3.2函数的性质
- 格式:doc
- 大小:696.00 KB
- 文档页数:15
lim()x xf x A→= *点击以上标题可直接前往对应内容定理3.2(唯一性)证 不妨设以及 A x f x x =→)(lim 0.)(lim 0B x f x x =→由极限的定义,对于任意的正数 ,1δ存在正数,||010时当δ<-<x x (1),2|)(|ε<-A x f ,||020时当δ<-<x x )(lim 0x f x x →存在, 则此极限唯一.若 的基本性质 A x f xx =→)(lim 0,2δ,ε后退 前进 目录 退出(2) 式均成立,.|)(||)(|||ε<-+-≤-B x f x f A B A 由ε 的任意性,推得 A = B. 这就证明了极限是唯一的.12min{,},δδδ=令(1) 式与.2|)(|ε<-B x f (2)(1),2|)(|ε<-A x f 00||,x x δ<-<当时所以定理3.3(局部有界性)证 ,1=ε取.1|)(|<-A x f .1|||)(|+<A x f 由此得,)(lim 0A x f x x =→若上在)()(0x U x f,)(0x U则存在有界.这就证明了 在某个空心邻域 上有界.),(0δx U)(x f ,0>δ存在00x x δ<-<当时,注(1) 试与数列极限的有界性定理(定理 2.3)作一 (2) 有界函数不一定存在极限; 这上并不是有界的在但.)2,0(1,11lim )3(1xx x =→说明定理中 “局部” 这两个字是关键性的.比较;定理3.4(局部保号性)则对任何正数)(A r A r -<<或使得存在,)(,0x U.)0)((0)(<-<>>r x f r x f 或.|)(|ε<-A x f .)(r A x f >->ε由此证得 有对一切,)(0x U x∈有时,当δ<-<||00x x 证 不妨设 0.A >,)0(0)(lim 0<>=→或A x f x x 若 ,0>δ存在,r A -=ε取 (0,),r A ∈对于任何定理3.5(保不等式性))(lim )(lim 0x g x f x x x x →→与设则内有且在某邻域,)()()(0x g x f x U ≤).(lim )(lim 0x g x f x x x x →→≤证 0lim (),lim (),x x x x f x A g x B →→==设;)(ε->A x f 有时而当,||020δ<-<x x .)(ε+<B x g 分别存在正数 12,,δδ有 都存在,0,ε>则对于任意使当 010||x x δ<-<时, 满足时则当令,||0,},min{021δδδδ<-<=x x ,)()(εε+<≤<-B x g x f A所以证得是任意正数因为从而有,.2εε+<B A .B A ≤定理3.6(迫敛性)lim ()lim (),x x x x f x g x A →→==设0x 且在的某个空心).()()(x g x h x f ≤≤.)(lim 0A x h x x =→那么证 因为 00lim ()lim (),x x x x f x g x A →→==有时当,||00δ<-<x x (),A f x A εε-<<+().A g x A εε-<<+.)()()(εε+<≤≤<-A x g x h x f A 再由定理的条件,又得这就证明了 0)(x x h 在点的极限存在,并且就是 A .0,ε>所以对于任意,0>δ存在0()U x 邻域内有定理3.7(四则运算法则);)(lim )(lim )]()([lim )1(0x g x f x g x f x x x x x x →→→±=±;)(lim )(lim )()(lim )2(000x g x f x g x f x x x x x x →→→⋅=g f g f ⋅±,在点 x 0 的极限也存在, 且都存在, ,0)(lim )3(0≠→x g x x 又若在点 x 0 的极限也存在,g f则.)(lim )(lim )()(lim 00x g x f x g x f x x x x x x →→→=并有,)(lim 0x f x x →若)(lim 0x g xx → 则§2 函数极限概的性质A x f x x =→)(lim 0范例这个定理的证明类似于数列极限中的相应定理, 这就可以知道这些定理是显然的.里将证明留给读者. 在下一节学过归结原则之后, 的基本性质 A x f xx =→)(lim 0的基本性质 §2 函数极限概的性质A x f xx =→)(lim 0范例arctan lim x x x→+∞πlim arctan ,2x x →+∞=因解为例1 .arctan limxxx ∞+→求002=⋅=π范例1lim 0,x x →∞=所以1=lim arctan lim x x x x →+∞→+∞⋅例 2 .1lim 0⎥⎦⎤⎢⎣⎡→x x x 求有时又当,0<x 0>x 当,11lim )1(lim 00==-++→→x x x 由于,111x x x -≤⎥⎦⎤⎢⎣⎡<于是求得.11lim 0=⎥⎦⎤⎢⎣⎡→x x x 解 由取整函数的性质, .1111xx x ≤⎥⎦⎤⎢⎣⎡<-时, 有 ,111≤⎥⎦⎤⎢⎣⎡<-x x x 因此由迫敛性得 ;11lim 0=⎥⎦⎤⎢⎣⎡+→x x x 同理得 .11lim 0=⎥⎦⎤⎢⎣⎡-→x x x例 3 求极限 π4lim(tan 1).x x x →-π4lim tan tan1,4x x π→==解 因为所以π4ππlim(tan 1)11 1.44x x x →-=⋅-=-例4 .)1(1lim 0>=→a a xx 求证特别又有.1111εε+<<<--NNa a ,1N=δ取,|0|0时当δ<-<x ,1111εε+<<<<--NxNa a a .1lim 0得证即=→xx a 证 ,11lim ,1lim ==∞→∞→n n nn aa 因为所以 ,,0N ∃>∀ε有时当,N n ≥,1111εε+<<<--nna a复习思考题1. lim (), lim (),x x x x f x a g x →→=设存在不存在试问02. lim (),lim (),x x u u g x u f u A →→==设这时是否必有lim (())?x x f g x A →=0lim ()()?x x f x g x →极限是否必定不存在。
第2课时奇偶性的应用学习目标1.掌握用奇偶性求解析式的方法.2.理解奇偶性对单调性的影响并能用以比较大小、求最值和解不等式.(知识点一 用奇偶性求解析式如果已知函数的奇偶性和一个区间 [a ,b ]上的解析式,想求关于原点的对称区间 [-b ,-a ]上的解析式,其解决思路为:(1)“求谁设谁”,即在哪个区间上求解析式,x 就应在哪个区间上设. (2)要利用已知区间的解析式进行代入.(3)利用 f(x)的奇偶性写出-f(x)或 f(-x),从而解出 f(x).知识点二 奇偶性与单调性若函数 f(x)为奇函数,则 f(x)在关于原点对称的两个区间[a ,b ]和[-b ,-a ]上具有相同的单调性;若函数 f(x)为偶函数,则 f(x)在关于原点对称的两个区间[a ,b ]和[-b ,-a ]上具有相 反的单调性.预习小测 自我检验1.若 f(x)的定义域为 R ,且 f(x)为奇函数,则 f(0)=________.答案 02.若 f(x)为 R 上的奇函数,且在[0,+∞)上单调递减,则 f(-1)________f(1).填“>”“=” 或“<”)答案 >解析 f(x)为 R 上的奇函数,且在[0,+∞)上单调递减,∴f(x)在 R 上单调递减,∴f(-1)>f(1).3.如果奇函数 f(x)在区间[-7,-3]上是减函数,那么函数 f(x)在区间[3,7]上是________函数.答案 减解析 ∵f(x)为奇函数,∴f(x)在[3,7]上的单调性与[-7,-3]上一致,∴f(x)在[3,7]上是减函f f数.4.函数 f(x)为偶函数,若 x >0 时,f(x)=x ,则 x <0 时,f(x)=________. 答案 -x解析 方法一 令 x <0,则-x >0,∴f(-x)=-x ,又∵f(x)为偶函数,∴f(-x)=f(x),∴f(x)=-x(x<0).方法二 利用图象(图略)可得 x <0 时,f(x)=-x.一、利用函数的奇偶性求解析式命题角度 1 求对称区间上的解析式例 1 函数 f(x)是定义域为 R 的奇函数,当 x >0 时,(x)=-x +1,求当 x <0 时,(x)的解析式. 考点 函数奇偶性的应用题点 利用奇偶性求函数的解析式解 设 x <0,则-x >0,∴f(-x)=-(-x)+1=x +1,又∵函数 f(x)是定义域为 R 的奇函数,∴当 x <0 时,f(x)=-f(-x)=-x -1.反思感悟 求给定哪个区间的解析式就设这个区间上的变量为 x ,然后把 x 转化为-x ,此时2x -1例 2 设 f(x)是偶函数,g (x)是奇函数,且 f(x)+g (x)= ,求函数 f(x),g (x)的解析式.∴f(x)-g (x)= ,②-x 成为了已知区间上的解析式中的变量,通过应用奇函数或偶函数的定义,适当推导,即可得所求区间上的解析式.跟踪训练 1 已知 f(x)是 R 上的奇函数,且当 x ∈(0,+∞)时,f(x)=x(1+x),求 f(x)的解析式.解 因为 x ∈(-∞,0)时,-x ∈(0,+∞),所以 f(-x)=-x [1+(-x)]=x(x -1).因为 f(x)是 R 上的奇函数,所以 f(x)=-f(-x)=-x(x -1),x ∈(-∞,0). f(0)=0.⎧⎪x (1+x ),x ≥0,所以 f(x)=⎨⎪⎩-x (x -1),x<0.命题角度 2 构造方程组求解析式1x -1考点 函数奇偶性的应用题点 利用奇偶性求函数的解析式解 ∵f(x)是偶函数,g (x)是奇函数,∴f(-x)=f(x),g (-x)=-g (x),由 f(x)+g (x)= 1.①x -1用-x 代替 x ,得 f(-x)+g (-x)= 1,-x -11 -x -1(①+②)÷2,得 f(x)= 1;x 2-1x(①-②)÷2,得 g (x)= .反思感悟f(x)+g (x)= 1对定义域内任意 x 都成立,所以可以对 x 任意赋值,如 x =-x.x -1利用f(x),g(x)一奇一偶,把-x的负号或提或消,最终得到关于f(x),g(x)的二元方程组,从中解出f(x)和g(x).跟踪训练2设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+2x,求函数f(x),g(x)的解析式.考点函数奇偶性的应用题点利用奇偶性求函数的解析式解∵f(x)是偶函数,g(x)是奇函数,∴f(-x)=f(x),g(-x)=-g(x),由f(x)+g(x)=2x+x2.①用-x代替x,得f(-x)+g(-x)=-2x+(-x)2,∴f(x)-g(x)=-2x+x2,②(①+②)÷2,得f(x)=x2;(①-②)÷2,得g(x)=2x.二、利用函数的奇偶性与单调性比较大小例3设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A.f(π)>f(-3)>f(-2)B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2)D.f(π)<f(-2)<f(-3)答案A解析因为函数f(x)为R上的偶函数,所以f(-3)=f(3),f(-2)=f(2).又当x∈[0,+∞)时,f(x)是增函数,且π>3>2,所以f(π)>f(3)>f(2),故f(π)>f(-3)>f(-2).反思感悟利用函数的奇偶性与单调性比较大小(1)自变量在同一单调区间上,直接利用函数的单调性比较大小;(2)自变量不在同一单调区间上,需利用函数的奇偶性把自变量转化到同一单调区间上,然后<0 的解集为________.利用单调性比较大小.跟踪训练 3 (1)已知偶函数 f(x)在[0,+∞)上单调递减,则 f(1)和 f(-10)的大小关系为()A .f(1)>f(-10)C .f(1)=f(-10) B .f(1)<f(-10)D .f(1)和 f(-10)关系不定答案 A解析 ∵f(x)是偶函数,且在[0,+∞)上单调递减,∴f(-10)=f(10)<f(1).(2)定义在 R 上的奇函数 f(x)为增函数,偶函数 g (x)在区间[0,+∞)上的图象与 f(x)的图象重合,设 a >b >0,下列不等式中成立的有________.(填序号)①f(a)>f(-b );③g (a)>g (-b );②f(-a)>f(b );④g (-a)<g (b );⑤g (-a)>f(-a).答案 ①③⑤解析 f(x)为 R 上奇函数,增函数,且 a >b >0,∴f(a)>f(b )>f(0)=0,又-a <-b <0,∴f(-a)<f(-b )<f(0)=0,∴f(a)>f(b )>0>f(-b )>f(-a),∴①正确,②错误.x ∈[0,+∞)时,g (x)=f(x),∴g (x)在[0,+∞)上单调递增,∴g (-a)=g (a)>g (b )=g (-b ),∴③正确,④错误.又 g (-a)=g (a)=f(a)>f(-a),∴⑤正确.三、利用函数的奇偶性与单调性解不等式例 4 (1)已知 f(x)是定义在 R 上的偶函数,且在区间(-∞,0)上是增函数.若 f(-3)=0,则f (x )x答案 {x|-3<x <0 或 x>3}解析 ∵f(x)是定义在 R 上的偶函数,且在区间(-∞,0)上是增函数,∴f(x)在区间(0,+∞)上是减函数.∴f(3)=f(-3)=0.(2)已知偶函数 f(x)在区间[0,+∞)上单调递增,则满足 f(2x -1)<f ⎝3⎭的 x 的取值范围为( )A.⎝3,3⎭B.⎣3,3⎭C.⎝2,3⎭D.⎣2,3⎭解析 由于 f(x)为偶函数,且在[0,+∞)上单调递增,则不等式 f(2x -1)<f ⎝3⎭, 即-1<2x -1<1,解得1<x <2. 解得-1≤m<1.所以实数 m 的取值范围为⎡-1, ⎫.当 x >0 时,由 f(x)<0,解得 x >3;当 x <0 时,由 f(x)>0,解得-3<x<0.故所求解集为{x|-3<x <0 或 x>3}.⎛1⎫⎛1 2⎫⎛1 2⎫⎡1 2⎫⎡1 2⎫答案 A⎛1⎫3 33 3反思感悟 利用函数奇偶性与单调性解不等式,一般有两类(1)利用图象解不等式;(2)转化为简单不等式求解.①利用已知条件,结合函数的奇偶性,把已知不等式转化为 f(x 1)<f(x 2)或 f(x 1)>f(x 2)的形式;②根据奇函数在对称区间上的单调性一致,偶函数在对称区间上的单调性相反,脱掉不等式中的“f ”转化为简单不等式(组)求解.跟踪训练 4 设定义在[-2,2]上的奇函数 f(x)在区间[0,2]上是减函数,若 f(1-m )<f(m ),求实数 m 的取值范围.解 因为 f(x)是奇函数且 f(x)在[0,2]上是减函数,所以 f(x)在[-2,2]上是减函数.⎧⎪1-m>m ,所以不等式 f(1-m )<f(m )等价于⎨-2≤m ≤2,⎪⎩-2≤1-m ≤2,21 ⎣ 2⎭) 1.若函数f(x)是R上的偶函数,且在区间[0,+∞)上是增函数,则下列关系成立的是( A.f(-3)>f(0)>f(1)B.f(-3)>f(1)>f(0)C.f(1)>f(0)>f(-3)D.f(1)>f(-3)>f(0)考点抽象函数单调性与奇偶性题点抽象函数单调性与不等式结合问题答案B解析∵f(-3)=f(3),且f(x)在区间[0,+∞)上是增函数,∴f(-3)>f(1)>f(0).2.定义在R上的偶函数f(x)在[0,+∞)上是增函数,若f(a)<f(b),则一定可得() A.a<b B.a>bC.|a|<|b|D.0≤a<b或a>b≥0考点抽象函数单调性与奇偶性题点抽象函数单调性与不等式结合问题答案C3.已知函数f(x)为偶函数,且当x<0时,f(x)=x+1,则x>0时,f(x)=________.答案-x+1解析当x>0时,-x<0,∴f(-x)=-x+1,又f(x)为偶函数,∴f(x)=-x+1.4.奇函数f(x)在区间[0,+∞)上的图象如图,则函数f(x)的增区间为________.f答案(-∞,-1],[1,+∞)解析奇函数的图象关于原点对称,可知函数f(x)的增区间为(-∞,-1],[1,+∞).5.已知偶函数f(x)在[0,+∞)上单调递减,(2)=0.若f(x-1)>0,则x的取值范围是________.答案(-1,3)解析因为f(x)是偶函数,所以f(x-1)=f(|x-1|).又因为f(2)=0,所以f(x-1)>0可化为f(|x-1|)>f(2).又因为f(x)在[0,+∞)上单调递减,所以|x-1|<2,解得-2<x-1<2,所以-1<x<3.1.知识清单:(1)利用奇偶性,求函数的解析式.(2)利用奇偶性和单调性比较大小、解不等式.2.方法归纳:利用函数的奇偶性、单调性画出函数的简图,利用图象解不等式和比较大小,体现了数形结合思想和直观想象数学素养.3.常见误区:解不等式易忽视函数的定义域.⎩⎧⎪x 2+x ,x ≥0,1.设函数 f(x)=⎨且 f(x)为偶函数,则 g (-2)等于( )⎪g (x ),x <0,A .6B .-6C .2D .-2考点 函数奇偶性的应用题点 利用奇偶性求函数的解析式答案 A解析 g (-2)=f(-2)=f(2)=22+2=6.2.如果奇函数 f(x)在区间[-3,-1]上是增函数且有最大值 5,那么函数 f(x)在区间[1,3]上是( )A .增函数且最小值为-5B .增函数且最大值为-5C .减函数且最小值为-5D .减函数且最大值为-5答案 A解析 f(x)为奇函数,∴f(x)在[1,3]上的单调性与[-3,-1]上一致且 f(1)为最小值,又已知 f(-1)=5,∴f(-1)=-f(1)=5,∴f(1)=-5,故选 A.3.已知函数 y =f(x)是 R 上的偶函数,且 f(x)在[0,+∞)上是减函数,若 f(a)≥f(-2),则 a的取值范围是()A .a ≤-2C .a ≤-2 或 a ≥2 B .a ≥2D .-2≤a ≤2答案 D解析 由 f(a)≥f(-2)得 f(|a|)≥f(2),∴|a|≤2,∴-2≤a ≤2.4.已知函数 y =f(x)是偶函数,其图象与 x 轴有 4 个交点,则方程 f(x)=0 的所有实根之和是( )A .4B .2C .1D .0答案 D解析 y =f(x)是偶函数,所以 y =f(x)的图象关于 y 轴对称,所以 f(x)=0 的所有实根之和为 0.5.设 f(x)是 R 上的偶函数,且在(0,+∞)上是减函数,若 x 1<0 且 x 1+x 2>0,则() A .f(-x 1)>f(-x 2)B .f(-x 1)=f(-x 2)C .f(-x 1)<f(-x 2)D .f(-x 1)与 f(-x 2)的大小不确定考点 抽象函数单调性与奇偶性题点 抽象函数单调性与不等式结合问题答案 A解析 ∵x 1<0,x 1+x 2>0,∴x 2>-x 1>0,又 f(x)在(0,+∞)上是减函数,∴f(x 2)<f(-x 1),∵f(x)是偶函数,∴f(-x 2)=f(x 2)<f(-x 1).6.设 f(x)是定义在 R 上的奇函数,当 x >0 时,f(x)=x 2+1,则 f(-2)+f(0)=________.答案 -5解析 由题意知 f(-2)=-f(2)=-(22+1)=-5,f(0)=0,∴f(-2)+f(0)=-5.7.已知奇函数 f(x)在区间[0,+∞)上单调递增,则满足 f(x)<f(1)的 x 的取值范围是________.考点 抽象函数单调性与奇偶性题点 抽象函数单调性与不等式结合问题答案 (-∞,1)解析 由于 f(x)在[0,+∞)上单调递增,且是奇函数,所以 f(x)在 R 上单调递增,f(x)<f(1)等价于 x<1.8.若 f(x)=(m -1)x 2+6mx +2 是偶函数,则 f(0),f(1),f(-2)从小到大的排列是________.答案 f(-2)<f(1)<f(0)解析 ∵f(x)是偶函数,∴f(-x)=f(x)恒成立,即(m -1)x 2-6mx +2=(m -1)x 2+6mx +2 恒成立,∴m =0,即 f(x)=-x 2+2.∵f(x)的图象开口向下,对称轴为 y 轴,在[0,+∞)上单调递减,∴f(2)<f(1)<f(0),即 f(-2)<f(1)<f(0).9.已知函数 y =f(x)的图象关于原点对称,且当 x >0 时,f(x)=x 2-2x +3.(1)试求 f(x)在 R 上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.考点 单调性与奇偶性的综合应用题点 求奇偶函数的单调区间解 (1)因为函数 f(x)的图象关于原点对称,所以 f(x)为奇函数,则 f(0)=0.设 x <0,则-x >0,⎧⎪x -2x +3,x >0,10.已知函数 f(x)=ax + +c(a ,b ,c 是常数)是奇函数,且满足 f(1)= ,f(2)= . (2)试判断函数 f(x)在区间⎝0,2⎭上的单调性并证明. ∴-ax - +c =-ax - -c , ∴c =0,∴f(x)=ax + . 因为当 x >0 时,f(x)=x 2-2x +3.所以当 x <0 时,f(x)=-f(-x)=-(x 2+2x +3)=-x 2-2x -3.2 于是有 f(x)=⎨0,x =0,⎪⎩-x 2-2x -3,x<0.(2)先画出函数在 y 轴右侧的图象,再根据对称性画出 y 轴左侧的图象,如图.由图象可知函数 f(x)的单调递增区间是(-∞,-1],[1,+∞),单调递减区间是(-1,0),(0,1). b 5 17 x 24(1)求 a ,b ,c 的值;⎛ 1⎫考点 单调性与奇偶性的综合应用题点 判断或证明奇偶函数在某区间上的单调性解 (1)∵f(x)为奇函数,∴f(-x)=-f(x),b b x xb x又∵f(1)=5,f(2)=17, 2 4⎧ 5a +b = ,∴a =2,b = . (2)由(1)可知 f(x)=2x + .0, ⎫上为减函数.函数 f(x)在区间⎛1任取 0<x <x < , 1 1则 f(x )-f(x )=2x + -2x - 2-=(x -x )⎛2x1x 2 1 2=(x -x ) . 0, 上为减函数.∴f(x)在⎝ 2⎭∴⎨2x 1 2x 21 2 ⎝ 2x x ⎭ ∵0<x 1<x 2< ,2 2 42 ⎩2a +b =17. 1 2综上,a =2,b =1,c =0. 21 2x1 ⎝ 2⎭证明如下:1 2 21 21 2 1 ⎫ 1 24x x -1 1 21∴x 1-x 2<0,2x 1x 2>0,4x 1x 2-1<0.∴f(x 1)-f(x 2)>0,即 f(x 1)>f(x 2).⎛ 1⎫即f (x )<0, 综上使f (x )<0 的解集为(-∞,-1)∪(1,+∞).11.设奇函数 f(x)在(0,+∞)上为减函数,且 f(1)=0,则不等式f (x )-f (-x)解析 ∵f(x)为奇函数,f (x )-f (-x )x <0 的解集为(A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)答案 Cx <0,x∵f(x)在(0,+∞)上为减函数且 f(1)=0,∴当 x >1 时,f(x)<0.∵奇函数图象关于原点对称,∴在(-∞,0)上 f(x)为减函数且 f(-1)=0,即 x <-1 时,f(x)>0.x12.已知 f(x +y)=f(x)+f(y)对任意实数 x ,y 都成立,则函数 f(x)是( )A .奇函数B .偶函数C .既是奇函数,也是偶函数 )f D .既不是奇函数,也不是偶函数答案 A解析 令 x =y =0,所以 f(0)=f(0)+f(0),所以 f(0)=0.又因为 f(x -x)=f(x)+f(-x)=0,所以 f(-x)=-f(x),所以 f(x)是奇函数,故选 A.13.已知 y =f(x)+x 2 是奇函数且 f(1)=1,若 g (x)=f(x)+2,则 g (-1)=________.考点 函数奇偶性的应用题点 利用奇偶性求函数值答案 -1解析 ∵y =f(x)+x 2 是奇函数,∴f(-x)+(-x)2=-[f(x)+x 2],∴f(x)+f(-x)+2x 2=0,∴f(1)+f(-1)+2=0.∵f(1)=1,∴f(-1)=-3.∵g (x)=f(x)+2,∴g (-1)=f(-1)+2=-3+2=-1.14.已知定义在 R 上的函数 f(x)满足 f(1-x)=f(1+x),且 f(x)在[1,+∞)上为单调减函数,则当 x =________时,(x)取得最大值;若不等式 f(0)<f(m )成立,则 m 的取值范围是________.答案 1 (0,2)解析 由 f(1-x)=f(1+x)知,f(x)的图象关于直线 x =1 对称,又 f(x)在(1,+∞)上单调递减,则 f(x)在(-∞,1]上单调递增,所以当 x =1 时 f(x)取到最大值.由对称性可知 f(0)=f(2),所 以 f(0)<f(m ),得 0<m <2,即 m 的取值范围为(0,2).a +b15.已知 f(x),g (x)分别是定义在 R 上的偶函数和奇函数,且 f(x)-g (x)=x 3+x 2+1,则 f(1)+g (1)等于( )A .-3B .-1C .1D .3考点 函数奇偶性的应用题点 利用奇偶性求函数的解析式答案 C解析 ∵f(x)-g (x)=x 3+x 2+1,∴f(-x)-g (-x)=-x 3+x 2+1.∵f(x)是偶函数,g (x)是奇函数,∴f(-x)=f(x),g (-x)=-g (x).∴f(x)+g (x)=-x 3+x 2+1.∴f(1)+g (1)=-1+1+1=1.f (a )+f (b ) 16.设 f(x)是定义在 R 上的奇函数,且对任意 a ,b ∈R ,当 a +b ≠0 时,都有 >0.(1)若 a >b ,试比较 f(a)与 f(b )的大小关系;(2)若 f(1+m )+f(3-2m )≥0,求实数 m 的取值范围.解 (1)因为 a >b ,所以 a -b >0,f (a )+f (-b ) 由题意得 >0, a -b所以 f(a)+f(-b )>0.又f(x)是定义在R上的奇函数,所以f(-b)=-f(b),所以f(a)-f(b)>0,即f(a)>f(b).(2)由(1)知f(x)为R上的单调递增函数,因为f(1+m)+f(3-2m)≥0,所以f(1+m)≥-f(3-2m),即f(1+m)≥f(2m-3),所以1+m≥2m-3,所以m≤4.所以实数m的取值范围为(-∞,4].。
上海交通大学医学院附属卫生学校浦东分校
教案
专业
科目
教师
教研室
系、部
20 — 20 学年第学期
教案(首页)
上海交通大学医学院附属卫生学校浦东分校
上海交通大学医学院附属卫生学校浦东分校上海交通大学医学院附属卫生学校浦东分校教案(付页)
回答下面的问题:
页次 1
上海交通大学医学院附属卫生学校浦东分校上海交通大学医学院附属卫生学校浦东分校教案(付页)
页次 2
上海交通大学医学院附属卫生学校浦东分校上海交通大学医学院附属卫生学校浦东分校教案(付页)
页次 3
上海交通大学医学院附属卫生学校浦东分校上海交通大学医学院附属卫生学校浦东分校教案(付页)
页次 4
上海交通大学医学院附属卫生学校浦东分校上海交通大学医学院附属卫生学校浦东分校教案(付页)
四、理论升华整体建构
由一次函数y kx b
k≠)的图像(如下图)
=+(0
页次 5
上海交通大学医学院附属卫生学校浦东分校上海交通大学医学院附属卫生学校浦东分校教案(付页)
(1)当0k >时,在各象限中y 值分别随x 值的增大而减小,函数是单调递减函数;
(2)当0k <时,在各象限中y 值分别随x 值的增大而增大,函数是单调递增函数. 五、运用知识 强化练习
)根据图像说出函数的单调区间以及函数在各单调区间内的单调性.
)写出函数的定义域和值域. 一、创设情景 兴趣导入 平面几何中,曾经学习了关于轴对称图形和中心对称图形的知识.如图所示,点()3,2P 关于x 轴的对称点 页 次 6
上海交通大学医学院附属卫生学校浦东分校
上海交通大学医学院附属卫生学校浦东分校教案(付页)
页 次 7
上海交通大学医学院附属卫生学校浦东分校
上海交通大学医学院附属卫生学校浦东分校教案(付页)
P 1
P 3 P 2
页次 8 上海交通大学医学院附属卫生学校浦东分校
图(1)图(2)
页次 9
上海交通大学医学院附属卫生学校浦东分校
页次 10
页次 11
页次 12 上海交通大学医学院附属卫生学校浦东分校。