第三节 轴系的扭转振动(课资材料)
- 格式:ppt
- 大小:569.50 KB
- 文档页数:20
汽轮发电机组的轴系扭振电力系统的某些故障和运行方式,往往导致大型汽轮发电机组的轴系扭转振动,以致造成轴系某些部件或联轴器的疲劳损坏。
轴系扭振是指组成轴系的多个转子,如汽轮机的高、中、低压转子,发电机、励磁机转子等之间产生的相对扭转振动。
随着汽轮发电机组单机容量增大,轴系的功率密度亦相对增大,以及轴系长度的加长和截面积相对下降,整个轴系成为一个两端自由的弹性系统,并存在着各种不同振型的固有的轴系扭转振动频率。
同时随着大电网远距离输电使系统结构和输电技术愈趋复杂。
由于这两方面的原因,电力系统因故障或运行方式的改变所引起的电气系统与轴系机械系统扭振频率的耦合作用,将会导致大型汽轮发电机组的轴系扭转振动,严重威胁机组的安全运行。
产生轴系扭振的原因,归纳起来为两个方面:一是电气或机械扰动使机组输入与输出功率(转矩)失去平衡,或者出现电气谐振与轴系机械固有扭振频率相互重合而导致机电共振;二是大机组轴系自身所具有的扭振系统的特性不能满足电网运行的要求。
因此,无论产生的原因如何,从性质上又可将轴系扭振分为:短时间冲击性扭振和长时间机电耦合共振性扭振等两种情况。
从原则上讲,电力系统出现的各种较严重的电气扰动和切合操作都会引起大型汽轮发电机组轴系扭振,从而产生交变应力并导致轴系疲劳或损坏,只是其影响程度随运行条件、电气扰动和切合操作方式、频率(次数)等不同而异。
其中影响较大的可归纳为以下四个方面:1.电力系统故障与切合操作对轴系扭振的影响:通常的线路开关切合操作,特别是功率的突变和频繁的变化;手动、自动和非同期并网;输出线路上各种类型的短路和重合闸等都会激发轴系的扭振并造成疲劳损伤。
2.发电厂近距离短路和切除对轴系扭振的影响:发电厂近距离(包括发电机端)二相或三相短路并切除以及不同相位的并网,都会导致很高的轴系扭转机械应力。
例如在发电机发生三相短路时,短路处电压下降接近于零,于是在短路持续时间内,一方面与短路前有功负荷对应的同步电磁转矩接近于零,同时发电机因短路并以振荡形式出现的暂态电磁转距将激发起整个轴系的扭转振动。
第三章扭转§ 3.1扭转的概念和实例§ 3.2外力偶矩的计算,扭矩和扭矩图§ 3.3纯剪切§ 3.4圆轴扭转时的应力§ 3.5圆轴扭转时的变形§ 3.6圆柱形密圈螺旋弹簧的应力和变形§ 3.7非圆截面杆扭转的概念§ 3.1扭转的概念和实例1.实例如:/车床的光杆V反应釜的搅拌轴-汽车转向轴2.扭转:在杆件的两端作用等值,反向且作用面垂直于杆件轴线的一对力偶时,杆的任意两个横截面都发生绕轴线的相对转动,这种变形称为扭转变形。
§ 3.2外力偶矩的计算,扭矩和扭矩图1.M e、m、P之间的关系M e――外力偶矩(N?m)n -- 转速(r/min)P——功率(kW)(1kW=1000N?m/s)(马力)(1 马力=735.5W)每秒钟内完成的功力2兀n 十M e• 1 0 OR)或602 Jin M e •- 73 .55P 601小小{p )kWMe 'N .m= 9549in Jr / min P 马力Me ;N .m=7024Tin r / m in2. 扭矩和扭矩图© L ---------------- &T(1) 截面法、平衡方程艺 M x =OT-M e =O T=M e(2) 扭矩符号规定:为无论用部分I 或部分II 求出的同一截面上的 扭矩不但数值相同且符号相同、扭矩用右手螺旋定则确定正负号。
(3) 扭矩图例1主动轮A 输入功率P A =50kW ,从动轮输出功率P B 二P c =15kW ,P D =20kW , n=300r/min ,试求扭矩图. 解:( 1)P50 M eA =954995491591 N mn30015M eB 二 M eC = 9549477 N m300M e D = 637 N m旺inMe.I F代:口(2)求T艺M x=0 「+M eB=0 T1 =- M eB=-477T2-M eA+M eB=0 T2=1115NT3-M eD=0 T3=M ed=63Trnw沏447N例2主动轮与从动轮布置合理性的讨论主动轮一般应放在两个从动 轮的中间,这样会使整个轴的扭矩图分布比较均匀。
课堂教学实施方案φ扭转变形。
三. 扭矩计算和扭矩图、扭矩的概念扭转变形的杆往往称之为扭转轴,扭转轴扭转时,其横截面上的内力,是一个在截面平面内的力偶,其力偶矩称为扭矩(Mt)。
、扭矩利用截面法、并建立平衡方程得到、扭矩正负号的规定确定扭矩方向的右手螺旋法则:以右手4个手指弯曲的方向沿扭矩转动的方向,大拇指伸直与截面垂例1 传动轴如图所示,转速 n = 500转/分钟,主动轮B 输入功率10KW ,A 、C 为从动轮,输出功率分别为 N = 4KW , N = 6先计算外力偶矩 Nm n N m A A 4.76500495509550Nm n N m B B 1915001095509550Mn2 = MC 、扭矩图计算外力偶矩 65955095502069.2300A A N T N mn ∙==⨯=T nmax=1432.5N·m圆轴扭转时的应力分析实验现象在两端加力偶MC ,圆轴受扭后,将产生扭转变形。
实验现象归纳1)各圆周线相对于轴线旋转了一个角度,但其形状大小及圆周线间距没有变;2)各纵向线均倾斜了一个小角度,矩形变成了平行四边形。
推论假设:①扭转时,圆轴的横截面始终为平面,形状、、切应力分布规律圆轴横截面上任一点的切应力与该点到圆轴中心的距离横截面上某点的剪应力的方向与扭矩方向相同,与圆心的连线剪应力的大小与其和圆心的距离成正比如果横截面是空心圆,剪应力分布规律一样适用,但是,空心部分没有应力存在。
、扭转切应力的计算圆截面上任意一点剪应力τ= MT ·ρ/Ip横截面上的扭矩;横截面上任一点的半径;横截面上截面二次极矩(极惯性矩)。
圆截面上最大切应力解:由前得T nmax=1432.5N·m 由强度条件设计轴直径:M Tmax / [τ]。
电信号扰动下的轴系扭振摘要本文用一种改进的Riccati扭转传递矩阵结合Newmark-β方法研究非线性轴系的扭转振动响应。
首先,该系统被模化成一系列由弹簧和集中质量点组成的系统,从而建立一个由多段集中质量组成的模型。
第二,通过这种新发展起来的程序可以从系统的固有频率和扭振响应中消除累计误差。
这种增量矩阵法,联合结合了Newmark-β法改进的Riccati扭转传递矩阵法,进一步应用于解决非线性轴系扭转振动的动力学方程。
最后,将一种汽轮发电机组作为一个阐述的例子,另外仿真分析已被应用于分析典型电网扰动下的轴系扭振瞬时响应,比如三相短路,两相短路和异步并置。
实验结果验证了本方法的正确性并用于指导涡轮发电机轴的设计。
关键词:传递矩阵法;Newmark-β法;汽轮发电机轴;电学干扰;扭转振动1.引言转子动力学在很多工程领域起着很重要的作用,例如燃气轮机,蒸汽轮机,往复离心式压气机,机床主轴等。
由于对高功率转子系统需求的持续增长,计算临界转速和动态响应对于系统设计,识别,诊断和控制变得必不可少。
由于1970年和1971年发生于南加州Edison’sMohave电站的透平转子事故,业界的注意力集中在由传动行为导致的透平发电机组内的轴的扭转振动。
当代的大型透平发电机组单元轴系系统是一种高速共轴回转体。
它是由弹性联轴器连接,由透平转子,发电机和励磁机组成。
电力系统故障或操作条件的变化引起的机电暂态过程可能导致轴的扭转振动,而轴的扭转振动对于设计来说是非常重要的。
对于透平发电机轴系扭振的研究,如发生次同步谐振和高速重合,基本的是对固有频率和振动响应的计算的研究。
当前,有限元法和传递矩阵法是最流行的两种分析轴系扭振的方法。
有限元法(FEM)通过二阶微分方程构造出转子系统直接用于控制设计和评估,而传递矩阵法(TMM)解决频域内的动态问题。
TMM使用了一种匹配过程,即从系统一侧的边界条件开始沿着结构体连续的匹配到系统的另一端。