综合评价方法灰色评价法案例讲解
- 格式:pptx
- 大小:567.23 KB
- 文档页数:12
灰色关联度评价法例子
灰色关联度评价法是一种系统分析方法,用于评估多个指标对某一目标的影响程度。
下面是一个关于选择高中学校的例子:
假设我需要选择一所高中学校,但是有以下几个指标需要考虑:
1. 学校内部教育质量排名
2. 学校师资力量情况
3. 学校设施和硬件条件
4. 学校的学科特长
为了确定以上指标对学校的选择影响的程度,我们可以进行如下的灰色关联度评价:
步骤1:收集数据
收集各个高中学校的教育质量排名、师资力量情况、设施和硬件条件以及学科特长的数据。
步骤2:归一化处理
将不同指标的数据进行归一化处理,使得不同指标的取值范围相同。
步骤3:确定参考数列
选取一组参考数列,用于评价不同指标之间的关联程度,并考虑指标的重要性。
步骤4:计算关联度
根据灰色关联度评价法的公式,计算每个指标与目标的关联度。
步骤5:确定权重
通过对每个指标的关联度进行归一化处理后,结合专家意见确定各个指标的权重。
步骤6:综合评价
根据各个指标的权重和关联度,进行综合评价,得出最终的评价结果。
通过这样的灰色关联度评价,我们可以对不同高中学校的教育质量、师资力量、设施和硬件条件、学科特长等指标进行客观的评估,并选择最符合自己需求的学校。
本文研究的城市广场旅游功能的评价系统即属于一个灰色系统。
首先,由于关于广场旅游功能的影响要素、层级分类及指标选定均具有“信息不完全性”;其次,所选取的评价指标数据,有些是已知的,即可以从现有的统计资料中获得,而另一些数据却是未知的,无法从统计资料中获得;再则,本文建立的评价指标中既有定性(灰色)指标,也有定量(白化)指标,各因素指标之间本质上是一种灰色关系。
因此,该系统具有信息不完全的“灰色”特征。
鉴于该系统的灰色特征,本文拟采用灰色模型对城市广场旅游功能进行综合评价。
灰色综合评价方法的原理为:首先将各评价指标分为不同的灰类型,然后建立隶属于各灰类的权函数,以定量地描述某一评价对象隶属于某个灰类的程度。
对具有多层次评价指标的体系,在子系统评价的基础上再对上一层次加权综合,以反映系统的整体状况。
运用这种方法进行综合评价的课题有物流中心选址、风险企业投资价值综合评价、商业银行竞争力综合评价、科研项目综合评价等,该方法取得了比较好的评价效果。
具体计算步骤如下:1(l)确定评价指标集根据设计的指标体系,有两层指标集,U=(U1,U2,U3,U4,U5,U6),其中U1=(U11,U12,U13),U2=(U21,U22,U23,U24,U25,U26),U3=(U31,U32,U33,U34,U35,U36),U4=(U41,U42,U43,U44,U45),U5=(U51,U52),U6=(U61,U62,U63)(2)确定指标评分等级在本文中,所有指标分为很好(大)、较好(大)、一般、较差(小)四个等级,分别为4、3、2、1分,指标等级介于两相邻等级之间,相关评分为3.5、2.5、1.5分,具体等级标准由专家根据经验确定。
(3)层次分析法确定各评价指标的权重常见的确定权重的方法有,德尔菲法、层次分析法、熵值法、模糊聚类分析法等。
本文采用层次分析法确定权重,本文在运用层次分析法时做了两点优化:①采用9/9-9/1标度法。
模糊综合评判和灰色评价法的应用实例分析一、在物流中心选址中的应用物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。
在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。
基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。
这些模型及算法相当复杂。
其主要困难在于:(1) 即使简单的问题也需要大量的约束条件和变量。
(2) 约束条件和变量多使问题的难度呈指数增长。
模糊综合评价方法是一种适合于物流中心选址的建模方法。
它是一种定性与定量相结合的方法,有良好的理论基础。
特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。
1.模型⑴ 单级评判模型① 将因素集U 按属性的类型划分为k 个子集,或者说影响U 的k 个指标,记为12(,,,)k U U U U =且应满足:1, kii j i UU U U φ===② 权重A 的确定方法很多,在实际运用中常用的方法有:Delphi 法、专家调查法和层次分析法。
③ 通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。
④ 单级综合评判B A R =⑵多层次综合评判模型一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。
无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。
所以,需采用分层的办法来解决问题。
2.应用运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。
根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7.表3-7 物流中心选址的三级模型因素集U 分为三层:第一层为 {}12345,,,,U u u u u u =第二层为 {}{}{}111121314441424344551525354,,,;,,,;,,,u u u u u u u u u u u u u u u === 第三层为 {}{}5151151251352521522,,;,u u u u u u u ==假设某区域有8个候选地址,决断集{},,,,,,,V A B C D E F G H =代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判如表3-8所示。
灰色关联分析法对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。
在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。
因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。
应用于综合评价(灰色综合评价)步骤:(1) 确定比较对象(评价对象)和参考数列(评价标准)。
设评价对象有m 个,评价指标有n 个,参考数列为{}00()|1,2,,x x k k n ==⋅⋅⋅,比较数列为{}()|1,2,,,1,2,,i i x x k k n i m ==⋅⋅⋅=⋅⋅⋅。
(2) 对参考数列和比较数列进行无量纲化处理由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。
因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。
设无量纲化后参考数列为{}00()|1,2,,x x k k n ''==⋅⋅⋅,无量纲化后比较数列为{}()|1,2,,,i i x x k k n ''==⋅⋅⋅1,2,,i m =⋅⋅⋅。
(3) 确定各指标值对应的权重。
可用层次分析法等确定各指标对应的权重[]12,,,n w w w w =⋅⋅⋅,其中(1,2,,)k w k n =⋅⋅⋅为第k 个评价指标对应的权重。
(4) 计算灰色关联系数:0000min min ()()max max ()()()()()max max ()()s s s t s t i i s s tx t x t x t x t k x k x k x t x t ρξρ''''-+-=''''-+- 为比较数列i x 对参考数列0x 在第k 个指标上的关联系数,其中[]0,1ρ∈为分辨系数,称0min min ()()s s t x t x t ''-、0max max ()()s s tx t x t ''-分别为两级最小差及两级最大差。