列方程解应用题步骤、常用数量关系及应注意问题
- 格式:doc
- 大小:18.50 KB
- 文档页数:2
列方程解应用题的一般步骤解题思路1审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系找出等量关系.2设—设出未知数:根据提问,巧设未知数.3列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.4解——解方程:解所列的方程,求出未知数的值.5答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.注意带上单位二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题生产、做工等各类问题,等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等;第一类、行程问题基本的数量关系:1路程=速度×时间⑵速度=路程÷时间⑶时间=路程÷速度要特别注意:路程、速度、时间的对应关系即在某段路程上所对应的速度和时间各是多少常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变4、行船问题与飞机飞行问题⑴顺水速度=静水速度+水流速度⑵逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然;6、时钟问题:⑴将时钟的时针、分针、秒针的尖端看作一个点来研究⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析;常用数据:①时针的速度是0.5°/分②分针的速度是6°/分③秒针的速度是6°/秒1.一列火车通过隧道,从车头进入道口到车尾离开隧道共需45秒,当整列火车在隧道里需32秒,若车身长为180米,隧道x米,可列方程为_______________;2.火车匀速通过隧道隧道长等于火车长时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图像描述大致是3.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟4.一列匀速前进的火车,从它进入320m长的隧道到完全通过隧道经历了18s的时间,隧道顶部一盏固定的灯光在火车上,垂直照射的时间为10s,问这列火车的长为多少米5.在一段双轨铁道上,两列火车相向驶过,A列车车速为20米/秒,B列车车速为24米/秒,若A列车全长180米,B 列车全长160米,求两列车从相遇到相离所要的时间;6.小红、小南、小芳在郊游,看到远处一列火车匀速通过一个隧道后,小红:火车从开始进入隧道到完全开出隧道共用30秒;小南:整列火车完全在隧道里的时间是20秒;小芳:我爸爸参与过这个隧道的修建,他告诉我隧道长500米;求出这列火车的长;7.一人以每分钟120米的速度沿铁路边跑步.一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度;8.在6点和7点之间,什么时刻时钟的分针和时针重合9.一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离;10某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的速度为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离;.。
列方程解应用题的一般步骤是:〔1〕审〔2〕找〔3〕设〔4〕列〔5〕解〔6〕答,而最关键的是第二步找等量关系,只有找出等量关系才可列方程,下面我来谈谈怎样找相等关系和设未知数。
一、怎样找等量关系〔一〕、根据数量关系找相等关系。
好多应用题都有表达数量关系的语句,即“…比…多…〞、“ …比…少…〞、“…是…的几倍〞、“ …和…共…〞等字眼,解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定相等关系。
例1:某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?相等关系:女生人数-男生人数=80例2:合唱队有80人,合唱队的人数比舞蹈队的3倍多15人,那么舞蹈队有多少人?相等关系:舞蹈队的人数×3+15=合唱队的人数例3:在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?相等关系:调动后甲处人数=调动后乙处人数×2解:设调x人到甲处,那么调〔20-x〕人到乙处,由题意得:27+x=2(19+20-x),解得 x=17所以 20-x=20-17=3〔人〕答:应调往甲处17人,乙处3人。
〔二〕、根据熟悉的公式找相等关系。
单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工作效率×工作时间=工作总量,售价=原价×打折的百分数,利润=售价-进价,利润=进价×利润率,几何形体周长、面积和体积公式,都是解答相关方程应用题的工具。
例1:一件商品按本钱价提高100元后标价,再打8折销售,售价为240元。
求这件商品的本钱价为多少元?相等关系:〔本钱价+100〕×80%=售价例2:用一根长20cm的铁丝围成一个正方形,正方形的边长是多少?相等关系:正方形的周长=边长×4例3:一个梯形的下底比上底多2厘米,高是5厘米,面积是40平方厘米,求上底。
列一元一次方程解应用题中的思想方法1.一元一次方程的解法步骤及每一个解题步骤应注意什么?去分母:不漏乘加括号去括号:注意分配;括号前是负号时要变号移项:注意要变号合并同类项:系数化“1”:注意约分和不要丢“—”号自觉养成检验的习惯2.列方程解应用题的步骤有哪些?关键是什么?审题:分析题意,找出题中的数量关系及其关系;设元:选择一个适当的未知数用字母表示(例如x);列方程:根据相等关系列出方程;解方程:求出未知数的值;检验:检验求得的值是否正确和符合实际情形,并写出答案.关键:正确审清题意,找准“等量关系”众所周知,数学思想是我们数学解题的灵魂,列一元一次方程解应用题也不例外,在列一元一次方程解应用题过程中也蕴含着许多的数学思想,如果能灵活的加以运用,往往能更好地解决列一元一次方程解应用题,现就列一元一次方程解应用题中的常见的思想方法举例说明.一、设k法.利用一元一次方程解应用题时经常会遇到有关比例问题,这时若能巧妙地设出其中的平分为k,就能轻松地列出方程求解.例1一个三角形三条边长的比是2∶4∶5,最长的边比最短的边长6厘米,求这个三角形的周长.二、数形结合思想.数形结合思想是指在研究问题的过程中,由数思形、由形想数,把数与形结合起来解析问题的思想方法.例2如图,是一块在电脑屏幕上出现的矩形色块图,由6个颜色不同的正方形组成.设中间最小的一个正方形边长为1,则这个矩形色块图的面积为________.分析通过观察图形可以发现,除了边长为1的正方形,其余5个正方形中,右下角的两个大小相等,然后顺时针方向上的正方形边长依次大1.三、整体思想.在研究应用问题时,若能将所要思考的问题看成一个整体,通盘考虑,则可既便于列方程,又便于解方程.例3一个六位数左端的数字是1,如果把左端的数字1移到右端,那么所得新的六位数等于原数的3倍,求原来的六位数.四、分类思想.数学的思维是严密的,所以要求解许多的数学应用题时,为了使答案的完整,需要进行分情况来解决,从而有利于培养思维的慎密性.例4在一条直的长河中有甲、乙两船,现同时由A地顺流而下,乙船到B地时接到通知需立即返回到C地执行任务,甲船继续顺流航行.已知甲、乙两船在静水中的速度都是每小时7.5千米,水流的速度是每小时2.5千米,A、C两地间的距离为10千米,如果乙船由A地经B地再到达C地共用了4小时,问乙船从B地到达C地时,甲船离B地有多远?分析因为C地的位置不确定,它既可能在A、B两地之间,也可能在A地的上游,所以应进行分类讨论.五、逆向思维.数学中有些问题,如果按照题意叙述由后往前推算就显得很简单,这种解决问题的方法叫逆推法。
列方程解应用题的基本步骤:①审(审题);②找(找出题中的量,分清有哪些已知量、未知量,哪些是要求的未知量和所涉及的基本数量关系、相等关系);③设(设元,包括设直接未知数或间接未知数);④表(用所设的未知数字母的代数式表示其他的相关量);⑤列(列方程);⑥解(解方程);⑦检验(注意根的准确性及是否符合实际意义)增长率问题:1、(2003大连)某房屋开发公司经过几年的不懈努力,开发建设住宅面积由2000年4万平方米,到2002年的7万平方米。
设这两年该房屋开发公司开发建设住宅面积的年平均增长率为x ,则可列方程为________________;2、(2003北京西城)宏欣机械厂生产某种型号的鼓风机,一月至六月份的产量如下:月份一二三四五六产量(台) 50 51 48 50 52 49(1)求上半年鼓风机月产量和平均数、中位数;(2)由于改进了生产技术,计划八月份生产鼓风机72台,与上半年月产量平均数相比,七、八月鼓风机生产量平均每月的增长率是多少?3、(2002金华)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.某市城区近几年来,通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿地面积不断增加(如图所示)(1)根据图中所提供的信息,回答下列问题:2001年底的绿地面积为公顷,比2000年底增加了公顷;在1999年,2000年,2001年这三年中,绿地面积增加最多的是年;(2)为满足城市发展的需要,计划到2003年底使城区绿地总面积达到72. 6公顷,试求今明两年绿地面积的年平均增长率行程问题:1、(2001福州)甲、乙两艘旅游客轮同时从台湾省某港出发来厦门。
甲沿直航线航行180海里到达厦门;乙沿原来航线绕道香港后来厦门,共航行了720海里,结果乙比甲晚20小时到达厦门。
已知乙速比甲速每小时快6海里,求甲客轮的速度(其中两客轮速度都大于16海里/小时)?2、(2002大连)为了开阔学生视野,某校组织学生从学校出发,步行6千米到科技展览馆参观。
应用题1、解应用题的一般步骤(一)常见的数量关系:1、收入-支出=结余2、单价×数量=总价3、单产量×数量=总产量4、速度×时间=路程5、工效×时间=工作总量6、本金×利率×时间=利息7、发芽种子数÷试验种子数×100%=发芽率 8、应纳税额÷各种收入×100%=税率(二)解应用题的一般过程:1、弄清题意,找出已知条件与所求问题;2、分析题里的数量关系,确定先算什么,再算什么;3、根据题意,列出算式,算出得数;4、检验,并写出答案。
(三)列方程解应用题的一般过程:1、弄清题意,找出数量间的相等关系;2、用未知数χ表示所求数量,列出方程;3、解方程;4、检验,并写出答案。
2、简单应用题的例题及计算过程3、复合应用题的例题及解题过程例1:新镇小学三年级有4个班,每班40人;四年级有3个班,每班38人。
三年级与四年级一共有多少人?解:(1)三年级一共有多少人?40×4=160(人)(2)四年级一共有多少人? 38×3=114(人)(3)三年级与四年级一共有多少人? 160+114=274(人)综合:40×4+(38×3)=160+114=274(人)答:三年级与四年级一共有274人。
例2:两修路队共同修一条路,3天修完。
第一队修了120米,第二队修了102米,平均每天第一队比第二队多修多少米?解:(1)第一队每天修多少米?120÷3=40(米)(2)第二队每天修多少米?102÷3=34(米)(3)平均每天第一队比第二队多修多少米? 40-34=6(米)综合:120÷3-102÷3 = 40-34 = 6(米)答:平均每天第一队比第二队多修6米。
例3:华山小学三年级栽树56棵,四年级栽的棵数是三年级的2倍,五年级栽的比三、四年级的总数少10棵。
一、列方程解应用题的基本步骤1、审题,即分析题中已知什么,未知什么,明确各数量之间的关系;2、设未知数,即通过认真审题,分析题中的数量关系,用字母表示题目中的未知数;3、寻找相等关系,即借助图表分析题中的已知量与未知量之间的关系,列出等式两边的式子,注意使它们都表示一个相等或相同的量;4、列方程;5、解方程;6、写出答案,写答案时,必须检查方程的解是否符合应用题的实际意义,进行取舍,并注意单位。
由此可见,在具体列方程解决实际问题时,审题是基础,列方程是关键,找相等关系是难点。
找准题目中的相等关系,可以借助线段、表格、图形等方法进行分析。
二、归纳一些常见的数量关系1、和、差、被、分问题:(1)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
(2)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
2、体积变形问题:图形的面积变了,周长没变;原料体积=成品体积。
3、劳力调配问题:这类问题要搞清楚人数的变化,常见题型有:(1)既有调入又有调出。
(2)只有调入没有调出。
(3)只有调出没有调入。
4、数字问题:(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字为b,个位数字为c(其中a,b,c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9),则这个三位数表示为100a+10b+c。
(2)数字问题中一些表示:偶数用2n表示,奇数用2n+1或2n-1表示(n为整数)。
5、工程问题:工作量=工作效率×工作时间。
6、行程问题:(1)、行程问题中的三个基本量及其关系:路程=速度×时间。
(2)基本类型:相遇问题,追及问题等。
7、商品销售问题:商品利润=商品售价-商品进价=商品标价×折扣率-商品进价=商品进价×商品利润率,商品利润率=商品利润÷商品进价×100%,商品售价=商品标价×折扣率。
应用题的解题步骤与方法一、解答应用题的一般步骤1、审题,也就是理解题意。
要反复读题,弄清已知条件和所求问题。
2、分析数量之间的关系,也就是分析题目中已知量,未知量及所求问题之间的相互关系。
有时可以通过画简单的线段关系图,使数量关系更加简单明了。
3、确定运算顺序,即先算什么、再算什么、最后算什么,并列出算式,算出结果。
4、验算并写出答案。
二、列方程解应用题的一般步骤1、弄清题意,明确已知量和未知量,用字母X表示未知量。
2、找出题目中已知量和未知量之间的等量关系。
3、根据等量关系,列出方程,并解方程。
4、检验并写出答案。
三、列方程解答应用题跟算术方法解答应用题的联系与区别。
联系:列方程解答应用题,需要应用算术里学习的四则运算的相互关系,以及常见的数量关系,因此算术解法是基础,而列方程解应用题是它的发展。
区别:1、两种解答应用题的方法表达方式不同。
列方程是用代数式表示数量关系,关系式中包括未知数X;算术解法则是用算术式子表示数量关系,计算过程不含未知数。
2、解题思路不同。
列方程解应用题是把未知量设为X,与其它已知量一起参加列式,而算术解法只能从已知与已知,已知与未知之间多层次分析思考,需要逆向思维。
3、解题步骤的不同(见解应用题的步骤)四、解答应用题的基本思路1、综合法思路。
从已知条件出发,根据数量关系先选择两个已知条件,提出可以解答的问题,然后把所求出的数量作为新的已知条件,与其它已知条件搭配,再提出可以解答的问题,这样逐步推导,直到求出题目中所要求的结果为止。
2、分析法思路。
从所求问题入手,根据数量关系,找出解答最后结果所需要的条件,把其中一个(或2个)未知条件作为新问题,再寻找解决这个新问题所需要的条件,这样逐步逆推,直到所找条件在应用题中都是已知的为止。
其实在运用分析法的逆推过程中,就是把复杂的应用题分解成几个简单的应用题。
3、综合法解题思路和分析法解题思路是相反的,但在思考过程中,分析和综合的运用并不是孤立的,而是互相联系的,综合中有分析,交叉运用。
列方程(组)解应用题的方法及步骤:(1)审题:要明确已知什么,未知什么及其相互关系,并用x表示题中的一个合理未知数。
(2)根据题意找出能够表示应用题全部含义的一个相等关系。
(关键一步)(3)根据相等关系,正确列出方程,即所列的方程应满足等号两边的量要相等;方程两边的代数式的单位要相同。
(4)解方程:求出未知数的值。
(5)检验后明确地、完整地写出答案。
检验应是:检验所求出的解既能使方程成立,又能使应用题有意义。
2. 应用题的类型和每个类型所用到的基本数量关系:(1)等积类应用题的基本关系式:变形前的体积(容积)=变形后的体积(容积)。
(2)调配类应用题的特点是:调配前的数量关系,调配后又有一种新的数量关系。
(3)利息类应用题的基本关系式:本金×利率=利息,本金+利息=本息。
(4)商品利润率问题:商品的利润率,商品利润=商品售价-商品进价。
(5)工程类应用题中的工作量并不是具体数量,因而常常把工作总量看作整体1,其中,工作效率=工作总量÷工作时间。
(6)行程类应用题基本关系:路程=速度×时间。
相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程。
追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离。
环形跑道题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时的总路程为环形跑道一圈的长度。
飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速航行问题,基本等量关系:①顺水速度=静水速度+水速②逆水速度=静水速度-水速(7)比例类应用题:若甲、乙的比为2:3,可设甲为2x,乙为3x。
(8)数字类应用题基本关系:若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这三位数为:。
1学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?答:从乙处调3人到甲处.2变题 学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多2人,应调往甲、乙两处各多少人?得x =17.∴20-x =3.答:应调往甲处17人,乙处3人.3某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?4某车间一共有59个工人,已知每个工人平均每天可以加工甲种零件15个,或乙种零件12个,或丙种零件8个,问如何安排每天的生产,才能使每天的产品配套?(3个甲种零件,2个乙种零件,1个丙种零件为一套)5 一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?解:设在这5立方米木料中,用x 立方米木料做桌面,用y 立方米木料做桌子腿,由题意可得:x y x y +=⨯=⎧⎨⎩514503002()() 解之可得:x y ==⎧⎨⎩32 即用3立方米木料做桌面,2立方米木料做桌腿。
【重点难点提要】重点:1.理解并掌握列方程解应用题的一般步骤,学会按步骤设未知数列方程求解;2.初步学会分析应用题中数量间相等关系的方法,知道常见的数量关系式(如路程=速度⨯时间等)和计算公式(如:三角形的面积=底⨯高÷2等)都可以作等量关系式列方程求解。
难点:1.学会寻找应用题中数量间相等关系的方法,能正确地找出应用题中的等量关系列方程求解;2.初步学会恰当地设未知数列方程;3.初步学会根据应用题中数量关系的具体情况,灵活选用算术解法或方程解法解答应用题。
【知识方法归纳】1.列方程解比较容易的两步应用题(1)列方程解应用题的步骤①弄清题意,找出未知数并用x表示;②找出应用题中数量间的相等关系,列方程;③解方程;④检查,写出答案。
(2)列方程解应用题的关键弄清题意后,找出应用题中数量间的相等关系,恰当地设未知数,列出方程。
(3)运用一般的数量关系列方程解应用题①列方程解加、减法应用题。
如:甲乙两人年龄的和为29岁,已知甲比乙小3岁,甲、乙两人各多少岁?数量间的等量关系:甲的年龄 + 乙的年龄 = 甲乙二人的年龄和解:设甲的年龄是x岁,则乙的年龄为:(x+3)岁。
x+(x+3)=29x+x+3=292x=29-3x=26÷2x=13……甲的年龄13+3=16(岁)……乙的年龄答:甲的年龄是13岁,乙的年龄是16岁。
②列方程解乘、除法应用题。
如:学校图书馆买来故事书240本,相当于科技书的3倍,买来科技书多少本?科技书的本数⨯ 3 = 故事书的本数解:设买来科技书x本3x=240x=80答:买来科技书80本。
(4)用计算公式、性质、数位及计数单位等做数量间的等量关系,列方程解应用题①一长方形的周长是240米,长是宽的1.4倍,求长方形的面积。
( 长 + 宽 )⨯2=周长解:设宽是x米,则长是(1.4x)米。
(1.4x+x)⨯2=2402.4x=240÷2x=120÷2.4x=50……长方形的宽50⨯1.4=70(米) ……长方形的长70⨯50=3500(平方米)答:长方形的面积是3500平方米。
初中列方程解应用题的技巧同学们学习了用字母表示数和解简易方程,还开始试着运用简易方程来解决一些实际问题。
列方程解应用题是一个难点,这一部分内容融入了等式的性质,以及四则运算各部分的关系,有助于同学们对所学的算术知识进行巩固和加深理解。
如何应用方程来解应用题呢首先是审题,确定未知数。
审题,理解题意。
就是全面分析已知数与已知数、已知数与未知数的关系。
特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。
即用x表示所求的数量或有关的未知量。
在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。
寻找等量关系,列出方程是关键。
“含有未知数的等式称为方程”,因而“等式”是列方程必不可少的条件。
所以寻找等量关系是解题的关键。
如上题中“科技书得本数比文艺书的2倍多47本”这是理解本题题目意思的关键。
仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。
上题中的方程可以列为:“2x+47=495”解方程,求出未知数得值。
解方程时应当注意把等号对齐。
如:2x+47=4952x+47-47=495-47 ←应将“2x”看做一个整体。
2x=4482x÷2=448÷2x=224检验也是列方程解应用题中必不可少的。
检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.1)将求得的方程的解代入原方程中检验。
如果左右两边相等,说明方程解正确了。
如上题的检验过程为:检验:把x=224代入原方程。
左边=2×224+47 右边=495=495因为左边=右边,所以x=224是方程2x+47=495的解。
列方程解应用题的一般步骤
列方程解应用题的一般步骤
列方程解应用题的一般步骤:
(1) 认真审题,读懂、理解题意
(2) 分析问题中的数量关系及相关量之间的.联系,寻求等量关系
(3) 依据题意选择未知数,根据等量关系列方程
(4) 解方程,求出符合实际问题的答案
1.甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( )
A.甲比乙大5岁
B.甲比乙大10岁
C.乙比甲大10岁
D.乙比甲大5岁
2.某城市按以下规定收取每月煤气费:用煤气如果不超过60m3,按每立方米0.8元收费;如果超过60m3,超过部分按每立方米1.2元收费,已知某用户4月份的煤气费平均每立方米0.88元。
那么,4月份这位用户应交煤气费( )
A.60元
B.66元
C.75元
D.78元
3.汽车以每小时72km的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,4s后听到回声,已知声音的速度是每秒340m,听到回声时汽车离山谷的距离是多少米?
4.某种电器产品,第件若以原定价的95折销售,可获利150元,若以原定价的75折销售,则亏损50元,则该种商品每件的进价为多少元?
5.甲、乙两人从两地同时出发,若相向而行,a小时后相遇;若同向而行,则b小时甲追上乙。
那么甲、乙两人的速度之比为多少?。
《列方程解应用题》知识清单一、什么是列方程解应用题列方程解应用题是数学中的一个重要方法,它是通过设未知数,根据题目中的等量关系列出方程,然后求解方程得出答案。
简单来说,就是把实际问题中的数量关系用方程的形式表示出来,然后通过解方程来解决问题。
二、列方程解应用题的步骤1、审题认真阅读题目,理解题意,搞清楚题目中所涉及的数量关系和问题的要求。
2、设未知数根据题目中的条件,选择一个合适的未知数,通常用字母 x、y 等表示。
3、找等量关系这是列方程解应用题的关键步骤。
需要仔细分析题目,找出题目中隐藏的等量关系。
比如:路程=速度×时间;工作总量=工作效率×工作时间;总价=单价×数量等等。
4、列方程根据找到的等量关系,列出方程。
5、解方程运用等式的性质或解方程的方法求出未知数的值。
6、检验把求出的未知数的值代入原方程,检验方程的左右两边是否相等。
同时,还要检验答案是否符合实际情况。
7、作答写出答案,包括单位名称等。
三、常见的应用题型1、行程问题例如:甲乙两人分别从 A、B 两地同时出发相向而行,甲的速度是每小时 5 千米,乙的速度是每小时 4 千米,经过 3 小时两人相遇,A、B 两地相距多远?设 A、B 两地相距 x 千米,根据路程=速度×时间,可列出方程:(5 + 4)× 3 = x2、工程问题比如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,两人合作需要几天完成?设两人合作需要 x 天完成,工作总量看作单位“1”,则甲的工作效率为 1/10,乙的工作效率为 1/15,可列出方程:(1/10 + 1/15)× x = 13、利润问题像:某商品进价为 100 元,标价为 150 元,打折销售后,利润率为20%,该商品打了几折?设商品打了 x 折,售价=标价×折扣,利润=售价进价,可列出方程:150×(x/10) 100 = 100× 20%4、利息问题例如:把 1000 元存入银行,年利率为 3%,存了 2 年,到期后本息共多少元?设到期后本息共 x 元,根据利息=本金×年利率×时间,可列出方程:x 1000 = 1000× 3%× 25、年龄问题比如:今年父亲的年龄是儿子年龄的 3 倍,5 年前父亲的年龄是儿子年龄的 4 倍,今年父亲和儿子各多少岁?设儿子今年的年龄为 x 岁,则父亲今年的年龄为 3x 岁,可列出方程:3x 5 = 4(x 5)6、数字问题像:一个两位数,十位数字比个位数字大 3,将十位数字与个位数字对调后,得到的新数比原数小 27,求原数。
一、列方程解应用题的基本步骤
1、审题,即分析题中已知什么,未知什么,明确各数量之间的关系;
2、设未知数,即通过认真审题,分析题中的数量关系,用字母表示题目中的未知数;
3、寻找相等关系,即借助图表分析题中的已知量与未知量之间的关系,列出等式两边的式子,注意使它们都表示一个相等或相同的量;
4、列方程;
5、解方程;
6、写出答案,写答案时,必须检查方程的解是否符合应用题的实际意义,进行取舍,并注意单位。
由此可见,在具体列方程解决实际问题时,审题是基础,列方程是关键,找相等关系是难点。
找准题目中的相等关系,可以借助线段、表格、图形等方法进行分析。
二、归纳一些常见的数量关系
1、和、差、被、分问题:(1)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
(2)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
2、体积变形问题:图形的面积变了,周长没变;原料体积=成品体积。
3、劳力调配问题:这类问题要搞清楚人数的变化,常见题型有:(1)既有调入又有调出。
(2)只有调入没有调出。
(3)只有调出没有调入。
4、数字问题:(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字为b,个位数字为c(其中a,b,c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9),则这个三位数表示为100a+10b+c。
(2)数字问题中一些表示:偶数用2n表示,奇数用2n+1或2n-1表示(n为整数)。
5、工程问题:工作量=工作效率×工作时间。
6、行程问题:(1)、行程问题中的三个基本量及其关系:路程=速度×时间。
(2)基本类型:相遇问题,追及问题等。
7、商品销售问题:商品利润=商品售价-商品进价=商品标价×折扣率-商品进价=商品进价×商品利润率,商品利润率=商品利润÷商品进价×100%,商品售价=商
品标价×折扣率。
三、需要注意的几个问题
1、在审题和寻找等量关系时,可在草纸上进行,书面格式中主要写“设”“列”“解”“答”四个步骤。
2、所列方程必须满足:(1)方程两边表示的是同类量。
(2)同类量的单位要统一。
(3)方程两边的数值要相等。
3、对于求得的方程的解,必须检验它是否符合实际意义或题意,再作答,作答时不要漏掉单位。
四、列方程解实际问题易错点剖析
易错点一、审题不清,误解关键词、句而出错
例1、绿豆发芽了,总量增加到(了)5.5倍。
想要得到286千克豆芽,需要绿豆多少千克?
易错点二、列方程时,方程两边同类量的单位不统一而出错
例2、一队学生去校外参加劳动,以每小时4km的速度步行前进走了半小时,学校有急事要通知队长,通讯员立即骑自行车以每小时1km的速度按原路追上去,通讯员需要多少分钟才能追上学生队伍?
易错点三、审题不清楚,相等关系找不准而出错
例3、第一车间人数比第二车间人数的4/5少30,如果从第二车间调10人到第一车间去,那么第一车间的人数就是第二车间人数(不是原人数)的3/4,求两车间的原人数。
易错点四、考虑不周,忽视分类讨论而出错
例4、在一条笔直的公路上有相距18km的A,B两个村庄,A村的一辆汽车的速度为54km/h,B村的一辆汽车的速度为36km/h,两车同时同向而行(慢车在前?快车在前?),经过几小时两车相距45km?。