一元函数求极限的若干方法
- 格式:doc
- 大小:869.00 KB
- 文档页数:13
一元函数极限的求法一元函数的极限就是在函数定义域内某一点处接近这个点时,函数取值的趋势。
在数学分析中,极限是一个十分重要的概念,它用于定义连续性、收敛与发散、导数和积分等重要概念。
对于一元函数的极限的求法,我们可以通过直接代入法、极限的四则运算法则、夹挤定理以及极限的极限转换法等多种方法进行求解。
1. 直接代入法直接代入法是最基础的求解一元函数极限的方法,即将自变量的值逐渐逼近极点,观察函数在这个点附近的取值趋势,将自变量的取值代入函数中,求函数在该点的取值。
例如:求函数$f(x)=\dfrac{x-1}{x+3}$在$x=2$处的极限。
解:将$x=2$代入得$f(2)=\dfrac{1}{5}$,因此,$x=2$时$f(x)$的极限为$\dfrac{1}{5}$。
2. 极限的四则运算法则此法则是求解一元函数极限中的基本规则。
对于两个已知极限的函数进行加减、乘除运算时,可以直接套用极限的四则运算法则。
例如:求函数$f(x)=\dfrac{sinx}{x}$在$x=0$处的极限。
解:$lim_{x \to 0}\dfrac{sinx}{x}=lim_{x \to0}\dfrac{sinx}{x}\cdot\dfrac{1}{cosx}=lim_{x \to 0}\dfrac{sinx}{x}\cdot lim_{x \to 0}\dfrac{1}{cosx}=1$,因此,$x=0$时$f(x)$的极限为$1$。
3. 夹挤定理当我们需要求一个函数在某一点处的极限值时,有时我们并不知道函数在该点处是否存在极限,因此我们引入夹挤定理,即用两个已知的存在极限的函数挤压住需要求的函数,从而求出该函数的极限值。
例如:求函数$f(x)=x^2sin\dfrac{1}{x}$在$x=0$处的极限。
解:$\lim_{x \to 0}(-x^2) \leq \lim_{x \to 0} x^2sin\dfrac{1}{x} \leq \lim_{x \to 0} x^2$。
一元函数极限的求法可以利用洛必达法则求极限运用洛必达法则应注意以下几点首先要注意条件,也即是说,在没有化为时不可求导。
应用洛必达法则,要分别求分子分母的导数,而不是求整个分式的导数。
要及时化简极限符号后面的分式,在化简以后检查是否仍是未定式,若遇到不是未定式,应立即停止使用洛必达法则,否则会引起错误。
当不存在时,本法则失效,但并不是说极限不存在,此时求极限须用另外方法。
拓展:函数极限则有趋于无穷的定义:设f为定义在[a,+∞)上的函数,A为定数.若对任给的ε>0,存在正数M(≥a),使得当x>M时,有|f(x)-A|<ε,则称函数f当x 趋于+∞时以A为极限,记作:lim(x->+∞)f(x)=A. 对应的有趋于负无穷和趋于无穷的定义。
一元函数求极限的方法有:等价无穷小代换; 洛必达法则; 无穷小和有界函数的乘积仍为无穷小; 连续函数的极限值等于其函数值。
极限的定义:在数与数集之间,如果存在一个数使得这个数的所有有限次幂都小于或等于它自身,则称这个数为该数集的极限。
扩展资料:一元函数的定义域1. 一元函数是指只有自变量的连续变化过程而没有因变量变化的连续变化过程的集合。
例如直线上的点p1、p2、...、pn称为点1至点n关于直线l的一个端点组成的集合体——线段l1,l2,...,lm称为线段1的长度段L1,L2。
2. 点1至点n之间的长度关系是线段长度关系的特殊情况之一,因此我们说线段的长度关系中包含了点1至点和N的距离之间的关系——也就是包含了点1-N 的距离的关系。
3. 在平面直角坐标系中画一条水平线M1(m),将水平线上的所有点在M1(m)上标出后连成一条射线S1。
设S1=s0,S2=s1,S3=s2......Sn=s3,则M1(m)叫做点到线的距离单位A1。
第 6 卷 第 5 期 淮北职业技术学院学报Vol . 6 No . 5例 x →3∞n2007 年 10 月J O U RN A L O F H U A I B EI PRO F ESSION A L A N D T EC HN ICAL COL L E GE Oct 1 2007一元函数极限的求法赵 冬(淮北职业技术学院 , 安徽 淮北 235000)摘要 :一元函数极限的计算是“高等数学”基本计算之一 ,解题时要针对不同题型采取相应的求法 。
关键词 :一元函数 ;极限 ;求法 中图分类号 :O174 . 1 文献标识码 : A 文章编号 :167128275 (2007) 0520043202一元函数极限常见类型及求法归纳如下 :( x 2- 1) ( x + 1) : lim =一 、利用函数极限的四则运算法则求极限x →∞6 x 3+ x - 53 21 . 直接运用法则l im x + x - x - 1 =1x →∞ 26 x 3 + x - 5 6例 1 li mx - 5 x + 3 =x →2 2 x 3 - 3 x 2+ x - 4( 5) 先求和 , 再求极限法lim ( x 2 - 5 x + 3)例 lim1 + 1 + ⋯ +1=x →2lim ( 2 x 3 - 3 x 2 + x - 4) x →2=- 32n →∞1 ·21 2 ·31( n - 1) ·n1 12 . , 然limn →∞1-2+2 - 3+ ⋯ +1 - 1= lim1 -1 = 1( 1) n - 1 nn →∞n例 : = ( 6) 利用无穷大与无穷小的关系法x →) 例 : lim x - 1 = 0 lim x 2+ 1 =lim x - 1= 1x →1x 2 + 1x →1x - 1( 2) 通分法x →1 x ( x + 1) 2二 、利用无穷小量的性质无穷小量与有界变量之积仍为无穷小量例 : 1=x ·s in x xx 1 - x 例 : li mx →+ ∞1 - x= limx →+ ∞ 1 - x·s in x = 0lim2 - ( 1 + x )x →1 ( 1 - x ) ( 1 + x ) = 12三 、幂指类函数求极限( 3) 根式有理化法 :分子有理化或分母有理化当自变量变化状态一致时如 果 lim f ( x ) = A , ( A ≠ 0) lim g ( x ) = B , 则例 1 li mx →12 - x - 1 =x 2 - 1lim [ f ( x ) ] g ( x ) = [ l i m f ( x ) ]lim g ( x )= A Bx → 例 : lim ( 2 x - 1) x →33 x - 7 =[ l im ( 2 x - 1) ] lim (3 x - 7)= 52= 25 x →= - 14x →3四 、利用等价无穷小替换法( 4) 分子分母同除以无穷大量法或根据结论lim a 0 x + a 1 x + ⋯ + a n=要熟记一些常见的等价无穷小量 如 : x →0 时 :sin x ~ x ta n x ~ xn n- 1 x →∞ b 0 x m + b 1 x m - 1 + ⋯ + b m0 , m > na rcsi n x ~ x a r cta n x ~ x2—a 0 , m = nb 01 - cos x ~ x2ln ( 1 + x ) ~ x∞, m < ne x - 1 ~ x 1 + x - 1 ~xn收稿日期 : 2007206225 作者简介 : 赵冬 ( 1973 - ) ,男 ,安徽淮北人 ,淮北职业技术学院讲师 。
一元函数极限的求法摘要:本文用举例的方法来介绍函数极限的定义,函数极限的求解方法. 关键词:函数极限的定义;求解方法The soulution of function extremityAbstract:This article introduced some application of the definition of the function extremity ,the soulution of function extremity . Key Words:the definition of function extremity ;soulution前言极限是数学分析中最重要的概念之一,微分,积分等概念的引入,都与极限的概念密切相关.而这些概念引进后,利用这些知识又充实了求极限的方法。
本文主要通过一些具体例子来讨论函数极限的求解方法.1.一元函数极限的定义1.1 x 趋于∞时的函数极限设函数f 为定义在[,)a +∞上的函数,A 为定数.若对任给的0ε>,存在正数()M a ≥,使得当x M >时有()f x A ε-<,则称函数f 当x 趋于+∞时以A 为极限,记为()lim x f x A →+∞=或()()f x A x →→+∞.1.2 x 趋于0x 时函数的极限设函数f 在点0x 的某个空心邻域()0'0;U x δ内有定义,A 为定数,若对任给的0ε>,存在正数()'δδ<,使得当00x x δ<-<时有()f x A ε-<,则称函数f 当x 趋于0x 时以A 为极限,记作()0lim x x f x A →=或()()0f x A x x →→.2.一元函数极限的求法总结2.1 利用定义及极限的四则运算法则求极限利用该法求极限,方法简单也易于掌握.但多数情况下是不能直接用,应掌握一些变形技巧.例1 求()lim 1n n q q →∞<.解 对0ε∀>,取正整数lg lg N qε⎡⎤>⎢⎥⎣⎦,则当n N >时,有lg lg n q ε>,即lg lg n q ε<,从而nq ε<,故0n q ε-<,由定义,则有()lim 01n n q q →∞=<.例2 求22323lim 1n n n n →∞+++.解 222222232333lim lim 323300lim lim 31111011lim x x n n x n n n n n n n nn →∞→∞→∞→∞→∞++++++++====++++. 2.2 利用代入法求极限若所给的函数是初等函数,且在0x 有定义,由连续性知,()()00lim x x f x f x →=,求得的函数即为其极限值.例3求1lim arc x →解 因为01x =是初等函数()f x =定义区间内的一点,所以()1lim 1arccos 26x f π→===. 例4求sin 2x a a →⋅ ⎪⎝⎭.解 因为0x a =是函数()sin 2f x a =⋅ ⎪⎝⎭定义区间内的一点,所以4sin sin 22x a a a π→==⋅⋅ ⎪ ⎪⎝⎭⎝⎭.2.3 利用两个重要的极限求极限两个重要的极限为0sin lim1x x x →=(或0lim 1sin x xx→=)和()10lim 1x x x e →+=(或1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭),使用它们求极限时,最重要的是对所给的函数做适当的变形,使之具有相应的形式.例5 求201cos limx xx→-. 解 2200sin 1cos 112limlim 222x x x x x x →→⎛⎫ ⎪-== ⎪ ⎪⎝⎭. 例6 求()10lim 12xx x →+.解 ()()()1112220lim 12lim 1212xx x x x x x x e →→⎡⎤+=+⋅+=⎢⎥⎣⎦. 2.4 利用等价无穷小求极限常见的等价无穷小量()0x →时: sin ~x x ,tan ~x x ,arcsin ~x x ,211cos ~2x x -. 例7 求极限0arctan limsin 4x xx→.解 由于()()arctan ~0,sin 4~40x x x x x x →→, 则00arctan 1limlim sin 444x x x x x x →→==.例8 求极限30tan sin lim sin x x xx→-. 解 由于()sin tan sin 1cos cos xx x x x-=-,而()()()233sin ~0,1cos ~0,sin ~02x x x x x x x x x →-→→,则23300tan sin 112lim lim sin cos 2x x x x x x x x x →→⋅-=⋅=. 2.5 利用洛必达法则求极限运用洛必达法则求极限的注意地方:①仅对“00”与“∞∞”型未定式适用,其它未定式“0⋅∞”、“∞⋅∞”、“00”、“0∞”、“1∞”都可化为“00”与“∞∞”型,前两种采用恒等变形的方法;后三种采取先化为指数形式或用取对数的形式化为“00”与“∞∞”型.②应对分子分母分别求导,不能对整个分式求导.③若()()''lim f x g x 不存在,不能由些断言()()lim f x g x 也不存在,只能说明洛必达法则此时失效,应采用其它方法.例9 求()0sin lim0sin x axb bx →≠.解 ()00sin cos lim 0lim sin cos x x ax a ax ab bx b bx b→→≠==. 例10 求()ln lim 0n x xn x→+∞>.解 ()11ln 1lim 0lim lim 0n n n x x x x x n x nx nx -→+∞→+∞→+∞>===.例11 求()0lim ln 0nx x x n +→>. 解 这是未定式0⋅∞,因为ln ln 1n nxx x x =, 当0x +→时,上式右端是未定式∞∞,应用洛必达法则,得100001ln lim ln lim lim lim 0n n n n x x x x x x x x x x nx n ++++---→→→→⎛⎫-==== ⎪-⎝⎭. 2.6 利用泰勒展开式求极限定理 若函数()f x 在点0x x =附近具有直到n 阶的导数,并且()()n f x 在0x x =处还是连续的,则有()()()()()()()()()()200'000000"2!!n n n f x f x f x f x f x x x x x x x x x n ο⎡⎤=+-+-++-+-⎣⎦特别当00x =时,()()()()()()()()'2"000002!!n n n f f f x f f x x x x x n ο=+++++→.例12 求2240cos lim x x x e x -→-.解 因为()222222211022!22x x x x ex ο-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪=+-+-+→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()()245cos 102!4!x x x x x ο=-++→,于是()2424400cos 11limlim 1212x x x x x ex x ο-→→⎛⎫- ⎪=-+=- ⎪⎝⎭.例13 21lim ln 1x x x x →+∞⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦.解 因为当x →∞时,10x→, 所以()2211111ln 12x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+=-+→+∞ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,从而()()211ln 112x x x x ο⎛⎫+=-+→+∞ ⎪⎝⎭,于是()2111lim ln 1lim 122x x x x x ο→+∞→+∞⎡⎤⎛⎫⎡⎤-+=+= ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦.2.7 利用定积分的概念求极限设函数()f x 在有限区间[],a b 上连续,把区间n 等分,作和式1nk b a b a f a k n n =--⎛⎫+⋅ ⎪⎝⎭∑取n →∞,则定积分定义有()1lim nb a n k b a b a f a k f x dx n n →∞=--⎛⎫+⋅= ⎪⎝⎭∑⎰.例14求极限x n++.解13122lim323x xn nn nx→∞⎫++====⎪⎪⎭⎰.2.8 利用两边夹法则求极限定理若lim limX Y A==,而X Z Y≤≤,则极限lim Z A=.使用此法则求极限lim Z的关键是设法寻找变量X和Y,使满足X Z Y≤≤,且lim limX Y A==.例15 求极限22212lim12xnn n n n n n n→∞⎛⎫+++⎪++++++⎝⎭.解因为22222121212121n n n n n n n n n n n n n n n++++++<+++<++++++++++, 而()()22112112lim lim lim2222x x xn nn nn n n n n n→∞→∞→∞+++++===++++,()()()222111212lim lim lim11221x x xn nn nnn n n n n n→∞→∞→∞+++++===++++++,由两边夹法则得,222121lim122xnn n n n n n n→∞⎛⎫+++=⎪++++++⎝⎭.参考文献:[1]华东师范大学数学系.数学分析[M].:高等教育出版社,2001.[2]滕桂兰.高等数学(上册)[M].天津:天津大学出版社,2000.[3]同济大学数学教研室.高等数学(第五版)[M].:高等教育出版社,2002.[4]邹应.数学分析习题及解答[M].武汉大学出版社.2001,168—169,176—177.[5]裴东林.数极值的初等和高等解法比较[J].甘肃联合大学学报:自然科学版,2004,7.[6]毛纲源.高等数学解数学解题方法技巧与归纳(上册)[M].华中科技大学出版社,2001.[7]钱吉林,刘定酉.高等代数题解精粹[M].:中央民族大学出版社,2005.。
一元函数的极限存在准则与极限运算法则在数学中,一元函数的极限存在准则和极限运算法则是研究函数极限的重要内容。
理解和运用这两个准则和法则,可以帮助我们更好地理解一元函数的极限,解决相关问题。
本文将详细介绍一元函数的极限存在准则和极限运算法则,并通过例子加以说明。
一、极限存在准则极限存在准则是指在某个区间上的函数,如果满足柯西收敛准则或者Bolzano-Weierstrass定理,那么该函数就存在极限。
1. 柯西收敛准则柯西收敛准则是指函数收敛的严格条件,即对于任意正数ε,存在正数δ,使得当x满足0<|x-a|<δ时,有|f(x)-L|<ε。
其中,a为某个实数,L为极限值。
这一准则要求函数在无穷接近于极限时的差值趋近于零,函数值和极限值的差值趋近于零。
换言之,当自变量x无限接近于a时,函数值f(x)也无限接近于L。
2. Bolzano-Weierstrass定理Bolzano-Weierstrass定理是指有界实数集合必有收敛子列。
对于函数而言,如果一个函数在某个区间上有界,并且该区间上有无穷个变量值,那么该函数必定存在极限。
Bolzano-Weierstrass定理可以简单解释为:如果一个函数在某个区间上无限变化,并没有趋于无穷大或无穷小,那么该函数在该区间上一定存在极限。
通过柯西收敛准则和Bolzano-Weierstrass定理,我们可以判断一元函数在某个区间上是否存在极限,进而帮助我们求解一元函数的极限值。
二、极限运算法则极限运算法则是指一元函数的极限运算中满足的一些基本规则,可以帮助我们更好地计算和理解极限。
1. 四则运算法则根据四则运算法则,给定两个函数f(x)和g(x),当它们的分母项在某点a处的极限存在且不为零时,有以下几个结论:- 两个函数的和的极限等于各自函数的极限之和:lim[x→a](f(x)+g(x)) = lim[x→a]f(x) + lim[x→a]g(x)- 两个函数的差的极限等于各自函数的极限之差:lim[x→a](f(x)-g(x)) = lim[x→a]f(x) - lim[x→a]g(x)- 两个函数的乘积的极限等于各自函数的极限之积:lim[x→a](f(x)·g(x)) = lim[x→a]f(x) · lim[x→a]g(x)- 两个函数的商的极限等于各自函数的极限之商,若lim[x→a]g(x) ≠ 0:lim[x→a](f(x)/g(x)) = lim[x→a]f(x) / lim[x→a]g(x)这些四则运算法则为我们计算一元函数的极限提供了方便和便捷的方法。
求一元函数极限(含数列)的若干种方法内容摘要:极限是数学分析中一个非常重要的概念,它是研究分析方法的重要理论基础。
我们知道,许多重要的概念如连续、导数、定积分、无穷级数的和以及广义积分等都是用极限来定义的。
因此掌握好求极限的方法就显得非常重要。
其中二元函数的极限是在一元函数的基础上发展起来的,二者既有联系也有区别。
本文通过部分例题的解析,以详细介绍一元函数极限的求法为主。
归纳了常用的十种求极限方法, 即: 运用极限的定义证明;利用等价无穷小量代换和初等变形来求极限;用两个重要的极限来求函数的极限;利用变量替换求极限;利用迫敛性定理来求极限;利用洛比达法则求函数的极限;利用泰勒公式求极限;利用微分中值定理和积分中值定理求极限;利用积分定义求极限;求极限其他常用方法。
并列举了大量的实例加以说明。
关键词:迫敛性定理中值定理洛必达法则A number of ways to seek a function limit (including the number of columns)Abstract:The limit is a very important concept in mathematical analysis, it is an important theoretical basis for research and analytical methods. We know that many important concepts such as continuity, derivative, definite integral, infinite series and generalized integral to define the limit. Therefore it is very important to master well limit.The limits of the function of two variables is on the basis of the function of one variables, the two have connection and have distinction. This article through the part of example analysis, to introduce the limit of the function of one variables. Summarizes the ten ways: Using the definition of the limits of proof; equivalent Infinitesimal Substitution and the primary deformation; two important limits to seek the limits of functions; variable substitution; the squeeze theorem; L'Hospital Rule; the Taylor formula; the mean value theorem and the integral mean value theorem to the limit; using the integral definition; other commonly used methods.And cited a number of examples to illustrate.Key words:The squeeze theorem Mean Value Theorem L'Hospital Rule目录1 综述 (1)1.1引言 (1)1.2极限的定义 (1)1.3极限问题的类型和方法概述 (1)2 常见的极限求解方法 (2)2.1运用极限的定义证明(估计法) (2)2.2利用等价无穷小量代换和初等变形来求极限 (3)2.3用两个重要的极限来求函数的极限 (6)2.4利用变量替换求极限 (7)2.5利用迫敛性来求极限 (8)2.6利用洛比达法则求函数的极限 (8)2.7利用泰勒公式求极限 (13)2.8利用微分中值定理和积分中值定理求极限 (14)2.9利用积分定义求极限 (14)2.10求极限其他常用方法 (17)3结论 (17)参考文献 (18)求一元函数极限(含数列)的若干种方法1综述1.1 引言极限的思想方法作为人类发现数学问题并解决数学问题的一种重要手段,随着科学技术的不断发展,社会生产力的不断提高,在数学的发展史上将发挥越来越重要的作用。
一元函数极限的基本求法一元函数极限的基本求法摘 要:函数的极限及其求法是微积分的基础。
本文主要探讨、总结了求极限的基本方法,对每种方法的特点及注意事项作了说明,并加以实例进行讲解。
关键词:极限;积分;级数;洛必达法则。
1 引言本文介绍了一些求极限的方法有:利用定义求极限,函数连续性求极限、四则运算、两个重要极限、等价无穷小量代替求极限、洛必达法则、泰勒展开式求极限、微分中值定理等等。
在求极限的过程中,会发现一道题可以运用多种方法解答,因此给我们的启示是每种方法之间都有一定的联系。
在求极限时,可以根据不同的形式选择不同的计算方法,合理利用各种计算方法,亦可进行适当的结合,使得求极限的方法更明了,算法更简单。
2 相关的定义和性质 2.1一元函数极限的概念x 趋于∞时的函数极限:设函数)(x f 为定义在[)+∞,a 的函数,A 是一个定数,若对0>∀ε,∃正数M ,使得当M x >时有ε<-A x f )(则称函数)(x f 当x 趋于∞+时以A 为极限,记为A x f x =+∞→)(lim 。
x 趋于0x 时的函数极限:设函数)(x f 在点0x 的某个空心邻域),(00δx U 内有定义,A 为定数,若对0>∀ε,存在正数δ,使得当δ<-<00x x 时有ε<-A x f )(,则称函数)(x f 当x 趋于0x 时以A 为极限,记为A x f x x =→)(lim 0。
2.2 一元函数极限的性质存在,则必定唯一如果唯一性性质)(lim )(10x f x →的某空心邻域内有界在存在,则如果局部有界性性质0)()(lim )(20x x f x f x x →),()()()(lim )(lim )(300x h x g x f x A x h x f x x x x ≤≤==→→的某空心邻域内有,且在如果迫敛性性质Ax g x x =→)(lim 0则3一元函数极限的计算及多种求法 3.1 利用导数的定义求极限导数的定义:函数()f x 在0x 附近有定义,x ∀∆则00()()y f x x f x ∆=+∆-。
绪论极限研究的是函数的变化趋势, 在自变量的某个变化过程中, 对应的函数值能无限接近某个确定的数,那这个数就是函数的极限.函数的极限概念在高等数学中是一个很重要的概念.极限概念是微分概念的基础,因此加深理解函数极限的概念是十分必要的.在近代数学许多分支中,一些重要的概念与理论都是极限和连续函数概念的推广、延拓和深化.只有深刻地理解极限概念并熟练掌握求极限的方法,才能真正地学好微积分.极限是初等数学和高等数学接壤部分,极限概念是高等数学最基本的概念.导数,微分,积分都是建立在极限概念的基础上的,高等数学就是以极限方法为主要工具来研究变量与变量之间关系的科学.在有了极限的定义之后,为了判断具体某一函数是否有极限,人们必须不断地对极限存在的充分条件和必要条件进行探讨.在经过了许多数学家的不断努力之后,法国数学家柯西获得了完善的结果,即柯西收敛原理.到了近代,在数学家们的努力下给了极限一个专业的定义.有了极限的定义自然就有了许多求极限的方法.求函数极限的方法有很多,其中有利用定义求函数极限、利用夹逼定理求函数极限、利用函数的连续性求极限、利用极限的四则运算、利用变量替换、利用等价无穷小替换、利用定积分、利用导数定义、利用泰勒公式、利用罗必达法则求极限等一些方法,对不是同一类型的函数求极限的方法不一样,有的可以用同一种方法求解,有的不可以,因此研究函数求极限的方法显得尤为重要.第一章 函数极限的概念1.1 函数极限的概念1.1.1 x →∞时函数的极限设函数f 定义在[),a +∞上,类似于数列情形,我们研究当自变量x 趋于+∞图象上可见,当x 无限增大时,函数值无限地接近于0;而对于函数x 趋于+∞时有极限.一般地,当x 趋于+∞时函数极限的精确定义如下: 定义1 设f 为定义在[),a +∞上的函数,A 为定数.若对任何给的()0,M a ε>≥存在正数,使得当x M >时有则称函数f 当x 趋于+∞时以A 为极限,记作lim ()x f x A →+∞= 或 ()f x A → ()x →+∞定义 2 设f 为定义在](,a -∞上的函数,A 为定数.若对任何给的()0,M a ε>≥存在正数,使得当x M <-时有则称函数f 当x 趋于-∞时以A 为极限,记作()lim x f x A →-∞= 或 ()f x A → ()x →-∞则称常数A 为函数()x f 当∞→x 时的极限,记作()()()lim x f x A f x A x →∞=→→∞或当若f 为定义在()U x 上的函数,则+lim ()lim ()lim ()x x x f x A f x f x A →∞→-∞→∞=⇔==.定理1 +lim ()lim ()lim ()x x x f x A f x f x A →∞→-∞→∞=⇔==.1.1.2 x →0x 时函数的极限设f 为定义在0x 的某个空心邻域()00U x 内的函数.现在讨论当x 趋于00()x x x ≠时,对应的函数值能否趋于某个定数A .这类函数极限的精确定义如下:定义4(函数极限的εδ-定义) 设函数f 在点0x 的某个空心邻域()'00;δx U时有则称函数f 当x 趋于0x 时以A 为极限,记作lim ()x xf x A →= 或 0()()f x A x x →→.注:1.0ε>是可以任意给的,在确定δ的过程中又看成是个定数; 2.δ与ε有关,但与x 无关,并且不唯一;3.极限()0lim x x f x →是否存在,与()f x 在点0x 是否有定义以及()0f x 的值为多少无关;4.0lim ()x x f x A →=的前提:()f x 在某()'00;δx U 内有定义.定义5 设函数f 在()()()'0'00;;U x U x δδ+-或内有定义,A 为定数.若对任给的0ε>,存在正数()'δδ<,使得当()0000x x x x x x δδ<<+-<<或时有则称A 为函数f 当()00x x x +-趋于时的右(左)极限,记作()()00lim lim x x x x f x A f x A +-→→⎛⎫== ⎪⎝⎭或()()0f x A x x +→→ ()()()0f x A x x -→→. 右极限与左极限统称为单侧极限.f 在点0x 的右极限与左极限又分别记为:()()()()0000lim 0lim x x x x f x f x f x f x +-→→+=-=与 极限存在的充要条件:()()()0lim lim lim x x x x x x f x A f x f x A +-→→→=⇔== 关于函数极限()0lim x x f x →与相应的左、右极限之间的关系,有下述定理:定理2 ()()()0lim lim lim x x x x x x f x A f x f x A +-→→→=⇔==.第二章 函数极限的求解方法2.1 利用函数极限的定义求极限分析:利用函数极限的定义来证明,首先要任取0ε>;其次是写出不等式lim ()x x f x A →=.由函数极限的εδ-定义得:分析:根据前面所学的函数极限的定义证明,要证明这道题就要找出M 的值.分析:要验证这道题不仅要找到M 的值,还要利用函数的左、右极限的定义.证 : 任给ε>0,由于而此不等式的左半部分对任何x 都成立,所以只要考察其右半部分x 的变化范围.这就证明了1).类似地可证2).注: +lim ()lim ()lim ()x x x f x A f x f x A →∞→-∞→∞=⇔==(f 为定义在()U ∞上的函数)所以当x →∞时arctan x 不存在极限.一般来说应尽可能将()f x 的表达式简化.值得注意的是,有时()f x 不能简化,反倒是可以把A 变复杂,写成与()f x 相类似的形式.以要用单侧极限的定义进行求解.()221xε-<时,就是小结:利用极限定义求函数极限是熟悉和掌握求极限方法的基础.2.2 利用函数极限的性质求极限定理3 (1)若()f x 在0x x =处连续,则()()00lim x x f x f x →=(2)若()f x ϕ⎡⎤⎣⎦是复合函数,又()0lim x x x a ϕ→=且()f u 在u a =处连续,则()()()()00lim lim x x x x f x f x f a ϕϕ→→⎡⎤==⎢⎥⎣⎦.分析:利用函数极限的性质及定理3,并且要看清该函数是否连续,最后在进行计算.在u e =处连续,所以由定理3(2)知 :2.3 利用函数极限的四则运算求极限定理4(四则运算法则) 若极限()()0lim lim x x x xf xg x →→与都存在,则函数,f g f g ±⋅当0x x →时极限也存在,且1)()()()()0lim lim lim x x x x x x f x g x f x g x →→→±=±⎡⎤⎣⎦;2)()()()()0lim lim lim x x x x x x f x g x f x g x →→→=⋅⎡⎤⎣⎦;又若()0lim 0x x g x →≠,则0/f g x x →当时极限存在,且有4)()()0lim lim x x x xc f x c f x →→⋅=⋅ (C 为常数) 上述的性质对于0,,,x x x x x ±→∞→+∞→-∞→时也同样成立.计算.解: 当10x +≠时有故所求的极限等于分析:利用函数极限的四则运算法则,把所求函数的极限化为一些已知的简单函数的极限来计算.像(2)中的类型就是1→x 时,分子、分母的极限都是零注:使用极限的四则运算法则的前提是各部分极限都存在.2.4 利用迫敛性定理求极限定理5 设()()0lim lim ,x x x x f x g x A →→==且在某()0'0;U x δ内有()()()f x h x g x ≤≤ 则有()0lim x x h x A →=.分析:应用迫敛性的定理进行计算.解:因为1cos 1≤≤-x ,所以当0x <时分析:要求出这道题,必须应用到前面所学的知识点,即关于函数[]y x =有所以应用这个可以进行计算.故由迫敛性得小结:利用函数极限的迫敛性与四则运算,我们可以从一些简单的函数极限出发,计算较复杂的函数极限.2.5 利用两个重要极限求极限(1我们经常使用的是它们的变形:(1)的特点:(01)分子、分母的极限值为0;(02)分子是分母的正弦函数. (2)的特点:(01)幂指函数的底趋于1,指数趋于无穷时,其极限值是e ; (02)底是常数1与一个无穷小量之和,指数是底中无穷小量的倒数.例12 求下列函数极限1)0sin 2lim x x x →; 2)0tan lim x x→; 3)1lim sin x x →+∞; 4)()10lim 1(x x x αα→+为给定实数). 解:1)0sin 2lim x x x →=02lim2122x x →=⨯= 2)0tan lim x x x →=0sin 1lim1cos x x x x→⋅= 3)令1y x =,于是当x →∞时,0y →,从而1lim sin x x x →+∞=0sin lim1y y y→=. 4) ()()11lim 1lim 1xx x x x x e ααααα→→⎡⎤+=+=⎢⎥⎣⎦. 例13 求下列函数极限x a x x 1lim )1(0-→、 bxaxx cos ln cos ln lim )2(0→、. 分析:首先要看题目的类型,看看是否符合两个重要的极限及特点.)1ln(ln 1 ln )1ln( ,11 u au x a a u x u a x x+=-+==-于是则)令解:(a u au u a u a u xa u x uu u u x x ln )1ln(ln lim )1ln(ln lim )1ln(ln lim 1lim 010000=+=+=+=-→→→→→→故有:时,又当)]1(cos 1ln[)]1(cos 1ln[(lim)2(0-+-+=→bx ax x 、原式1cos 1cos 1cos )]1(cos 1ln[1cos )]1(cos 1ln[(lim0--⋅--+--+=→ax bx bx bx ax ax x1cos 1cos lim 0--=→ax bx x=2022sin 2lim2sin 2x a xb x→-- 2222022sin 222lim sin 222x a x a b x x ba x xb x →⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=⋅⎛⎫⎪⎝⎭⎛⎫ ⎪⎝⎭22b a=.2.6 利用无穷小量的性质求极限2.6.1利用无穷小量与有界变量之乘积仍为无穷小量求极限与无穷小数列的概念相类似,我们给出关于函数为无穷小量的定义.定义6 设f 在某()00U x 内有定义,若 ()0lim 0x x f x →=,则称f 为当0x x →时的无穷小量.若函数g 在某()00U x 内有界,则称g 为当0x x →时的有界量. 由无穷小量的定义可立刻推得如下性质:1.两个(相同类型的)无穷小量之和、差、积仍为无穷小量.2.无穷小量与有界量的乘积为无穷小量. 定理6 设函数()f x 、()g x 满足:()()0lim 0x x g x f x →=.2.6.2 利用无穷小量与无穷大量的关系求极限定义7 设函数f 在某()00U x 内有定义.若对任给的0G >,存在0δ>,使得当()()()0000;x U x U x δ∈⊂时有则称函数f 当0x x →时有非正常极限∞,记作 ()0lim x x f x →=∞.若(1.2)式换成“()f x G >”或“()f x G <-”,则分别称f 当0x x →时有非正常极限+∞或-∞,记作()0lim x x f x →=+∞ 或 ()0lim x x f x →=-∞.定义8 对于自变量x 的某种趋向(或n →∞时),所有以∞,+∞或-∞为非正常极限的函数(包括数列),都称为无穷大量.定理7 (I )若:∞=)(lim x f ,则 0)(1lim=x f . (II) 若: 0)(lim =x f 且 ()0f x ≠ 则 ∞=)(1lim x f . 例15 求下列极限(1) 51lim+∞→x x (1)11lim 1-→x x .解:(1)由∞=+∞→)5(lim x x ,故 051lim=+∞→x x . (2)由0)1(lim 1=-→x x ,故 11lim 1-→x x =∞.注:无穷大量不是很大的数,而是具有非正常极限的函数;若f 为0x x →时的无穷大量,则易见f 为()00U x 上的无界函数.但无界函数却不一定是无穷大量.2.6.3 利用等价无穷小替换求极限定理8 设函数()00,,f g h U x 在内有定义,且有()f x ()g x ()0x x →.(1)若()()()()0lim ,lim x x x x f x h x A g x h x A →→==则;注:设'',,,ββαα 都是同一极限过程中的无穷小量,且有:''~,~ββαα, ''lim βα 存在,则 βαlim 也存在,且有βαlim= ''lim βα.解:由于()arctan 0xx x →,()sin 440x x x →.故有定理8得例17 求极限2220sin cos 1limx x x x -→ .分析:本题切忌将2cos x和2sin x 用2x 等价替换.解: ,~sin 22x x 2)(~cos 1222x x -∴ 2220sin cos 1lim x x x x -→=0lim x →212)(2222=x x x 注:1、在利用等价无穷小量替换求极限时,应注意:只有对所求极限式中相乘或相除的因式才能用等价无穷小量来替换,而对极限式中的相加或相减部分则不能随意替换.2、常用的等价无穷小量. 当0x →时,有xsin x ,tan x x ,211cos 2xx -,()ln 1x x +,arcsin x x ,1ln x a x a -,arctan xx ,e xx ,()11ax ax +-()0a ≠.2.7 用左右极限与极限关系求极限适用于分段函数求分段点处的极限,以及用定义求极限等情形.定理9 函数极限)(lim 0x f x x →存在且等于A 的充分必要条件是左极限)(lim 0x f x x -→及右极限)(lim 0x f x x +→都存在且都等于A .即有⇔=→A x f x x )(lim 0)(lim 0x f x x -→=)(lim 0x f x x +→=A.例18 设)(x f =⎪⎪⎩⎪⎪⎨⎧≥<<-≤--1,10,0,212x x x x xx x e x 求)(lim 0x f x →及)(lim 1x f x →.分析:此题一看就知道是分段函数,要分多步来计算,最后再综合起来. 解:()()0lim lim 12x x x f x e ---→→=-1=()00lim lim x x f x ++→→⎛⎫=)0lim 1x +→=1=由1)(lim )(lim 0-==+-→→x f x f x x1)(lim 0-=∴→x f x不存在由(又)(lim )01()01(1lim )(lim 0)1lim lim )(lim 1211111x f f f x x f x xx x x f x x xx x x →→→→→→∴+≠-===-=-=++---注:此方法一般适用于分段函数.2.8 利用函数的数学公式、定理求极限2.8.1利用罗比塔法则求极限(适用于不定式极限) 定理10 若A x g x f x g x f A A x g x f iii x g x u x g f ii x g x f i x x x x x x x x x x ==∞∞±=≠==→→→→→)()(lim )()(lim ()()(lim )(0)()()(0)(lim ,0)(lim )('''''0000000),则或可为实数,也可为内可导,且的某空心邻域在与 此定理是对0x x →时而言,对于函数极限的其它类型,均有类似的法则,该定理对00型或∞∞型均成立.注:运用罗比塔法则求极限应注意以下几点:1、要注意条件,也就是说,在没有化为∞∞,00时不可求导.2、应用罗比塔法则,要分别的求分子、分母的导数,而不是求整个分式的导数.3、要及时化简极限符号后面的分式,在化简以后检查是否仍是未定式,若遇到不是未定式,应立即停止使用罗比塔法则,否则会引起错误.4、当)()(lim ''x g x f a x → 不存在时,本方法则失效,但并不是说极限不存在,此时求极限须用另外方法.例19 求下列函数的极限①)1ln()21(lim 2210x x e x x ++-→ ②)0,0(ln lim>>+∞→x a x xax解:①令()f x = 21)21(x e x +-, ()g x = l )1n(2x + 21')21()(-+-=x e x f x , 2'12)(xxx g +=222"23")1()1(2)(,)21()(x x x g x e x f x+-=++=- 由于0)0()0(,0)0()0(''====g g f f 但2)0(,2)0(""==g f从而运用罗比塔法则两次后得到122)1()1(2)21(lim 12)21(lim )1ln()21(lim22223022102210==+-++=++-=++--→-→→x x x e x xx e x x e xx xx xx . ② 由∞=∞=+∞→+∞→a x x x x lim ,ln lim ,故此例属于∞∞型,由罗比塔法则有: )0,0(01lim 1lim ln lim 1>>===+∞→-+∞→+∞→x a ax ax x x x ax a x a x .2.8.2 利用泰勒公式求极限对于求某些不定式的极限来说,应用泰勒公式比使用罗比塔法则更为方便,下列为常用的泰勒展开式:1、)(!!212n nxx o n x x x e +++++= 2、)()!12()1(!5!3sin 212153n n n x o n x x x x x +--+++-=--3、)()!2()1(!4!21cos 12242++-+++-=n nn x o n x x x x 4、)()1(2)1ln(12n nn x o nx x x x +-++-=+- 5、)(!)1()1(!2)1(1)1(2n n x o x n n x x x ++--++-++=+ααααααα6、)(x x 1 112n n x o x x+++++=- 上述展开式中的符号)(n x o 都有:0)(lim 0=→n n x xx o 例20 求)0(2lim>+-+→a xxa x a x解:利用泰勒公式,当0→x 有)(211x o xx ++=+ 于是 xxa x a x +-+→2lim=xax a x a x )121(lim 0+-+→=x x o a x x o a x a x ⎥⎦⎤⎢⎣⎡-⋅--++→)(211)()2(211lim=ax x o x a x x o a x a x x 21)(21lim )(2lim00=+=+⋅→→2.8.3 利用拉格朗日中值定理求极限 定理11 若函数f 满足如下条件:(I) f 在闭区间[],a b 上连续 (II)f 在(),a b 内可导 则在(),a b 内至少存在一点ξ,使得ab a f b f f --=)()()('ξ此式变形可为:)10( ))(()()('<<-+=--θθa b a f ab a f b f .例21 求 xx e e xx x sin lim sin 0--→.分析:对于这个题目,好多同学看到题目之后,发现所求极限的函数是“0”型不定式,马上想到用罗比塔法则法,但是此题用拉格朗日中值定理更容易,更简单.解:令x e x f =)( 对它应用拉格朗日中值定理得)1(0 ))sin ((sin )sin ()(sin )('sin <<-+-=-=-θθx x x f x x x f x f e e x x 即1)(0 ))sin ((sin sin 'sin <<-+=--θθx x x f xx e e xx x e x f =)(' 连续1)0())sin ((sin lim ''==-+∴→f x x x f x θ,从而有 1sin limsin 0=--→x x e e xx x .2.9利用分子或分母有理化求极限若分子或分母的极限为0,不能运用四则运算中商的极限运算法则时,采用通过分子或分母有理化,消去分母中的趋于0的因子,再运用极限的运算法则.2.9.1.约去零因式(此法适用于型时0,0x x →)例22 求121672016lim 23232+++----→x x x x x x x解:原式=()())12102(65)2062(103lim2232232+++++--+---→x x x x x x x x x xx =)65)(2()103)(2(lim 222+++--+-→x x x x x x x=)65()103(lim 222++---→x x x x x =)3)(2()2)(5(lim 2+++--→x x x x x =2lim -→x 735-=+-x x .2.9.2通分法(适用于∞-∞型) 例23 求 )2144(lim 22x xx ---→. 解:原式=)2()2()2(4lim2x x x x -⋅++-→=)2)(2()2(lim2x x x x -+-→=4121lim2=+→x x .例24求极限20x →.解:20x →=21x x→=)221limx x x →=)lim1x →=2.2.10 利用定积分求极限定义9 设函数()f x 在闭区间[],a b 上有定义,在闭区间[],a b 内任意插入1n -个分点将[],a b 分成n 个区间[],x i i x x -,记i x ∆1i i x x -=-()1,2,3,,i n =⋅⋅⋅,[]1,i i x x ξ-∀∈,作乘积()i f ξi x ∆ ,若这些乘积相加得到和式()1ni i f ξ=∑i x ∆ ,设max λ={}:1i x i n ∆≤≤,若0lim λ→()1nii f ξ=∑i x ∆极限存在唯一且该极限与区间[],a b 的分法及分点i ξ的取法无关,则称这个唯一的极限值为函数()f x 在[],a b 上的定积分,记作()baf x dx ⎰,即 ()baf x dx ⎰=0limλ→()1nii f ξ=∑i x ∆否则称()f x 在[],a b 上不可积.注:(1)由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号.(2)若()ba f x dx ⎰存在,区间[],ab 进行特殊分割,分点i ξ进行特殊的取法得到的和式极限存在且与定积分的值相等,但反之不成立,这种思想在思考题中经常出现,我们要好好理解.(3)定积分是否存在或者值是多少只与被积函数式和积分区间有关,与积分变量用什么字母表示无关,即()()()bbbaaaf x dx f t dt f u du ==⎰⎰⎰.定积分的极限有两个特性:第一,定积分是无穷项和式的极限,容易知道一般项在项数趋近于无穷大时极限值必然趋近于零,否则和式极限不存在.第二,定积分与某一连续函数有紧密的关系,它的一般项受到这一连续函数的约束,它是连续函数在某个区间上进行了无穷的分割,各小区间上任意的函数值与区间长度的乘积的累积.例25 利用定积分求极限:1111lim 1232n J n n n n →∞⎛⎫+++⋅⋅⋅+=⎪+++⎝⎭ 分析:此极限的求解,不容易直接用极限的定义解决,因为该法往往是用来一边计算一边证明某个极限结果已经比较明显的问题,因此这里不合适,重要极限的结论显然也在这里没有用处,因为形式上根本不同;在考虑洛必达法则,它不是无穷比无穷型的极限也非零比零型的极限,也不可能用到此法;那么泰勒公式呢?泰勒公式往往是用来解决连续函数的极限问题,通过泰勒展式往往能把非多项式形式的表达式转化成多项式形式,以简化形式从而求解,看来这里也不适用.再看用迫敛性:1111221221n nn n n n n =≤++⋅⋅⋅+≤+++,又lim11n nn →∞=+所以迫敛性失效.那是不是就没有什么合适的办法了呢?答案当然是否定的,事实上,它从形式上与定积分的定义还是有一些相像的,那么就让我们尝试用定积分的办法来解决这道题.解:把此极限式化为某个积分和的极限式,并转化为计算定积分.为此作如下变形:111lim 11nn i J n i→∞==⋅+∑. 不难看出,其中的和式是函数()11f x x=+在区间[]0,1上的一个积分和(这里所取的是等分分割,11,,,1,2,i i i i i x i n n n n ξ-⎡⎤∆==∈=⎢⎥⎣⎦···,n ),所以()1100ln 1ln 21dxJ x x==+=+⎰ . 当然,也可把J 看作()11f x x=+在[]1,2上的定积分,同样有2312ln 21dx dx J x x ===⋅⋅⋅=-⎰⎰ .2.11 利用单调有界原理求极限定理12 若数列{}n a 收敛,则{}n a 为有界数列,即存在正数M ,使得对一切正整数n ,有 M a n ≤.定理13(单调有界定理) 在实数系中,有界的单调数列必有极限. 例26 设21=a ,n n a a 21=+,n =1,2,⋅⋅⋅,求lim n n a →∞.分析:用单调有界原理求极限首先要证明是有界的单调数列. 解:(1)先证{}n a 是有界数列.事实上,n +∀∈N 由12n a <<现用数学归纳法证明如下:当1k =时,1a =12<<成立. 设n k =时结论成立,即12k a <<,则当1n k =+时,11222k a +<=<= 故12,n a <<∀n +∈N(2)再证{}n a 严格单调递增.由于12n a <<,故11n n n a a +==>,因此{}n a 严格单调递增.由单调有界定理知lim n x a →∞存在.(3)设lim n n a →∞=a ,则对nn a a 21=+两边取极限得1lim nn n a +→∞= a =解之得2a = 或 0a =(不合题意,舍去),故lim n n a →∞=2.注:(唯一性定理)数列收敛,极限唯一.2.12 多种方法的综合运用上述介绍了求函数极限的基本方法,然而,每一道题目并非只有一种方法。
一元函数求极限的若干方法(陕西师范大学 数学系,陕西 )摘 要:极限是数学分析中最基本的,也是最重要的概念之一,是研究微积分学的重要工具.因此掌握好极限的思想与方法是学好微积分的前提条件,针对这种情况,本文探讨了一些常用的求极限的方法 关键词:极限;方法大家知道,极限是数学分析中最基本、也是最重要的概念之一,数学分析中许多深层次的理论及应用都是极限的拓展和延伸,如:连续、导数、微积分等都是由极限定义的,而离开了极限思想的数学分析就失去了其基础与价值,因此极限运算在数学分析中占有举足轻重的地位.由于极限定义的高度抽象使我们很难用极限本身的定义去求极限,而对极限的求法可谓是多种多样,针对这种情况,通过归纳和总结,罗列出一些常用的求法.1 利用极限的定义求极限极限是指无穷的趋于一个固定的数值,数学分析中的极限包括:数列极限和函数极限.1.1 数列极限的定义设{}n x 是一个数列,a 是定数,如果对任意给定的0>ε,总存在正整数N ,使得当N n >时有ε<-a x n ,我们就称定数a 是数列}{n x 的极限.记为a x n n =∞→lim 或 ()∞→→n a a n .例1 按定义证明01lim=∞→an n ,这里a 是常数. 证 由于aa nn 101=-, 故对任给的0>ε,只要取111+⎥⎥⎦⎤⎢⎢⎣⎡=a εN ,则当N n >时,便有εN n a a <<11 即εna <-01.这就证明了 01lim=∞→an n . 例2证明223lim33n n n →∞=- 分析 由于()2223993333n n n n n-=≤≥-- (1)因此,对任给的0ε>,只要9nε<,便有 2233,3n n ε-<- (2)即当9n ε>时,(2)式成立.又由于(1)式是在3n ≥的条件下成立的,故应取9max 3,.N ε⎧⎫=⎨⎬⎭⎩ (3)证 任给0ε>,取9max 3,.N ε⎧⎫=⎨⎬⎭⎩据分析,当n>N 时有(2)式成立.于是本题得证.注 本例在求N 的过程中,(1)式中运用了适当放大的方法,这样求N 就比较方便.但应注意这种放大必须“适当” ,以根据给定的ε能确定出N .又(3)式给出的N 不一定是正整数.一般地,在定义1中N 不一定限于正整数,而只要它是正数即可.1.2 函数极限的定义函数极限的定义包括两个,一个是x 趋于∞时函数的极限,另一个是x 趋于0x 时函数的极限.1.2.1 x 趋于∞时函数的极限设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的0>ε,存在正数()a M ≥,使得当M x >时有()ε<-A x f ,则称函数f 当x 趋于∞+时以A 为极限,记为()A x f x =+∞→lim 或 ()()+∞→→x A x f .1.2.2 x 趋于0x 时函数的极限设函数f 在点0x 的某个空心邻域()'。
δx U ;0内有定义,A 为定数.若对任给的0>ε,存在正数()'δδ<,使得当δx x <-<00时有()ε<-A x f ,则称函数f 当x 趋于0x 时以A 为极限,记为()A x f x x =→0lim 或 ()()0x x A x f →→.例3 证明 01lim=∞→xx . 证 任给0>ε,取εM 1=,则当M x >时有εMx x =<=-1101, 所以01lim=∞→xx . 例4 设()242--=x x x f ,证明()4lim 2=→x f x .证 由于当2≠x 时,()24242442-=-+=---=-x x x x x f ,故对给定的0>ε,只要取εδ=,根据题意当δx <-<20时有()εx f <-4.这就证明了()4lim 2=→x f x .注 用极限的定义时,只需证明存在 σ,故求解的关键在于不等式的建立,在建立过程中往往采用放大或缩小等技巧.但是不能把含有δ的因子移到不等式的另一边再放大,而是直接应该对要证其极限的式子一步步放大,有时还需要加入一些限制条件.限制条件必须和所求的δ一致,最后结合在一起考虑.2 利用极限的四则运算法则求极限对和、差、积、商形式的函数求极限,自然会想到极限的四则运算法则.法则本身很简单,但为了能够使用法则,往往需要先对函数做一些必要的恒等变形或化简,那么采用怎样的变形和化简要根据具体的算式决定,常用的方法有:分式的约分或通分,分式的分解,分子或分母的有理化,三角函数的恒等变形,某些求和或求积公式的恰当变量替换等等.2.1 直接运用函数极限的四则运算法则求极限直接运用函数极限的四则运算法则求极限时,前提必须是式子中的每个函数都有极限且分母的极限不等于0.定理 若极限()()0lim lim x x x xf xg x →→与都存在,则函数()()()()()()()()()()()()0000,.1lim lim lim ;2)lim lim .lim ;lim 3)lim .limg x x x x x x x x x x x x xx x x x x f g f g x x f x g x f x g x f x g x f x g x f x f x x g x →→→→→→→→→±→±=±⎡⎤⎣⎦=⎡⎤⎣⎦=当时极限也存在,且)例5 求极限:143lim 23+-→x x x .解 1614lim 3lim 143lim 32323=+-=+-→→→x x x x x x x .例 6 0sin lim 1lim sin lim=⋅=∞→∞→∞→x x xx x x x (这种解法是错误的,因为x x sin lim ∞→不存在,因此x x x sin lim ∞→不能写成x x x x sin lim 1lim ∞→∞→⋅.)2.2 间接运用函数极限的四则运算法则求极限.间接利用该法则求极限,即分母的极限等于零或分子、分母的极限为∞时则不能运用该法则.此时可采用下列方法求解.2.2.1 消零因子法对于有理分式可将分子、分母分解因式,消去公因式后再求解.例7 求极限 633lim 2233-+--+-→x x x x x x .解 ()()()()5821lim 3231lim 633lim 23232233-=--=+-+-=-+--+-→-→-→x x x x x x x x x x x x x x .2.2.2 无穷大分除法当∞→x 时,分子分母的极限为无穷大,可用分母的最高次幂去除分子分母 再取极限.例8 .22532lim22----+∞→x x x x x解 根据题意22532lim 22----+∞→x x x x x .52215312lim 22= =+ xx x x x 此类型的题可总结为=++++++++----+∞→m m m m n n n n x b x b x b x b a x a x a x a ΛΛ2211022110lim ⎪⎪⎩⎪⎪⎨⎧∞000b an m n m n m >=< 以后直接利用该公式即可.3 利用柯西准则求极限定理 设函数f 在)',(00δx U 内有定义. )(lim 0x f x x →存在的充要条件是对于任意的0>ε,存在正数)'(δδ<,使得对于任何)',(',00δx U x x ∈有ε<-|)''()'(|x f x f下面证明 xx 1sinlim 0→不存在。
证明 取1=ε,对任何0>δ,设正整数δ1>n ,令πn x 1'=,21''ππ+=n x ,则)',(',00δx U x x ∈,从而ε==-1|'1sin '1sin|x x . 由柯西准则可知xx 1sinlim 0→不存在。
4 利用两个重要极限求极限1sin lim 0=→x x x e x xx =⎪⎭⎫ ⎝⎛+∞→11lim . 只要符合上述两个重要极限的形式的函数极限都可以尝试使用此方法. 例9 .21sin 21lim 2sin lim 00== x x x x x x例10 求极限xx x x ⎪⎭⎫⎝⎛-++∞→11lim . 【说明】 第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑出x1+,最后凑指数部分.解 2221211212111lim 121lim 11lim e x x x x x x x x x x x =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+-+∞→+∞→+∞→. 5 利用无穷小的性质求极限注 1 两个(相同类型的)无穷小量之和﹑差﹑积仍为无穷小量.2无穷小量与有界量的乘积为无穷小量.例11 ①01sin lim 0=⋅→x x x ②0sin lim =∞→x xx (这两个极限一定要区分开).6 利用等价无穷小量代换求极限若()()0lim 1x x f x g x →=,()()()00.f g x x f x g x x x →→:则称与是当时的等价无穷小量.记作 例12 求 30tan sin lim sinx x x x→-极限 解 由于()()()()23323300sin tan sin 1cos ,sin 0cos 1cos 0,sin 0,2.tan sin 112lim lim .sin cos 2x x xx x x x x x xx x x x x x x x x x x x x →→-=-→-→→-==:::而故有注 在利用等价无穷小量代换求极限时,应注意:只有对所求极限式中相乘或相除的因式才能用等价无穷小量来替代,而对极限式中的相加或相减部分则不能随意替代。
5 利用夹逼准则求极限夹逼准则 若Y Z X ≤≤且A Y X ==lim lim ,则:A Z =lim .当极限不易直接求出时, 可考虑将求极限的变量作适当的放大和缩小, 使放大与缩小所得的新变量易于求极限, 且二者的极限值相同, 则原极限存在,且等于公共值.特别是当在连加或连乘的极限里,可通过各项或各因子的放大与缩小来获得所需的不等式.例13 求21lim nnn +∞→的极限.解 对任意正整数n ,显然有nn n n n n 221122=≤+<. 而01→n 02→n()∞→n 。
由夹逼准则得 01lim2=+∞→n nn .6 利用函数的连续性求极限利用函数的连续性求极限;如函数()x f 在0x 点连续,则()()00lim x f x f x x =→,而初等函数在其定义域又是连续的,所以在通常情况下只需把0x x =带入函数()x f 中,若所得结果是有意义的则此结果就是极限值,因此此方法也简单的称为直接带入法.例14 求2132lim 20+++→x x x x 极限.分析 因为函数()21322+++=x x x x f 在0=x 处连续,所以上式的极限等于把0=x 代入原函数即可.解 原式212010302=++⋅+⋅= (其特点是可以直接代入,因为分母的极限不为0,所以当直接代入分母的极限不为0时就用直接代入法).例15 求()20ln 1limcos x x x→+极限解 由于0x =属于初等函数()()2ln 1cos x f x x+=的定义域之内,故由f 得连续性得()()20ln 1lim00cos x x f x→+==7 利用洛比达法则求极限7.1 错误!未找到引用源。