-2代入②,得:2x-2=4,解得,x=3,所以原方程组的解是32 xy=⎧⎨=-⎩.故选C.【点睛】本题考查了解二元一次方程组和解一元一次方程等知识点,解此题的关键是把二元一次方程组转化成一元一次方程,题目比较典型,难度适中.9.B【解析】【分析】根据方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.【详解】由1{2y xyx=-=,解得21xy=⎧⎨=⎩或12xy=-⎧⎨=-⎩,∴A(2,1),B(1,0),设C (0,m ), ∵BC=AC , ∴AC 2=BC 2,即4+(m-1)2=1+m 2, ∴m=2,故答案为(0,2). 【点睛】本题考查了反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题. 10.B 【解析】 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此即可得出答案. 【详解】解不等式﹣2x <4,得:x >﹣2, 解不等式3x ﹣5<1,得:x <2, 则不等式组的解集为﹣2<x <2, 所以不等式组的整数解为﹣1、0、1, 故选:B . 【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 11.B 【解析】一元二次方程的根的情况与根的判别式∆有关,24b ac ∆=-2(42(3)=--⨯⨯-420=>,方程有两个不相等的实数根,故选B12.C 【解析】解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个.故选C . 点睛:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≤1【解析】【分析】根据二次根式有意义的条件可求出x的取值范围.【详解】由题意可知:1﹣x≥0,∴x≤1故答案为:x≤1.【点睛】本题考查二次根式有意义的条件,解题的关键是利用被开方数是非负数解答即可.14.58°【解析】【分析】根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角可得答案.【详解】解:∠α的余角是:90°-32°=58°.故答案为58°.【点睛】本题考查余角,解题关键是掌握互为余角的两个角的和为90度.15.1或2【解析】【分析】分类讨论:点在圆内,点在圆外,根据线段的和差,可得直径,根据圆的性质,可得答案.【详解】点在圆内,圆的直径为1+3=4,圆的半径为2;点在圆外,圆的直径为3−1=2,圆的半径为1,故答案为1或2.【点睛】本题考查点与圆的位置关系,关键是分类讨论:点在圆内,点在圆外.16.1【解析】解:∵点(2,4)在反比例函数2k y x-=的图象上,∴242k -=,即k=1.故答案为1.点睛:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式. 17.8π 【解析】试题分析:∵弧的半径为24,所对圆心角为60°, ∴弧长为l==8π.故答案为8π. 【考点】弧长的计算. 18.±3【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想. 详解:因为|x|=1,所以x=±1. 因为y 2=16,所以y=±2. 又因为xy <0,所以x 、y 异号, 当x=1时,y=-2,所以x-y=3; 当x=-1时,y=2,所以x-y=-3. 故答案为:±3. 点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.2b 【解析】 【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果. 【详解】解:原式2222a 2ab b 2ab a b =-++-=.20.(1)详见解析;(2)详见解析;(3)①α+β=90°;②成立,理由详见解析. 【解析】 【分析】(1)作OH ⊥AB 于H ,根据线段垂直平分线的性质得到OD=OA ,OB=OC ,证明△OCE ≌△OBH ,根据全等三角形的性质证明;(2)证明△OCD ≌△OBA ,得到AB=CD ,根据直角三角形的性质得到OE=12CD ,证明即可; (3)①根据等腰三角形的性质、三角形内角和定理计算;②延长OE 至F ,是EF=OE ,连接FD 、FC ,根据平行四边形的判定和性质、全等三角形的判定和性质证明.【详解】(1)作OH ⊥AB 于H ,∵AD 、BC 的垂直平分线相交于点O ,∴OD=OA ,OB=OC ,∵△ABO 是等边三角形,∴OD=OC ,∠AOB=60°,∵∠AOB+∠COD =180°∴∠COD=120°,∵OE 是边CD 的中线,∴OE ⊥CD ,∴∠OCE=30°,∵OA=OB ,OH ⊥AB ,∴∠BOH=30°,BH=12AB , 在△OCE 和△BOH 中,OCE BOH OEC BHO OB OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OCE ≌△OBH ,∴OE=BH ,∴OE=12AB ; (2)∵∠AOB=90°,∠AOB+∠COD=180°,∴∠COD=90°,在△OCD 和△OBA 中,OD OA COD BOA OC OB =⎧⎪∠=∠⎨⎪=⎩,∴△OCD ≌△OBA ,∵∠COD=90°,OE 是边CD 的中线,∴OE=12CD , ∴OE=12AB ; (3)①∵∠OAD=α,OA=OD ,∴∠AOD=180°﹣2α,同理,∠BOC=180°﹣2β,∵∠AOB+∠COD=180°,∴∠AOD+∠COB=180°,∴180°﹣2α+180°﹣2β=180°,整理得,α+β=90°;②延长OE 至F ,使EF=OE ,连接FD 、FC ,则四边形FDOC 是平行四边形,∴∠OCF+∠COD=180°,FC OA =,∴∠AOB=∠FCO ,在△FCO 和△AOB 中,FC OA FCO AOB OC OB =⎧⎪∠=∠⎨⎪=⎩,∴△FCO ≌△AOB ,∴FO=AB ,∴OE=12FO=12AB . 【点睛】本题是四边形的综合题,考查了线段垂直平分线的性质、全等三角形的判定和性质以及直角三角形斜边上的中线性质、平行四边形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.21.(1)详见解析;(2)AE =6.1.(1)连接OD,利用切线的性质和三角形的内角和证明OD∥EA,即可证得结论;(2)利用相似三角形的判定和性质解答即可.【详解】(1)连接OD,∵EF是⊙O的切线,∴OD⊥EF,∵OD=OA,∴∠ODA=∠OAD,∵点D是弧BC中点,∴∠EAD=∠OAD,∴∠EAD=∠ODA,∴OD∥EA,∴AE⊥EF;(2)∵AB是直径,∴∠ADB=90°,∵圆的半径为5,BD=6∴AB=10,BD=6,在Rt△ADB中,22221068AD AB BD-=-=,∵∠EAD=∠DAB,∠AED=∠ADB=90°,∴△AED∽△ADB,∴AD AE AB AD=,即8108AE=,解得:AE=6.1.【点睛】本题考查了切线的性质,相似三角形的判定和性质,勾股定理的应用以及圆周角定理,关键是利用切线的性质和相似三角形判定和性质进行解答.【分析】根据二次根式性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值依次计算后合并即可.【详解】解:原式=12﹣1+3﹣4×2=1. 【点睛】 本题考查实数的运算及特殊角三角形函数值.23.证明见解析【解析】试题分析:首先根据AF=DC ,可推得AF ﹣CF=DC ﹣CF ,即AC=DF ;再根据已知AB=DE ,BC=EF ,根据全等三角形全等的判定定理SSS 即可证明△ABC ≌△DEF .试题解析:∵AF=DC ,∴AF ﹣CF=DC ﹣CF ,即AC=DF ; 在△ABC 和△DEF 中∴△ABC ≌△DEF (SSS )24.(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.25.1+2 【解析】 【分析】 先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 【详解】 解:原式()22,111x x x x x x x x +⎛⎫+=÷- ⎪+++⎝⎭()22,11x x x x x +=÷++ ()221,1x x x x x ++=⋅+ 2.x x+= 当2x =时,原式=221 2.2+=+ 【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.26.(1)袋子中白球有2个;(2).【解析】试题分析:(1)设袋子中白球有x 个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案. 试题解析:(1)设袋子中白球有x 个,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:.考点:列表法与树状图法;概率公式.27.﹣1【解析】【分析】直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.【详解】原式=21)﹣2×2+2﹣4=2﹣12+2﹣4=﹣1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.。
广西贵港市中考数学二模试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题给出标号为A,B,C,D的四个选项,其中只有一个是正确的,请考生用2B铅笔在答题卡上将选定的答案标号涂黑1.﹣2的相反数是()A.﹣2 B.2 C.﹣D.2.已知正比例函数y=(m﹣3)x的图象过第二、四象限,则m的取值范围是()A.m≥3 B.m>3 C.m≤3 D.m<33.下列运算正确的是()A.(﹣2)3=﹣6 B.a3+a=a3C.=4D.(a3)2=a54.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为()A.25 B.25或20 C.20 D.155.小明同学5次数学单元测试的平均成绩是90分,中位数是91分,众数是94分,则两次最低成绩之和是()A.165分B.168分C.170分D.171分6.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A.9cm B.12cm C.15cm D.18cm7.下列函数中,当x<0时,函数值y随x的增大而增大的有()①y=x ②y=﹣2x+1 ③y=﹣④y=3x2.A.1个B.2个C.3个D.4个8.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿B地北偏东30°方向走,恰好到达目的地C处,那么,由此可知,B,C两地相距为()A.100m B.150m C.200m D.250m9.已知四条直线y=kx﹣3,y=﹣1,y=3和x=1所围成的四边形的面积是12,则k的值为()A.1或﹣2 B.2或﹣1 C.3 D.410.如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为()A.B.C.D.311.如图,AB是⊙O的直径,弦CO⊥AB,∠C=30°,CD=24,则阴影部分的面积是()A.32πB.16πC.16 D.3212.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)13.计算:﹣1﹣5=.14.分解因式:ab2﹣a=.15.轮船顺流航行时m千米/小时,逆流航行时(m﹣6)千米/小时,则水流速度是.16.如图,直角三角形ABC 中,∠ACB=90°,AB=10,BC=6,在线段AB 上取一点D ,作DF ⊥AB 交AC 于点F ,现将△ADF 沿DF 折叠,使点A 落在线段DB 上,对应点记为H ,AD 的中点E 的对应点记为G ,若△GFH ∽△GBF ,则AD= .17.如图,直线AB 与⊙O 相切于点A ,弦CD ∥AB ,E ,F 为圆上的两点,且∠CDE=∠ADF ,若⊙O 的直径为5,CD=4,则弦EF 的长为 .18.如图,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,…∠A n ﹣1BC 的平行线与∠A n ﹣1CD 的平分线交于点A n ,设∠A=θ,则∠A n = .三、解答题(本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤.) 19.(1)计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.(2)解不等式组.20.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)使三角形的三边长分别为3、2、(在图(1))中画一个即可);(2)使三角形为钝角三角形且面积为4(在图2)中画一个即可).21.如图,在平面直角坐标系中,一次函数y=nx+2(n≠0)的图象与反比例函数在第一象限内的图象交于点A,与x轴交于点B,线段OA=5,C为x轴正半轴上一点,且sin∠AOC=.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积.22.今年“五.一”节期间,某商场举行抽奖促销活动,抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同,抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果;(2)求抽奖人员获奖的概率.23.某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?24.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D 作⊙O的切线交AC边于点E.(1)求证:DE⊥AC;(2)连结OC交DE于点F,若sin∠ABC=,求的值.25.如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.26.如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin∠BQP 的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM 和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.广西贵港市中考数学二模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)每小题给出标号为A,B,C,D的四个选项,其中只有一个是正确的,请考生用2B铅笔在答题卡上将选定的答案标号涂黑1.﹣2的相反数是()A.﹣2 B.2 C.﹣D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.已知正比例函数y=(m﹣3)x的图象过第二、四象限,则m的取值范围是()A.m≥3 B.m>3 C.m≤3 D.m<3【考点】正比例函数的性质.【分析】直接利用正比例函数的定义得出m的取值范围即可.【解答】解:∵正比例函数y=(m﹣3)x的图象过第二、四象限,∴m﹣3<0,解得:m<3.故选:D.【点评】此题主要考查了正比例函数的性质,正确把握正比例函数的性质是解题关键.3.下列运算正确的是()A.(﹣2)3=﹣6 B.a3+a=a3C.=4D.(a3)2=a5【考点】二次根式的性质与化简;有理数的乘方;合并同类项;幂的乘方与积的乘方.【分析】直接利用幂的乘方运算法则以及二次根式的性质分别化简求出答案.【解答】解:A、(﹣2)3=﹣8,故此选项错误;B、a3+a无法计算,故此选项错误;C、=4,正确;D、(a3)2=a6,故此选项错误;故选:C.【点评】此题主要考查了幂的乘方运算以及二次根式的化简,正确掌握运算法则是解题关键.4.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为()A.25 B.25或20 C.20 D.15【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为5和10,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当腰为5时,5+5=10,所以不能构成三角形;当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=25.故选A.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.小明同学5次数学单元测试的平均成绩是90分,中位数是91分,众数是94分,则两次最低成绩之和是()A.165分B.168分C.170分D.171分【考点】众数;算术平均数;中位数.【分析】知道平均数可以求出5次成绩之和,又知道中位数和众数,就能求出两次最低成绩之和.【解答】解:∵五次数学单元测验的平均成绩是90分,∴5次数学单元测验的总成绩是450分,∵中位数是91分,众数是94分,∴最低两次测试成绩为450﹣91﹣2×94=171.故选D.【点评】本题主要考查平均数和众数等知识点.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.6.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为()A.9cm B.12cm C.15cm D.18cm【考点】圆锥的计算.【专题】计算题.【分析】圆锥的母线长=圆锥的底面周长×.【解答】解:圆锥的母线长=2×π×6×=12cm,故选:B.【点评】本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点.7.下列函数中,当x<0时,函数值y随x的增大而增大的有()①y=x ②y=﹣2x+1 ③y=﹣④y=3x2.A.1个B.2个C.3个D.4个【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.【专题】压轴题.【分析】根据正比例函数、一次函数、反比例函数、二次函数的增减性,结合自变量的取值范围,逐一判断.【解答】解:①y=x,正比例函数,k=1>0,y随着x增大而增大,正确;②y=﹣2x+1,一次函数,k=﹣2<0,y随x的增大而减小,错误;③y=﹣,反比例函数,k=﹣1<0,当x<0时,函数值y随x的增大而增大,正确;④y=3x2,二次函数,a=3>0,开口向上,对称轴为x=0,故当x<0时,图象在对称轴左侧,y随着x的增大而减小,错误.故选B.【点评】本题综合考查了二次函数、一次函数、反比例函数、正比例函数的增减性(单调性),是一道难度中等的题目.掌握函数的性质解答此题是关键.8.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿B地北偏东30°方向走,恰好到达目的地C处,那么,由此可知,B,C两地相距为()A.100m B.150m C.200m D.250m【考点】解直角三角形的应用-方向角问题.【分析】先求出∠BAC,再根据三角形的内角和定理求出∠C,从而得到∠BAC=∠C,然后根据等角对等边可得BC=AB.【解答】解:∵B在A的正东方,C在A地的北偏东60°方向,∴∠BAC=90°﹣60°=30°,∵C在B地的北偏东30°方向,∴∠ABC=90°+30°=120°,∴∠C=180°﹣∠BAC﹣∠ABC=180°﹣30°﹣120°=30°,∴∠BAC=∠C,∴BC=AB=200m.故选:C.【点评】本题考查了等腰三角形的判定与性质,方向角的定义,根据角的度数求出∠BAC=∠C是解题的关键,也是本题的难点.9.已知四条直线y=kx﹣3,y=﹣1,y=3和x=1所围成的四边形的面积是12,则k的值为()A.1或﹣2 B.2或﹣1 C.3 D.4【考点】待定系数法求一次函数解析式.【专题】压轴题;待定系数法.【分析】首先用k表示出直线y=kx﹣3与y=﹣1,y=3和x=1的交点坐标,即可用看表示出四边形的面积.得到一个关于k的方程,解方程即可解决.【解答】解:在y=kx﹣3中,令y=﹣1,解得x=;令y=3,x=;当k<0时,四边形的面积是:[(1﹣)+(1﹣)]×4=12,解得k=﹣2;当k>0时,可得[(﹣1)+(﹣1)]×4=12,解得k=1.即k的值为﹣2或1.故选A.【点评】解决本题的关键是利用梯形的面积公式,把求值的问题转化为方程问题.10.如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为()A.B.C.D.3【考点】翻折变换(折叠问题).【专题】压轴题.【分析】由正方形纸片ABCD的边长为3,可得∠C=90°,BC=CD=3,由根据折叠的性质得:EG=BE=1,GF=DF,然后设DF=x,在Rt△EFC中,由勾股定理EF2=EC2+FC2,即可得方程,解方程即可求得答案.【解答】解:∵正方形纸片ABCD的边长为3,∴∠C=90°,BC=CD=3,根据折叠的性质得:EG=BE=1,GF=DF,设DF=x,则EF=EG+GF=1+x,FC=DC﹣DF=3﹣x,EC=BC﹣BE=3﹣1=2,在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3﹣x)2,解得:x=,∴DF=,EF=1+=.故选B.【点评】此题考查了折叠的性质、正方形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想与方程思想的应用.11.如图,AB是⊙O的直径,弦CO⊥AB,∠C=30°,CD=24,则阴影部分的面积是()A.32πB.16πC.16 D.32【考点】扇形面积的计算.【分析】根据垂径定理求得CE=ED=12,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODA﹣S△DOE+S△AEC.【解答】解:如图,∵AB是⊙O的直径,弦CD⊥AB,∴CE=ED=12,又∵∠DCA=30°,∴∠DOE=2∠DCA=60°,∠ODE=30°, ∴OE=DE ÷tan60°=12÷=4,OD=2OE=8,∴S 阴影=S 扇形ODB ﹣S △DOE +S △BEC =﹣OE ×ED+AE •EC=32π﹣×4×12+×4•12=32π.故选:A .【点评】本题考查了垂径定理、扇形面积的计算,通过解直角三角形得到相关线段的长度是解答本题的关键.12.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论: ①b 2﹣4c >0; ②b+c+1=0; ③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确的个数为( )A .1个B .2个C .3个D .4个 【考点】二次函数图象与系数的关系.【分析】由函数y=x 2+bx+c 与x 轴无交点,可得b 2﹣4c <0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x <3时,二次函数值小于一次函数值,可得x 2+bx+c <x ,继而可求得答案.【解答】解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选B【点评】主要考查图象与二次函数系数之间的关系.关键是注意掌握数形结合思想的应用.二、填空题(本大题共6小题,每小题3分,共18分)13.计算:﹣1﹣5=﹣6.【考点】有理数的减法.【专题】推理填空题.【分析】根据有理数的减法法则计算即可.【解答】解:﹣1﹣5=(﹣1)+(﹣5)=﹣6.故答案为;﹣6.【点评】本题考查有理数的减法,解题的关键是明确有理数的减法法则.14.分解因式:ab2﹣a=a(b+1)(b﹣1).【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.轮船顺流航行时m千米/小时,逆流航行时(m﹣6)千米/小时,则水流速度是3千米/时.【考点】二元一次方程组的应用.【分析】设轮船在静水中航行的速度为x千米/小时,水流速度为y千米/小时,根据“顺流航行速度=轮船速度+水流速度”与“逆流航行速度=轮船速度﹣水流速度”列出关于x、y的二元一次方程组,解方程组求出y值即可.【解答】解:设轮船在静水中航行的速度为x千米/小时,水流速度为y千米/小时,依题意得,解得:y=3.故答案为:3千米/时.【点评】本题考查了二元一次方程的应用,解题的关键是列出关于x、y的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出关于方程(或方程组)是关键.本题中设了两个未知数,但只需求出一个未知数即可.16.如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB 交AC于点F,现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为H,AD的中点E的对应点记为G,若△GFH∽△GBF,则AD=.【考点】翻折变换(折叠问题);相似三角形的性质.【分析】利用勾股定理列式求出AC,设AD=2x,得到AE=DE=DG=GH=x,然后求出BG,再利用相似三角形对应边成比例列式求出DF,然后利用勾股定理列式求出GF,然后根据相似三角形对应边成比例列式求解得到x的值,从而可得AD的值.【解答】解:∵∠ACB=90°,AB=10,BC=6,∴AC===8,设AD=2x,∵点E为AD的中点,将△ADF沿DF折叠,点A对应点记为H,点E的对应点为G,∴AE=DE=DG=GH=x,∵DF⊥AB,∠ACB=90°,∠A=∠A,∴△ABC∽△AFD,∴,即,解得:DF=x,在Rt△DGF中,GF===,又∵BG=AB﹣AG=10﹣3x,△GFH∽△GBF,∴,∴GF2=GH•BG,即()2=x(10﹣3x),解得x=,∴AD的长为2×=.故答案为:.【点评】本题考查了相似三角形的性质,主要利用了翻折变换的性质,勾股定理,相似三角形对应边成比例,综合题,熟记性质并准确识图是解题的关键.17.如图,直线AB与⊙O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE=∠ADF,若⊙O的直径为5,CD=4,则弦EF的长为2.【考点】切线的性质.【分析】首先连接OA,并反向延长交CD于点H,连接OC,由直线AB与⊙O相切于点A,弦CD∥AB,可求得OH的长,然后由勾股定理求得AC的长,又由∠CDE=∠ADF,可证得EF=AC,继而求得答案.【解答】解:连接OA,并反向延长交CD于点H,连接OC,∵直线AB与⊙O相切于点A,∴OA⊥AB,∵弦CD∥AB,∴AH⊥CD,∴CH=CD=×4=2,∵⊙O的半径为,∴OA=OC=,∴OH==,∴AH=OA+OH=+=4,∴AC==2.∵∠CDE=∠ADF,∴=,∴=,∴EF=AC=2.故答案为2.【点评】此题考查了切线的性质、圆周角定理、垂径定理以及勾股定理等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.18.如图,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,…∠A n ﹣1BC 的平行线与∠A n ﹣1CD 的平分线交于点A n ,设∠A=θ,则∠A n =.【考点】三角形内角和定理;三角形的外角性质. 【专题】规律型.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,根据角平分线的定义可得∠A 1BC=∠ABC ,∠A 1CD=∠ACD ,然后整理得到∠A 1=∠A ,同理可得∠A 2=∠A 1,从而判断出后一个角是前一个角的,然后表示出,∠A n 即可.【解答】解:由三角形的外角性质得,∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC , ∵∠ABC 的平分线与∠ACD 的平分线交于点A 1, ∴∠A 1BC=∠ABC ,∠A 1CD=∠ACD ,∴∠A 1+∠A 1BC=(∠A+∠ABC )=∠A+∠A 1BC , ∴∠A 1=∠A , 同理可得∠A 2=∠A 1==,…, ∠A n =.故答案为:.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的是解题的关键.三、解答题(本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.(2)解不等式组.【考点】解一元一次不等式组;实数的运算.【分析】(1)本题涉及零指数幂、绝对值、负整数指数幂、特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:(1)(1﹣)0+|﹣|﹣2cos45°+()﹣1.=1+﹣2×+4=1+﹣+4=5;(2),解①得:x>﹣1,解②得:x<.故不等式组的解集是:﹣1<x<.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值、负整数指数幂、特殊角的三角函数值等考点的运算.同时考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)使三角形的三边长分别为3、2、(在图(1))中画一个即可);(2)使三角形为钝角三角形且面积为4(在图2)中画一个即可).【考点】作图—代数计算作图.【专题】网格型.【分析】(1)两直角边长分别是2和2的直角三角形的斜边长为2,两直角边长为2,1的直角三角形的斜边长为.(2)可找一底边长为2,高为4的三角形即可.【解答】解:【点评】应找到所求的无理数是直角边长为哪两个有理数的直角三角形的斜边长.三角形的底边×高=面积的2倍.21.如图,在平面直角坐标系中,一次函数y=nx+2(n≠0)的图象与反比例函数在第一象限内的图象交于点A,与x轴交于点B,线段OA=5,C为x轴正半轴上一点,且sin∠AOC=.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)过A点作AD⊥x轴于点D,根据已知的∠AOC的正弦值以及OA的长,利用三角形函数的定义求出AD的长,再利用勾股定理求出OD的长,即可得到点A的坐标,把点A的坐标分别代入到反比例函数和一次函数的解析式中即可确定出两函数的解析式;(2)根据x轴上点的特征,令一次函数的y=0,求出x的值,确定出点B的坐标,得到线段OB的长,利用三角形的面积公式即可求出三角形AOB的面积.【解答】解:(1)过A点作AD⊥x轴于点D,∵sin∠AOC==,OA=5,∴AD=4,在Rt△AOD中,由勾股定理得:DO=3,∵点A在第一象限,∴点A的坐标为(3,4),将A的坐标为(3,4)代入y=,得4=,∴m=12,∴该反比例函数的解析式为y=,将A的坐标为(3,4)代入y=nx+2得:n=,∴一次函数的解析式是y=x+2;(2)在y=x+2中,令y=0,即x+2=0,∴x=﹣3,∴点B的坐标是(﹣3,0)∴OB=3,又AD=4,∴S△AOB=OB•AD=×3×4=6,则△AOB的面积为6.【点评】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:勾股定理,待定系数法求函数的解析式,三角形的面积,以及三角函数的定义,用待定系数法确定函数的解析式,是常用的一种解题方法,同学们要熟练掌握这种方法.22.今年“五.一”节期间,某商场举行抽奖促销活动,抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同,抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果;(2)求抽奖人员获奖的概率.【考点】列表法与树状图法.【分析】(1)根据题意直接利用树状图法列举出所有的可能即可;(2)利用概率公式求出答案.【解答】解:(1)由题意可得:,故一共有12种可能;(2)由题意可得:两次抽奖有一个小球标号为“1“的有6种可能,故抽奖人员获奖的概率为:=.【点评】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.23.某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?【考点】反比例函数的应用;分式方程的应用.【专题】应用题.【分析】(1)利用“每天的工作量×天数=土方总量”可以得到两个变量之间的函数关系;(2)根据“工期比原计划减少了24天”找到等量关系并列出方程求解即可;【解答】解:(1)由题意得,y=把y=120代入y=,得x=3把y=180代入y=,得x=2,∴自变量的取值范围为:2≤x≤3,∴y=(2≤x≤3);(2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(x+0.5)万米3,根据题意得:﹣=24,解得:x=2.5或x=﹣3经检验x=2.5或x=﹣3均为原方程的根,但x=﹣3不符合题意,故舍去,答:原计划每天运送2.5万米3,实际每天运送3万米3.【点评】本题考查了反比例函数的应用及分式方程的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.24.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D 作⊙O的切线交AC边于点E.(1)求证:DE⊥AC;(2)连结OC交DE于点F,若sin∠ABC=,求的值.【考点】切线的性质;相似三角形的判定与性质.【分析】(1)连接OD.根据三角形中位线定理判定OD是△ABC的中位线,则OD∥AC,所以∠DEC=∠ODE=90°,即DE⊥AC;(2)连接AD.通过解直角三角形得到sin∠ABC==,故设AD=3x,则AB=AC=4x,OD=2x;由相似三角形△ADC∽△AED的对应边成比例得到AD2=AE•AC.则,,所以.【解答】(1)证明:连接OD.∵DE是⊙O的切线,∴DE⊥OD,即∠ODE=90°.∵AB是⊙O的直径,∴O是AB的中点.又∵D是BC的中点,.∴OD∥AC.∴∠DEC=∠ODE=90°.∴DE⊥AC;(2)解:连接AD.∵OD∥AC,∴.∵AB为⊙O的直径,∴∠ADB=∠ADC=90°.又∵D为BC的中点,∴AB=AC.∵sin∠ABC==,故设AD=3x,则AB=AC=4x,OD=2x.∵DE⊥AC,∴∠ADC=∠AED=90°.∵∠DAC=∠EAD,∴△ADC∽△AED.∴.∴AD2=AE•AC.∴.∴.∴.【点评】本题考查了切线的性质、相似三角形的判定与性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.25.如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.【考点】二次函数综合题.【专题】几何综合题.【分析】(1)先求出直线y=﹣3x+3与x轴交点A,与y轴交点B的坐标,再将A、B两点坐标代入y=a(x﹣2)2+k,得到关于a,k的二元一次方程组,解方程组即可求解;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF与Rt△BQE中,用勾股定理分别表示出AQ2=AF2+QF2=1+m2,BQ2=BE2+EQ2=4+(3﹣m)2,由AQ=BQ,得到方程1+m2=4+(3﹣m)2,解方程求出m=2,即可求得Q点的坐标;(3)当点N在对称轴上时,由NC与AC不垂直,得出AC为正方形的对角线,根据抛物线的对称性及正方形的性质,得到M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,此时,MF=NF=AF=CF=1,且AC⊥MN,则四边形AMCN为正方形,在Rt△AFN中根据勾股定理即可求出正方形的边长.【解答】解:(1)∵直线y=﹣3x+3与x轴、y轴分别交于点A、B,∴A(1,0),B(0,3).又∵抛物线y=a(x﹣2)2+k经过点A(1,0),B(0,3),∴,解得,故a,k的值分别为1,﹣1;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF中,AQ2=AF2+QF2=1+m2,在Rt△BQE中,BQ2=BE2+EQ2=4+(3﹣m)2,∵AQ=BQ,∴1+m2=4+(3﹣m)2,∴m=2,∴Q点的坐标为(2,2);(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.又∵对称轴x=2是AC的中垂线,∴M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,其坐标为(2,1).此时,MF=NF=AF=CF=1,且AC⊥MN,∴四边形AMCN为正方形.在Rt△AFN中,AN==,即正方形的边长为.【点评】本题是二次函数的综合题型,其中涉及到的知识点有二元一次方程组的解法,等腰三角形的性质,勾股定理,二次函数的性质,正方形的判定与性质,综合性较强,难度适中.26.如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin∠BQP 的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM 和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.【考点】四边形综合题.【专题】几何综合题.。