正弦型函数的图像与性质
- 格式:ppt
- 大小:710.50 KB
- 文档页数:25
一.正弦函数的图像与性质1.正弦函数的图象画法:五点法:2.正弦函数的性质:(通过图象观察性质)(1)定义域: (2)值域: (3)周期性: (4)奇偶性: (5)单调性:(6)对称轴:(7)对称中心:3.正弦函数性质的应用(一)、值域和有界性以及最值的应用例1、设3sin -=t x ,R x ∈,求t 的取值范围。
例2、已知b x a y +=sin 的最大值为5,最小值为1,求a ,b 的值。
例3、求下列函数的最大值和最小值以及相应的x 的取值范围 (1)x y 2sin =;(2)2sin +=x y ;(3)2)1(sin 2+-=x y例4、求函数y =cos 2x -3sin x 的最大值例5、已知|x |≤,求函数y =cos 2x +sin x 的最小值4π(二)、周期性的应用例1、 求下列函数的周期:(1)y =sin2x ,x ∈R ; (2)y =2sin(x -),x ∈R)sin(ϕ+=wx A y 的周期T=练习:求下列函数的周期 (1)x y 3sin =,(2)4sin3x y =,(3))62sin(2π-=x y (三)、单调性的应用(1)利用单调性比较大小例1、不求三角函数值,指出下列各式大于零还是小于零。
(1))10sin()18sin(ππ---(2))417sin()523sin(ππ---(2)求复合函数单调区间 例2、 (1)函数y =sin(x +)单调增区间? (2)函数y =3sin(-2x )单调减区间? (3)求)214sin(3x y --=π的单调区间。
(四)、对称轴及对称中心的应用 例1、函数y =sin (2x +)图象的一条对称轴方程是( ) A x =-B x =-C x =D x =例2、函数)62sin(4π-=x y 的一个对称中心是( )A )0,12(πB )0,3(πC )0,6(π-D )0,6(π(五).函数y =sinx 的对称性与周期性的关系.⑴ 若相邻两条对称轴为x =a 和x =b ,则T = . ⑵ 若相邻两对称点(a ,0)和(b ,0) ,则T = .⑶ 若有一个对称点(a ,0)和它相邻的一条对称轴x =b ,则T = .二.正弦型函数+b(一)1.周期: 2.频率: 3. 初相: 4.最值:例1、求函数的振幅、周期、初相和单调区间。
教案:正弦型函数的图像和性质第一章:正弦函数的定义与图像1.1 教学目标了解正弦函数的定义能够绘制正弦函数的图像1.2 教学内容正弦函数的定义:y = sin(x)正弦函数的图像特点:周期性、振幅、相位、对称性1.3 教学步骤1. 引入正弦函数的概念,解释正弦函数的定义2. 利用数学软件或图形计算器,绘制正弦函数的图像3. 分析正弦函数的图像特点,引导学生理解周期性、振幅、相位、对称性1.4 练习与作业练习绘制不同振幅和相位的正弦函数图像完成课后练习题,巩固对正弦函数图像的理解第二章:正弦函数的性质2.1 教学目标了解正弦函数的性质能够应用正弦函数的性质解决问题2.2 教学内容正弦函数的单调性:增减区间正弦函数的奇偶性:奇函数与偶函数正弦函数的周期性:周期为2π正弦函数的值域:[-1, 1]2.3 教学步骤1. 介绍正弦函数的单调性,利用图像进行解释2. 解释正弦函数的奇偶性,利用数学公式进行证明3. 强调正弦函数的周期性,引导学生理解周期为2π4. 分析正弦函数的值域,解释正弦函数的取值范围2.4 练习与作业练习判断正弦函数的单调性、奇偶性和周期性完成课后练习题,应用正弦函数的性质解决问题第三章:余弦函数的定义与图像3.1 教学目标了解余弦函数的定义能够绘制余弦函数的图像3.2 教学内容余弦函数的定义:y = cos(x)余弦函数的图像特点:周期性、振幅、相位、对称性3.3 教学步骤1. 引入余弦函数的概念,解释余弦函数的定义2. 利用数学软件或图形计算器,绘制余弦函数的图像3. 分析余弦函数的图像特点,引导学生理解周期性、振幅、相位、对称性3.4 练习与作业练习绘制不同振幅和相位的余弦函数图像完成课后练习题,巩固对余弦函数图像的理解第四章:正切函数的定义与图像4.1 教学目标了解正切函数的定义能够绘制正切函数的图像4.2 教学内容正切函数的定义:y = tan(x)正切函数的图像特点:周期性、振幅、相位、对称性4.3 教学步骤1. 引入正切函数的概念,解释正切函数的定义2. 利用数学软件或图形计算器,绘制正切函数的图像3. 分析正切函数的图像特点,引导学生理解周期性、振幅、相位、对称性4.4 练习与作业练习绘制不同振幅和相位的正切函数图像完成课后练习题,巩固对正切函数图像的理解第五章:正弦型函数的应用5.1 教学目标了解正弦型函数的应用能够解决与正弦型函数相关的问题5.2 教学内容正弦型函数在物理、工程等领域的应用解决与正弦型函数相关的问题:如振动、波动、音乐等5.3 教学步骤1. 介绍正弦型函数在物理、工程等领域的应用实例2. 解释正弦型函数在振动、波动、音乐等方面的作用3. 示例解决与正弦型函数相关的问题,引导学生应用正弦型函数的性质和图像5.4 练习与作业练习解决与正弦型函数相关的问题完成课后练习题,应用正弦型函数解决实际问题第六章:正弦型函数的积分与微分6.1 教学目标理解正弦型函数的不定积分和定积分学会计算正弦型函数的导数6.2 教学内容正弦型函数的不定积分:基本积分公式正弦型函数的定积分:利用积分公式计算面积正弦型函数的导数:求导法则6.3 教学步骤1. 介绍正弦型函数的不定积分,讲解基本积分公式2. 通过例题演示如何计算正弦型函数的定积分3. 讲解正弦型函数的导数,引导学生理解求导法则6.4 练习与作业练习计算正弦型函数的不定积分和定积分完成课后练习题,巩固对正弦型函数积分和导数的理解第七章:正弦型函数在坐标系中的应用7.1 教学目标学会在直角坐标系中绘制正弦型函数的图像能够利用正弦型函数解决实际问题7.2 教学内容利用直角坐标系绘制正弦型函数的图像解决实际问题:如测量角度、计算物理振动等7.3 教学步骤1. 讲解如何在直角坐标系中绘制正弦型函数的图像2. 通过实例演示如何利用正弦型函数解决实际问题7.4 练习与作业练习绘制不同类型的正弦型函数图像完成课后练习题,应用正弦型函数解决实际问题第八章:正弦型函数在三角变换中的应用8.1 教学目标理解三角恒等式及其应用学会利用正弦型函数进行三角变换8.2 教学内容三角恒等式:sin^2(x) + cos^2(x) = 1 等正弦型函数的三角变换:和差化积、积化和差等8.3 教学步骤1. 讲解三角恒等式的含义和应用2. 讲解如何利用正弦型函数进行三角变换8.4 练习与作业练习运用三角恒等式进行计算完成课后练习题,巩固对正弦型函数在三角变换中应用的理解第九章:正弦型函数在工程和技术中的应用9.1 教学目标了解正弦型函数在工程和技术领域的应用学会解决与正弦型函数相关的工程问题9.2 教学内容正弦型函数在信号处理、电子工程等领域的应用解决与正弦型函数相关的工程问题:如信号分析、电路设计等9.3 教学步骤1. 讲解正弦型函数在信号处理、电子工程等领域的应用实例2. 示例解决与正弦型函数相关的工程问题,引导学生应用正弦型函数的性质和图像9.4 练习与作业练习解决与正弦型函数相关的工程问题完成课后练习题,应用正弦型函数解决实际工程问题第十章:总结与拓展10.1 教学目标总结正弦型函数的图像和性质的主要内容了解正弦型函数在其他领域的拓展应用10.2 教学内容总结正弦型函数的图像和性质的关键点介绍正弦型函数在其他领域的拓展应用:如地球物理学、天文学等10.3 教学步骤1. 回顾正弦型函数的图像和性质的主要内容,强调重点和难点2. 介绍正弦型函数在其他领域的拓展应用,提供相关实例10.4 练习与作业复习正弦型函数的图像和性质的主要内容,巩固所学知识完成课后练习题,探索正弦型函数在其他领域的拓展应用重点和难点解析重点环节一:正弦函数的定义与图像理解正弦函数的定义:y = sin(x)掌握正弦函数图像的特点:周期性、振幅、相位、对称性重点环节二:正弦函数的性质掌握正弦函数的单调性:增减区间理解正弦函数的奇偶性:奇函数与偶函数认识正弦函数的周期性:周期为2π了解正弦函数的值域:[-1, 1]重点环节三:余弦函数的定义与图像理解余弦函数的定义:y = cos(x)掌握余弦函数图像的特点:周期性、振幅、相位、对称性重点环节四:正切函数的定义与图像理解正切函数的定义:y = tan(x)掌握正切函数图像的特点:周期性、振幅、相位、对称性重点环节五:正弦型函数的应用了解正弦型函数在物理、工程等领域的应用实例学会解决与正弦型函数相关的问题:如振动、波动、音乐等重点环节六:正弦型函数的积分与微分理解正弦型函数的不定积分和定积分学会计算正弦型函数的导数重点环节七:正弦型函数在坐标系中的应用学会在直角坐标系中绘制正弦型函数的图像学会利用正弦型函数解决实际问题重点环节八:正弦型函数在三角变换中的应用理解三角恒等式及其应用学会利用正弦型函数进行三角变换重点环节九:正弦型函数在工程和技术中的应用了解正弦型函数在信号处理、电子工程等领域的应用实例学会解决与正弦型函数相关的工程问题重点环节十:总结与拓展总结正弦型函数的图像和性质的关键点了解正弦型函数在其他领域的拓展应用全文总结和概括:本教案涵盖了正弦型函数的图像和性质的各个方面,从基本定义到图像特点,再到性质和应用,每个环节都进行了深入的讲解和演示。
12.3 正弦型函数的图像和性质一、三维目标:1、知识与技能:(1)理解正弦型函数的周期性;(2)掌握用“五点法”作正弦型函数的简图; (3)掌握利用正弦型函数的图像观察其性质; (4)会求简单函数的定义域、值域和单调区间2、过程与方法:(1)掌握正弦型函数图像的“五点法” 作图;(2)培养观察能力、分析能力、归纳能力和表达能力等; (3)培养数形结合和化归转化的数学思想方法。
3、情感、态度与价值观:(1)通过小动画展示、作图,使学生感受波形曲线的流畅美、对称美。
(2)激发学生求知的欲望和探究的热情,渗透数学文化,增强学生对学习数学的兴趣。
二、教学重、难点1. 教学重点:用“五点法”画正弦型函数在一个周期上的图像;利用函数图像观察正弦型函数的性质。
2. 教学难点:正弦型函数性质的理解和应用。
.三、课时安排3节课 四、教学过程:画出函数3sin(2)3y x π=+的简图。
解:函数的周期为22T ππ==,先画出它在长度为一个周期内的闭区间上的函数3sin(2)3y x π=+的图象可看作由下面的方法得到的:①sin yx =图象上所有点向左平移3π个单位,得到sin()3yx π=+的图象上;②再把图象上所点的横坐标缩短到原来的12,得到sin(2)3y x π=+的图象;②再把图象上所有点的纵坐标伸长到原来的3倍,得到3sin(2)3y x π=+的图象。
一般地,函数sin()y A x ωϕ=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到:①把正弦曲线上所有点向左(当0ϕ>时)或向右(当0ϕ<时)平行移动||ϕ个单位长度;②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的1ω倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。
7.3.2 正弦型函数的性质与图象(1)本节课是人教B 版必修3《三角函数》一章第二大节的第二课时,前一节“正弦函数的性质和图象”主要讲述了正弦函数图象的画法(五点法)、性质及应用。
本节课的主要内容是结合实例,了解sin()y A wx ϕ=+的实际意义,会用五点法画出函数的图象,观察参数,,A w ϕ 对函数图象变化的影响,掌握变换法作图。
从多角度理解正弦型函数的定义域,值域,周期;能从数和形两个角度理解正弦函数与正弦型函数的本质联系;会用换元法对正弦型函数的性质划归为正弦函数模型求解,体会转化划归的思想。
在内容和思想逻辑上这两节是相辅相成、紧密联系的,前一节是后一节的基础,后一节是前一节的延续和深化,这两节内容又是整个三角函数内容的重中之重。
通过重点学习正弦函数和正弦型函数,可以是学生进一步熟悉和掌握研究函数的过程和方法。
【教学重点】正弦型函数的定义域、值域、周期性,五点法作图,图象变换 【教学难点】正弦型函数图象变换,换元法对正弦型函数的性质划归为正弦函数模型求解相关问题问题1:正弦型函数的定义 知识点1:正弦型函数的定义一般地,形如sin()y A wx ϕ=+的函数,在物理,工程等学科的研究中经常遇到,这种类型的函数称为正弦型函数,其中,,A w ϕ都是常数,且0,0A w ≠≠。
问题2:正弦型函数的图象与性质例1.探究函数2sin y x =的定义域、值域和周期性,并作出它在一个周期内的图象。
解:可以看出,函数2sin y x =的定义域为R 。
又因为sin 1x =时,2sin 2y x ==;sin 1x =-时,2sin 2y x ==-,所以2sin y x =的值域为[2,2]-.函数2sin y x =的周期函数,周期是2π。
下面我们用五点法作出2sin y x =在[0,2]π上的图象,取点列表如下。
描点作图:由图象可以看出,2sin y x =的图象可由sin y x =的图象上的点,横坐标保持不变,纵坐标变为原来的两倍得到。