数字信号处理第三章4离散傅里叶变换的性质
- 格式:ppt
- 大小:559.50 KB
- 文档页数:46
[数字信号处理]离散傅⾥叶变换及其性质DFT定义
离散傅⾥叶变换的公式如下
X(k)=N−1
∑
n=0x(n)W nk N
其中W n是单位根,定义如下
W N=e−j 2πN
逆变换如下
x(n)=1
N
N−1
∑
k=0X(k)W−nk
N
性质
线性
如果有x1(n)和x2(n)两个有限长序列,长度分别为N1和N2,且
y(n)=ax1(n)+bx2(n),(a,b为常数)取变换区间长度N=[N1,N2]max
X1(k)=DFT[x1(n)]N;X2(k)=DFT[x2(n)]N 则y(n)的N点DFT为
Y(k)=DFT[y(n)]N=aX1(k)+bX2(k)循环移位性质
设x(n)为有限长序列,长度为M,则x(n)的循环移位定义为
y(n)=x((n+m))N R N(n)
如果⼀个序列移位之后,⼀些样值被移到了起始点前⾯,那他实际上会在后⾯再补回来,实际的顺序并没有变.
频域循环移位定理
如果X(k)=DFT[x(n)]N
Y(k)=X((k+l))N R N(k)
则y(n)=IDFT[Y(k)]N=W nl N x(n)
循环卷积定理
如果x_1(n)和x_2(n)是两个有限长序列,长度分别为M1和M2,且取循环卷积区间长度L≥max[M1,M2]
X1(k)是x1(n)的L点DFT
X2(k)是x2(n)的L点DFT
如果y(n)=x1(n)∗x2(n)=[∑L−1
m=0
x1(m)x2((n−m))L]R L(n),
那么他的的DFT为Y(k)=X1(k)X2(k)
Processing math: 100%。
第三章离散傅立叶变换(DFT)3.1 引言有限长序列在数字信号处理是很重要的一种序列,当然可以用Z变换和傅里叶变换来研究它,但是,可以导出反映它的"有限长"特点的一种有用工具是离散傅里叶变换(DFT)。
离散傅里叶变换除了作为有限长序列的一种傅里叶表示法在理论上相当重要之外,而且由于存在着计算离散傅里叶变换的有效快速算法,因而离散傅里叶变换在各种数字信号处理的算法中起着核心的作用。
有限长序列的离散傅里叶变换(DFT)和周期序列的离散傅里叶级数(DFS)本质上是一样的。
为了更好地理解DFT,需要先讨论周期序列的离散傅里叶级数DFS。
而为了讨论离散傅里叶级数及离散傅里叶变换,我们首先来回顾并讨论傅里叶变换的几种可能形式。
(连续时间信号:如果在讨论的时间间隔内,除若干不连续点之外,对于任意时间值都可给出确定的函数值,此信号就称为连续时间信号。
)一、连续时间、连续频率——连续傅立叶变换(FT)设x(t)为连续时间非周期信号,傅里叶变换关系如下图所示:可以看出时域连续函数造成频域是非周期的谱,而时域的非周期造成频域是连续的谱。
二、连续时间,离散频率------傅 里 叶 级 数设f(t)代表一个周期为T 1的周期性连续时间函数,f(t)可展成傅里叶级数,其傅里叶级数的系数为n F ,f(t)和n F 组成变换对,表示为:tjn n n e F t f 1)(Ω∞-∞=∑=(112Ω=πT )dte tf T F TT t jn n ⎰-Ω-=221111)(1注意符号:如果是周期性的采样脉冲信号p(t),周期用T 表示(采样间隔)。
采样脉冲信号的频率为Ts π2=Ω可以看出时域连续函数造成频域是非周期的谱,而时域的周期造成频域是离散的谱三、离散时间,连续频率------序列的傅里叶变换正变换:DTFT[x(n)]=()()j nj n X e x n eωω∞-=-∞=∑反变换:DTFT-11[()]()()2j n j j X e x n X e e d πωωωπωπ-==⎰)(ωj e X 级数收敛条件为|()j nn x n eω∞-=-∞∑|=∞<∑∞-∞=n n x )(可以看出时域离散函数造成频域是周期的谱,而时域的非周期造成频域是连续的谱四、离散时间,离散频率------离散傅里叶变换上面讨论的三种傅里叶变换对,都不适用在计算机上运算,因为至少在一个域(时域或频域)中,函数是连续的。
第三章离散傅里叶变换离散傅里叶变换不仅具有明确的物理意义,相对于DTFT他更便于用讣算机处理。
但是,直至上个世纪六十年代,山于数字计算机的处理速度较低以及离散傅里叶变换的汁算量较大,离散傅里叶变换长期得不到真正的应用,快速离散傅里叶变换算法的提出,才得以显现出离散傅里叶变换的强大功能,并被广泛地应用于各种数字信号处理系统中。
近年来,计算机的处理速率有了惊人的发展,同时在数字信号处理领域出现了许多新的方法,但在许多应用中始终无法替代离散傅里叶变换及其快速算法。
§ 3-1 引言一.DFT是重要的变换1•分析有限长序列的有用工具。
2.在信号处理的理论上有重要意义。
3.在运算方法上起核心作用,谱分析、卷积、相关都可以通DFT在讣算机上实现。
二.DFT是现代信号处理桥梁DFT要解决两个问题:一是离散与量化,二是快速运算。
傅氏变换§ 3-2 傅氏变换的几种可能形式一•连续时间、连续频率的傅氏变换■傅氏变换X(yQ) = C x(t)e~jnt dtJ—co反:x(t) = —r X(jG)£4dG2/r J—8时域信号频域信号连续的非周期的非周期的连续的对称性:时域连续,则频域非周期。
反之亦然。
二•连续时间、离散频率傅里叶变换■傅氏级数8反:垃)=工XOKl 。
)』%k=^o*时域周期为Tp. 频域谱线间隔为2Ji/Tp三•离散时间、连续频率的傅氏变换-序列的傅氏变换x(nT)|x (购 o )|\—< I —11—< I —( I —11—1Q2兀Co=〒正:X (购0)二4-T 0 T 2Too正:X0E)=工x(nT)戶GT反:x(nT)=丄p/2X(eQT)eJ叫。
Q v J-G$/2*时域抽样间隔为八频域的周期为2吕111上述分析可知,要想在时域和频域都是离散的,那么两域必须是周期的。
时域信号 频域信号 离散的 周期的 周期的离散的*时域是周期为坊函数,频域的离散间隔为Q o =—; Tp时域的离散间隔为八频域的周期为2 =莘・0 T 2T 1 2NTN四•离散时间、离散频率的傅氏变换-DFTN(2 — 1)%(2 — 1)DFT的简单推演:在一个周期内,可进行加I下变换:X(/E)二^x(nT)e~j,^Tx(nT)=丄X(&G丁疋0$ J-。