第2章计算机中的数据表示
- 格式:ppt
- 大小:228.50 KB
- 文档页数:38
第2章数据的表示一、复习题1.给出计算机能处理的五种数据形式。
答:文本、数字、图像、音频、视频。
2.计算机如何处理所有的数据类型?答:采用统一的数据表示法(位模式)。
3.何为位模式?答:位是存储在计算机中的最小数据单位,它是 0 或 1。
位模式是一个由若干个位构成的序列,也被称为位流。
4.ASCII码与扩展ASCII码之间的区别是什么?答:ASCII码采用7位位模式,范围从0000000到 1111111。
扩展ASCII通过在ASCII码左边增加额外的0进行扩充,范围从00000000 t到 01111111。
扩展ASCII码中,每个位模式恰好占用一个字节存储空间。
6.位模式的长度与位模式所能表示符号的数量之间有何关系?答:位模式长度与位模式所能表示符号的数量之间满足对数关系。
即:符号数量=2长度7.位图图形表示法是如何以位模式来表示图像的?答:图像被分成像素矩阵, 每个像素是一个小点。
用位模式来表示每一个像素的颜色。
8.矢量图表示法与位图图形表示法相比有哪些优点?答:(1)矢量图可任意放大缩小,即缩放不变形。
(2)图象存储数据量小。
9.音频数据转换成位模式的步骤有哪些?答:采样,量化,编码,存储。
10.图像数据和视频数据有何关系。
答:视频是图像(帧)在时间上的表示。
多个帧按时间逐帧播放便形成动态图像。
存储视频的本质,就是逐帧存储每一个帧的图像。
二、选择题11~15 D、D、C、C、D 16~20 B、D、A、C、D21~25 D、B、D、C、A26~28 B、A、D三、练习题29.给定5个位,那么可以有多少种不同的5位模式表示形式?答:25=32(种)30.在一些国家,车牌号由两位十进制数字(0到9)组成,那么可以表示多少不同的车牌号?如果车牌号中不允许有0,则又可以表示多少不同的车牌号码?答:以表示的车牌号:10×10=100若车牌号中不允许有0,则可以的车牌号码:9×9=8131.重做30题,若在两位十进制数字的基础上增加三位,每位取值于大写的英文字母(A到Z)。
计算机组成原理第⼆章数据的表⽰和运算第⼆章数据的表⽰和运算数制与编码进制转换使⽤⼆进制的原因⼆进制与⼋进制、⼗六进制的转换各种进制的书写⽅式⼗进制转换为任意进制整数部分⼗进制转换⼆进制如(75)10752=37……1 K372=18……1 K1182=9……0 K292=4……1 K342=2……0 K422=1……0 K512=0……1 K6K0K1K2K3K4K5K6=1101001⼩数部分⼗进制转换⼆进制如(75.3)10⼩数部分=0.30.3∗2=0.6=0+0.6 K−10.6∗2=1.2=1+0.2 K−20.2∗2=0.4=0+0.4 K−30.4∗2=0.8=0+0.8 K−40.8∗2=1.6=1+0.6 K−5……0.3D=0.01001……B⼩数⽆法准确表述⼗进制转换⼆进制(拼凑法)总结Processing math: 52%BCD码(Binary-Coded Decimal)修正数据(9+9)10(9)10→(1001)2(9+9)2=100110011001+1001−−−−1001010010超出了8421码中的1010−1111+(6)10⇔+(0110)2修正10010+0110−−−−11000相加结果在合法范围(1010~1111)内,不需要修正其他编码总结字符与字符串ASCII码可印刷字符:32~126其余为控制、通信字符⼤写字母:65(0100 0001)~ 90(0101 1010)⼩写字母:97(0110 0001)~ 122(0111 1010)汉字的表⽰和编码输⼊:输⼊编码输出:汉字字形码字符串⼤端模式&⼩端模式总结奇偶校验码校验原理当d=1时,⽆检错能⼒;当d=2时,有检错能⼒;当d≥3时,若设计合理,可能具有检错纠错能⼒(海明码)奇偶校验码例题奇校验:(1)1001101 (0)1010111偶校验:(0)1001101 (1)1010111只能发现数据代码中奇数位的出错情况,但不能纠错总结海明码简单思路求解步骤总结循环冗余校验码基本思想校验步骤(模⼆除)G(x)=x3+x2+1=1∗x3+1∗x2+0∗x1+1∗x0→1101110101−−−−−−−−−−−−−−−−−−−1101 |101001000110111101101−−−−−−−−−−−−−−−−−−−01110000−−−−−−−−−−−−−−−−−−−11101101−−−−−−−−−−−−−−−−−−−01100000−−−−−−−−−−−−−−−−−−−11001101−−−−−−−−−−−−−−−−−−−001→校验位对应的CRC码为101001 001s余数为001、010时并不能确定是哪⼀位出错了此时是信息位过多,降低信息位就可以解决问题K个信息位,R个校验位,若⽣成多项式选择得当,且2R≥K+R+1,则CRC码可纠正1位错总结定点数的表⽰⽆符号数通常只有⽆符号整数,⽽没有⽆符号⼩数1001100B=1∗27+1∗26+0∗25+0∗24+1∗23+1∗22+0∗21+0∗20=156D有符号数的定点表⽰原码⽤尾数表⽰真值部分的绝对值,符号位“0/1”对应“正/负”若机器字长为n+1位,则尾数占n位反码若符号位为0,则反码与原码相同若符号位为1,则数值位全部取反反码是原码转变为补码的⼀个中间状态补码正数的补码=原码负数的补码=反码末位+1(要考虑进位)设机器字长为8位[+0]原=0000 0000[+0]反=0000 0000[+0]补=0000 0000[−0]原=1000 0000[−0]反=1111 1111[−0]补=1 0000 0000由于机器字长为8位,进位丢弃[−0]补=0000 0000逆向将负数补码转回原码的⽅法相同:尾数取反,末尾+1[−19]原=1001 0011[−19]反=1110 1100[−19]补=1110 1101[−19]原=1001 0010+0000 0001=1001 0011移码补码的基础上将符号位取反移码只能⽤于表⽰整数⼏种码表⽰定点整数练习假设机器字长为8位定点整数x=50[+50]原=0011 0010[+50]反=0011 0010[+50]补=0011 0010[+50]移=1011 0010定点整数x=−100[−100]原=1110 0100[−100]反=1001 1011[−100]补=1001 1100[−100]移=0001 1110知识回顾各种码的作⽤⽤加法代替减法表盘为例10+9=1919%12=7相当于求余数模运算的性质可以说在模12的情况下上述数字等价其中-3和9互为补数,⼆者绝对值之和等于模\begin{align} 有符号数&~~~~~~~~~~~~~~~~~~~⽆符号数\\ 14~~~~~~&0000~1110~~~~~~~~14\\ -14~~~+&1000~1110~~~~~~142\\ -----&-----------\\0~~~~~~&1001~1100~~~~~~156\\ &模-a的绝对值=a的补数\\ &0000~1110\\ -&0000~1110\\ -----&-----------\\ &0000~0000\\ &\\ &模2^8-0000~1110\\ &1~0000~0000\\ -&~~~0000~1110\\ -----&-----------\\ &~~~1111~0010\\ -----&-----------\\ &~~~0000~1110\\ +&~~~1111~0010\\ -----&-----------\\ &~1~0000~0000\\ \end{align}\begin{align} &求-66的补码\\ &[-66]_{原}=1100~0010\\ &[-66]_{反}=1011~1101\\ &[-66]_{补}=1011~1110\\ &[+88]_{原}=0101~1000\\ &1101~1000\\ +&0011~1110\\ --&-----------------\\ 1~&0001~0110~~~~~~22D\\ \end{align}移位运算算术移位原码的算术移位\begin{align} &[+20]_{原}=0001~0100\\ &{左移⼀位}=0010~1000=+40D\\ \end{align}反码的算数移位补码的算数移位\begin{align} &[-20]_{原}=1001~0100\\ &[-20]_{反}=1110~1011\\ &[-20]_{补}=1110~1100\\ &左移⼀位=1010~1000\\ &[-20]_{原}=1001~0100\\ &[-20]_{反}=1110~1011\\ &[-20]_{补}=1110~1100\\ &右移⼀位=1111~0110\\ \end{align}逻辑移位(针对⽆符号数)应⽤举例循环移位总结加减运算原码的加减运算补码的加减运算\begin{align} &A=15,B=-24,C=124,求[A+C]_{补}[B-C]_{补}\\ &[A]_{原}=0000~1111\\ &[A]_{反}=0000~1111\\ &[A]_{补}=0000~1111\\ &[B]_{原}=1001~1000\\ &[B]_{反}=1110~0111\\ & [B]_{补}=1110~1000\\ &[C]_{原}=0111~1100\\ &[C]_{反}=0111~1100\\ &[C]_{补}=0111~1100\\ &[A+C]_{补}\\ &0000~1111\\ +&0111~1100\\ ----&------------\\ &1000~1011\\&1111~0100\\ &1111~0101~~~~~~-117D\\ &[B-C]_{补}\\ 1&~0000~0000\\ -&~0111~1100\\ ----&-------------\\ &~1000~0100\\ +&~1110~1000\\ ----&-------------\\ &~0110~1100\\&~0110~1100\\ &~0110~1100~~~~~~+108D\\ \end{align}出现了溢出溢出判断⼀位符号逻辑表达式进位判断双符号位符号扩展整数⼩数总结乘法运算⼿算乘法(⼗进制)⼿算乘法(⼆进制)原码⼀位乘法实现⽅法:先加法再移位,重复n次(0)乘法进⾏前ACC置0(1)第⼀步加法加法移位(2)第⼆步加法加法移位(3)第三步加法加法移位(4)第四步加法加法移位乘法结果修正符号位原码⼀位乘法(⼿算模拟)\begin{align} &⾼位部分积~~~~ ~~~~低位部分积~~~~ ~~~~ ~~~~说明\\ &~~00.0000~~~~ ~~~~ ~~~~ ~~~~ 101\underline{1}|~~~~ ~~~~ 低位=1~~~~ +|x|\\ +|x|&~~00.1101~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~|\\ ----&---------------------\\ &~~00.1101\\ 右移&~~00.0110~~~~ ~~~~ ~~~~ ~~~~ 110\underline{1}|1~~~~ ~~~ 低位=1~~~~ +|x|\\ +|x|&~~00.1101~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~|\\ ----&---------------------\\ &~~01.0011\\ 右移&~~00.1001~~~~ ~~~~ ~~~~ ~~~~ 111\underline{0}|11~~ ~~~低位=0~~~~ +0 \\ +&~~00.0000\\ ----&---------------------\\&~~00.1001\\ 右移&~~00.0100~~~~ ~~~~ ~~~~ ~~~~ 111\underline{1}|011 ~~~低位=1~~~~ +|x| \\ +|x|&~~00.1101\\ ----&---------------------\\ &~~01.0001\\ 右移&~~00.1000~~~~ ~~~~ ~~~~ ~~~~ 111\underline{1}|1011 ~右移部分积和乘数全部移出 \\ &|x|=00.10001111\\ &x*y=-0.10001111\\ \end{align}补码的⼀位乘法辅助位⼿算模拟\begin{align} &⾼位部分积~~~~ ~~~~低位部分积~~~~ ~~~~ ~~~~说明\\ &~~00.0000~~~~ ~~~~ ~~~~ 0.101\underline{1}|0~~~~ ~~~~ ~~~~起始情况\\ +[-x]_补&~~00.1101~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ Y_4Y_5=10,Y_5-Y_4=-1,+[-x]_{补}\\ ----&-----------------------------\\ &~~00.1101\\ 右移&~~00.0110~~~~ ~~~~ ~~~~10.10\underline{1}|10~~~~ ~~~~ ~~~~右移部分积和乘数\\ +0&~~00.0000~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ Y_4Y_5=10,Y_5-Y_4=0,+0\\ ----&-----------------------------\\ &~~00.0110\\ 右移&~~00.0011~~~~ ~~~~ ~~~~ 010.1\underline{0}|110~~~~ ~~~~ ~~~~右移部分积和乘数\\ +[x]_补&~~11.0011~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~~~~~ ~~~~ Y_4Y_5=01,Y_5-Y_4=1,+[x]_补\\ ----&-----------------------------\\ &~~11.0110\\ 右移&~~11.1011~~~~ ~~~~ ~~~~ 0010.\underline{1}|0110~~~~ ~~~~ ~~~~右移部分积和乘数\\ +[-x]_补&~~00.1101~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ Y_4Y_5=10,Y_5-Y_4=-1,+[-x]_补\\ ----&-----------------------------\\ &~~00.1000\\ 右移&~~00.0100~~~~~~~~ ~~~~ \underline{\underline{0001}}\underline{0}.|10110~~~~ ~~~~ ~~~~右移部分积和乘数\\ +[x]_补&~~11.0011~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~Y_4Y_5=01,Y_5-Y_4=1,+[x]_补\\ ----&-----------------------------\\ &~~11.0111\\ &[x*y]_补=11.0111~0001\\ &x*y=-0.1000~1111\\ \end{align}除法运算⼿算除法(⼗进制)⼿算除法(⼆进制)恢复余数法原码除法:恢复余数法(0)初始(1)第⼀步上商求余数判断上商是否正确01011上商后得11110,相减结果为负,应上商0修正逻辑左移(2)第⼆步上商求余数判断上商是否正确相减结果为正数,上商正确逻辑左移(3)第三步上商求余数判断上商是否正确上商⽆误逻辑左移(4)第四步上商求余数判断上商是否正确相减结果⼩于0,上商有误修正逻辑左移(5)第五步:最后⼀步除法上商&求余数判断上商是否正确最后⼀步除法,如果上商求余数结果⼩于0.还需要继续恢复余数(6)最后⼀步\begin{align} &余数=ACC*2^{-n}\\ \end{align}原码除法(⼿算)加减交替法默认规定被除数要⼩于除数,否则硬件电路⽆法运⾏,如果被除数⼤于除数,商的结果为⼤于1的数将⽆法表⽰通过第⼀步的商来判断被除数与除数的⼤⼩关系第⼀步商的结果⼀定为负值,如果为正值说明被除数⽐除数⼤,硬件电路会⽴即停⽌运算补码除法加减交替法总结C语⾔中的强制类型转换数据的存储和排列⼤⼩端模式边界对齐浮点数的表⽰浮点数尾数的规格化左规&右规规格化浮点数的特点总结IEEE754 浮点数标准\begin{align} &IEEE754规定偏置值=2^{n-1}\\ \end{align}IEEE 754 标准\begin{align} &(-0.75)_{10}=(-0.11)_2=(-1.1)*2^{-1}\\ &数符=1\\ &尾数部分=.1000~0000……(隐含最⾼位1)\\ &阶码真值=-1\\ &单精度浮点型偏移量=127D\\ &移码=阶码真值+偏移量=-1+111~1111=0111~1110(凑⾜8位)\\ \end{align}总结浮点数的运算浮点数的加减运算\begin{align} &(0)转换格式\\ &5D=101B,\frac{1}{256}=2^{-8},X=-101*2^-8=-0.101*2^{-5}=-0.101*2^{-101}\\ &59D=111011,\frac{1}{1024}=2^{-10},Y=111011*2^{-10}=0.111011*2^{-4}=0.111011*2^{-100}\\ &X: &[阶码]_{原}=-101\\ &[阶码]_{补}=1011\\ &阶码双符号位补码:11011\\ &[尾数]_{原}=-0.101\\ &[尾数]_{补}=1.011\\ &尾数双符号位补码:11.011\\&X=11011,11.011000000\\ &Y: &[阶码]_{原}=-100\\ &[阶码]_{补}=1100\\ &阶码双符号位补码:11100\\ &[尾数]_{原}=0.111011\\ &[尾数]_{补}=0.111011\\ &尾数双符号位补码:00.111011\\ &X=11100,00.111011000\\ &浮点数加减法运算步骤\\ &(1)对阶\\ &⼩阶向⼤阶看齐,尾数每右移⼀位,阶码+1\\ &[1]求阶差:[\Delta E]_补=||E_X|_原+|E_Y|_补|=11011+00100=11111\\ &\Delta=-1\\ &[2]对阶:X:11011,11.011000000\rightarrow 111011,11.1011000000\\ &X=-0.0101*2^{-100}\\ &(2)尾数减法\\ &-Y=11100,11.000101000\\ &11011,11.011000000\\ +&11100,11.000101000\\ ---&----------------------------\\ &10.110001000\\ &X_Y=11100,10.110001000\\ &(3)规格化\\&X_Y=11100,10.110001000\rightarrow11101,011000100\\ &(4)舍⼊ \\ &⽆需舍⼊\\ &(5)判断溢出\\ &常阶码,⽆溢出,结果真值为2^{-3}*(-0.1001111)_2 \end{align}舍⼊强制类型转换总结加法器设计算术逻辑单元ALU机器字长=ALU⼀次可以处理的数据长度基本逻辑运算⽤门电路求偶校验位⼀位全加器串⾏加法器并⾏加法器总结加法器、ALU的改进并⾏加法器的优化组内并⾏&串⾏ALU芯⽚优化。
第二章数据在计算机中的表示综合练习题参考答案一、1 、计算机中的数有定点表示法和浮点表示法两种表示方法。
2 、原码的编码规则是:最高位代表符号,其余各位是该数的尾数本身。
3 、补码的编码规则是:正数的补码与其原码相同,负数的补码是将二进制位按位取反后在最低位加 1 。
4 、反码的编码规则是:正数的反码与其原码相同,负数的反码是将二进制位按位取反。
5 、一种记数制允许选用基本数字符号的个数称为基数。
6 、整数部分个位位置的序是 0 。
7 、通常把表示信息的数字符号称为数码。
8 、八进制数的基数是 8 。
9 、 7402.45Q 的十六进制数是 F02.94H 。
10 、数在计算机中的二进制表示形式称为二进制数。
11 、在小型或微型计算机中,最普遍采用的字母与字符编码是 ASCII 码。
12 、计算机一般都采用二进制数进行运算、存储和传送,其理由是运算规则简单,可以节省设备。
13 、十进制整数转换成二进制的方法是除 2 取余法,小数转换成二进制的方法是乘 2 取整法。
14 、二进制的运算规则有加法规则、减法规则、乘法规则和除法规则。
15 、目前常见的机器编码有原码、反码和补码。
16 、对 -0 和 +0 有不同表示方法的机器码是原码和码。
17 、 8 位寄存器中存放二进制整数,内容全为 1 ,当它为原码、补码和反码时所对应的十进制真值分别是 -127 、 -1 、 -0 。
18 、在二进制浮点数表示方法中,阶码的位数越多则数的表示范围越大,尾数的位数越多则数的精度越高。
19 、对于定点整数, 8 位原码(含 1 位符号位)可表示的最小整数为 -127 ,最大整数为 127 。
20 、采用 BCD 码, 1 位十进制数要用 4 位二进制数表示, 1 个字节可存放 2 个 BCD 码。
21 、对于定点小数, 8 位补码可表示的最小的数为 -1 ,最大的数为 1-27 。
22 、在原码、补码、反码中,补码的表示范围最大。