初一列方程解应用题的一般步骤完整版
- 格式:docx
- 大小:43.27 KB
- 文档页数:5
列分式方程解应用题的步骤要点:七年级上
册数学
一.列分式方程解应用题的步骤:
列分式方程解应用题的一般步骤为:
(1)设未知数:若把题目中要求的未知数直接用字母表示出来,则称为直接设未知数,否则称间接设未知数;
(2)列代数式:用含未知数的代数式把题目中有关的量表示出来,必要时作出示意图或列成表格,帮助理顺各个量之间的关系;
(3)列出方程:根据题目中明显的或者隐含的相等关系列出方程;
(4)解方程并检验;
(5)写出答案。
二.列分式方程解应用题的注意事项:
由于列方程解应用题是对实际问题的解答,所以检验时除从方面进行检验外,还应考虑题目中的实际情况,凡不符合实际的,应舍去。
以上就是为大家整理的列分式方程解应用题的步骤要点:七年级上册数学,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!
相关标签搜索:七年级期中复习。
七年级学生列方程解应用题的一般方法和步骤伟大的数学家笛卡儿说:“一切问题都可以转化为数学问题,一切数学问题都可以转化为代数问题,而一切代数问题又都可以转化为方程。
因此,一旦解决了方程问题,一切问题将迎刃而解。
”笛卡儿的这句话已经清楚地告诉我们方程是多么的重要,所以从七年级甚至小学我们就应该重视方程的教学。
所谓方程,就是“含有未知数的等式”。
而所谓列方程解应用题的思想方法,就是在一道数学实际应用题中运用方程的思想来寻求答案。
对于七年级学生来说,一道应用题如何入手才是最重要的,用方程的方法解答无疑是学生较易接受的方式。
方程是一种逆向思维的解题方法,它改变了小学一般解决逆思维题目用算术方法解答而学生很难理解的困惑,符合学生的认知规律和知识基础,易于学生运用知识的正迁移,并结合思维方法正确解决此类实际问题,学生学得轻松、有效,很好地提高了课堂教学效率。
列方程有这样一个定义:列方程是为了求未知数,在未知数和已知数之间建立的一种等式关系。
这就揭示了应用方程解决实际问题的三种好处:第一,它揭示了方程这一数学思想方法的目标,即为了求未知数。
第二,陈述了“已知数”的存在。
列方程解应用题需要充分利用已知数和未知数之间的关系。
第三,方程的本质是“关系”,而且是一个等式关系。
所以,列方程解应用题归根结底就是要在实际问题中确定等量关系。
一般来说,列方程解应用题要完成两个转化过程:首先,通过分析把实际问题中的数量关系转化为数学问题,也就是列方程;其次,通过解方程,将未知数转化为已知,也就是方程变形。
这时,根据等量关系列方程就成为了列方程解应用题的关键。
而等量关系往往是隐含在题目中的,一般情况下,题目里是不会明显呈现的,并且确定等量关系也没有固定方法可循,如果考虑的角度不同,所取得的等量关系也不会相同。
这正是学生在学习列方程解应用题时总是找不到恰当的等量关系的根本原因。
那么,如何加强列方程解应用题的训练,帮助学生实现从算术思维到代数思维的转变呢?一、列方程解应用题的一般方法1.解决设求的困难。
列方程解应用题的一般步骤是:(1)审(2)找(3)设(4)列(5)解(6)答,而最关键的是第二步找等量关系,只有找出等量关系才可列方程,下面我来谈谈怎样找相等关系和设未知数。
一、怎样找等量关系(一)、根据数量关系找相等关系。
好多应用题都有体现数量关系的语句,即“…比…多…”、“ …比…少…”、“…是…的几倍”、“ …和…共…”等字眼,解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定相等关系。
例1:某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生相等关系:女生人数-男生人数=80例2:合唱队有80人,合唱队的人数比舞蹈队的3倍多15人,则舞蹈队有多少人相等关系:舞蹈队的人数×3+15=合唱队的人数例3:在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人相等关系:调动后甲处人数=调动后乙处人数×2解:设调x人到甲处,则调(20-x)人到乙处,由题意得:27+x=2(19+20-x),解得 x=17所以 20-x=20-17=3(人)答:应调往甲处17人,乙处3人。
(二)、根据熟悉的公式找相等关系。
单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工作效率×工作时间=工作总量,售价=原价×打折的百分数,利润=售价-进价,利润=进价×利润率,几何形体周长、面积和体积公式,都是解答相关方程应用题的工具。
例1:一件商品按成本价提高100元后标价,再打8折销售,售价为240元。
求这件商品的成本价为多少元相等关系:(成本价+100)×80%=售价例2:用一根长20cm的铁丝围成一个正方形,正方形的边长是多少相等关系:正方形的周长=边长×4例3:一个梯形的下底比上底多2厘米,高是5厘米,面积是40平方厘米,求上底。
列分式方程解应用题的步骤
列分式方程解应用题的步骤
一. 列分式方程解应用题的步骤:
(1)设未知数:若把题目中要求的未知数直接用字母表
示出来,则称为直接设未知数,否则称间接设未知数;
(2)列代数式:用含未知数的代数式把题目中有关的量
表示出来,必要时作出表示图或列成表格,帮助理顺各个量
之间的关系 ;
(3) 列出方程:依照题目中明显的 ' 也许隐含的相等关系列出方程 ;
(4) 解方程并检验 ;
(5) 写出答案。
二 . 列分式方程解应用题的注意事项:
由于列方程解应用题是对实责问题的解答,所以检验时
除从方面进行检验外,还应试虑题目中的实质情况,凡不吻
合实质的,应舍去。
七年级数学列方程(组)解应用题的方法及步骤(1)审题:要明确已知什么,未知什么及其相互关系,并用x表示题中的一个合理未知数。
(2)根据题意找出能够表示应用题全部含义的一个相等关系。
(关键一步)(3)根据相等关系,正确列出方程,即所列的方程应满足等号两边的量要相等;方程两边的代数式的单位要相同。
(4)解方程:求出未知数的值。
(5)检验后明确地、完整地写出答案。
检验应是:检验所求出的解既能使方程成立,又能使应用题有意义。
2. 应用题的类型和每个类型所用到的基本数量关系:(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。
(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系。
(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。
(4)商品利润率问题:商品的利润率,商品利润=商品售价-商品进价。
(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。
(6)行程类应用题基本关系:路程=速度×时间。
相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。
追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
环形跑道题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。
飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速航行问题,基本等量关系:①顺水速度=静水速度+水速②逆水速度=静水速度-水速(7)比例类应用题:若甲、乙的比为2:3,可设甲为2x,乙为3x。
(8)数字类应用题基本关系:若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这三位数为:。
1学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?甲处乙处原有人数27 18现有人数27+18-相等关系解设应调往甲处人,根据题意,得27+ =2(18- ).解这个方程,得=3.答:从乙处调3人到甲处.2变题学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?分析设应调往甲处人,题目中涉及的有关数量及其关系可以用下表表示:甲处乙处原有人数27 18增加人数20-现有人数27+18+20-等量关系 +2解设应调往甲处人,根据题意,得27+ =2(18+20- )+2.解这个方程,得=17.∴20- =3.答:应调往甲处17人,乙处3人.3某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?4某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)5 一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?解:设在这5立方米木料中,用x立方米木料做桌面,用y立方米木料做桌子腿,由题意可得:即用3立方米木料做桌面,2立方米木料做桌腿。
列方程解应用题的一般步骤
解应用题的一般步骤如下:
1. 阅读题目:仔细阅读题目,并理解题目所描述的情境和要求。
2. 确定未知数:确定需要求解的未知数,可以用一个或多个字母表示。
3. 建立关系式:建立数学模型,将问题中的已知条件和未知数之间的关系用方程表示。
4. 解方程:根据建立的方程,用数学方法解方程。
5. 检验答案:将求得的解代入原方程中进行检验,确保答案符合题目要求。
6. 回答问题:根据问题要求,用正确的语言回答问题。
每一步都需要细致的分析和思考,有效地将问题转化为数学问题,并通过解方程求解得到正确的答案。
用字母代替应用题中的未知数,根据等量关系列出方程,再解所列出的方程,从而得到应用题的答案,这个过程叫做列方程解应用题.列方程解应用题的一般步骤是:(1)分析题意.认真读题,反复审题,弄清问题中的已知量是什么,未知量是什么,它们之间有什么等量关系:(2)设未知数为x.合理选择未知数是解题的关键步骤之一.一般设题目里所求的未知数是x,特殊情况下也可设与所求量相关的另一个未知数为x;(3)列方程.根据所设的未知量x和题目中的已知条件,利用等量关系列出方程;(4)解方程.求未知数x的值;(5)检验并答题.对方程的解进行检查验算,看是否符合题意,针对问题作出答案.例1 甲船载油595吨,乙船载油225吨,要使甲船的载油量为乙船的4倍,必须从乙船抽多少吨油给甲船?分析:先找相等的关系.乙船抽出一部分油给甲船后,使甲船的油等于乙船的油的4倍,即:甲船的油+乙船抽出的油=(乙船的油-乙船抽出的油)×4,我们可以设乙船抽出的油为x吨,利用等量关系列出方程求解.解:设从乙船抽出x吨油,则595+x=(225-x)×4595+x=900-4x4x+x=900-5955x=305x=61答:必须从乙船抽出61吨油给甲船.例2 甲、乙两人骑自行车同时从西镇出发去东镇,甲每小时行15千米,乙每小时行10千米.甲行30分钟后,因事用原速返回西镇,在西镇耽搁了半小时,又以原速去东镇,结果比乙晚到30分钟,试求两镇间的距离.分析:甲从西镇出发,行了30分钟,因有事用原速返回西镇,这样又得需要30分钟,到西镇后又耽搁了半小时,甲前后共耽误了0.5×3=1.5小时,但在甲耽误的时间里,乙没有停留,因此可以看作乙比甲从西镇提前1.5小时出发,然后甲追乙,结果比乙晚30分钟到达东镇,如果设甲第二次从西镇出发到东镇所用时间为x小时,我们可以得出东西两镇的距离为:甲时速×x=乙在甲前的路程+乙时速×(x-0.5)根据这样的等量关系,可以列出方程求解.解:设甲第二次从西镇出发到东镇所用的时间为x小时,则15x=10×(0.5×3)+10(x-0.5)15x=15+10x-515x-10x=15-55x=10x=2代入15x=15×2=30答:东西两镇的距离是30千米.例3 哥哥现在的年龄是弟弟当年年龄的3倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁?分析:解答有关年龄方面的问题时,注意两人的年龄差经过多少年都不会变,因此可以根据这个差不变找等量关系.如果假设哥哥现在的年龄为x岁,由于哥哥与弟弟现在的年龄和是30岁,所以弟弟现在的年龄为30-x岁,又因为哥哥当年的年龄与弟弟现在的年龄相同,所以哥哥当年的年龄为30-x岁,又由于哥哥现在的年龄是弟弟当年年龄的3倍,所以弟弟当年的年龄为他们的年龄差不变.解:设哥哥现在的年龄为x,则方程两边同乘以3,得6x-90=90-3x-x6x+4x=90+9010x=180x=18代入30-x=30-18=12答:哥哥现在的年龄是18岁,弟弟现在的年龄是12岁.思考:如果设弟弟现在的年龄为x岁,如何列方程呢?例4 小红、小丽、小强三位同学,各用同样多的钱买了一些练习本.小红买的每本是0.6元,比小强少2本,小丽买的每本是0.4元,比小强多3本,问小强买了多少个练习本?每本的价格是多少?分析:设小强买了x个练习本,由于小红买的本数比小强少2本,所以小红买的本数为x-2个,小丽买的本数比小强多3本,所以小丽买的本数为x+3个.根据三人买练习本花的钱数相同,可以列出方程.解:设小强买了x个练习本,则0.6×(x-2)=0.4×(x+3)0.6x-1.2=0.4x+1.20.6x-0.4x=1.2+1.20.2x=2.4x=12代入0.6×(x-2)=0.6×(12-2)=66÷12=0.5答:小强买了12个练习本,每本价格0.5元。
一元一次方程应用题专题讲解列方程解应用题,是初中数学的重要内容之一。
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。
因此我们要努力学好这部分知识。
一、列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。
(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
2.多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
增长量=原有量×增长率现在量=原有量+增长量例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?(二)等积变形问题等积变形是以形状改变而体积不变为前提。
初一列方程解应用题的
一般步骤
标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]
列方程解应用题的一般步骤(解题思路)
(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).
(2)设—设出未知数:根据提问,巧设未知数.
(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系
列出方程.
(4)解——解方程:解所列的方程,求出未知数的值.
(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,
检验后写出答案.(注意带上单位)
二、各类题型解法分析
一元一次方程应用题归类汇集:
行程问题,工程问题,和差倍分问题(生产、做工等各类问题),
等积变形问题,调配问题,分配问题,配套问题,增长率问题,
数字问题,方案设计与成本分析,古典数学,浓度问题等。
第一类、行程问题
基本的数量关系:
(1)路程=速度×时间⑵速度=路程÷时间⑶时间=路程÷速度
要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)
常用的等量关系:
1、甲、乙二人相向相遇问题
⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量
2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题
⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量
3、单人往返
⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变
4、行船问题与飞机飞行问题
⑴顺水速度=静水速度+水流速度⑵逆水速度=静水速度-水流速度
5、考虑车长的过桥或通过山洞隧道问题
将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:
⑴将时钟的时针、分针、秒针的尖端看作一个点来研究
⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:①时针的速度是0.5°/分②分针的速度是6°/分③秒针的速度是6°/秒
1.一列火车通过隧道,从车头进入道口到车尾离开隧道共需45 秒,当整列火车在隧道里需32 秒,若车身长为180 米,隧道x 米,可列方程为_______________。
2.火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的
长度y之间的关系用图像描述大致是()
3.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?
4.一列匀速前进的火车,从它进入320m长的隧道到完全通过隧道经历了18s的时间,隧道顶部一盏固定的灯光在火车上,垂直照射的时间为10s,问这列火车的长为多少米?
5.在一段双轨铁道上,两列火车相向驶过,A列车车速为20米/秒,B列车车速为24米/秒,若A列车全长180米,B列车全长160米,求两列车从相遇到相离所要的时间。
6.小红、小南、小芳在郊游,看到远处一列火车匀速通过一个隧道后,小红:火车从开始进入隧道到完全开出隧道共用30秒;小南:整列火车完全在隧道里的时间是20秒;小芳:我爸爸参与过这个隧道的修建,他告诉我隧道长500米。
求出这列火车的长。
7.一人以每分钟120米的速度沿铁路边跑步.一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度。
8.在6点和7点之间,什么时刻时钟的分针和时针重合?
9.一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
10某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的速度为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离。
.。