曲轴轴系的扭转振动
- 格式:pptx
- 大小:941.14 KB
- 文档页数:20
0引言曲轴系是典型的弹性轴系统,它由曲轴和与之相连的运动部件组成。
在柴油机工作过程中,曲轴伴随着扭转、弯曲等各种形式的振动,所以在柴油机固有工作频率范围内,轴系将可能产生共振,从而导致曲轴出现扭转、弯曲等疲劳破坏。
因此,为了在曲轴研发过程中提高产品的可靠性和寿命,我们必须研究并掌握曲轴在工作过程中的振动规律以及载荷的变化规律。
梁兴雨以曲轴系统有限元分析为基础,通过建立由多个自由度组成的发动机刚柔耦合多体动力学系统模型,对构成主要柔性体的曲轴系统进行了扭振响应分析[1];董俊红通过虚拟样机技术对3缸机的扭振特性与扭转控制进行了深入解析与研究[2];上官文斌分析了曲轴系统的固有频率和在气缸压力的作用下曲轴前端的扭振[3]。
目前国内外学者对曲轴的研究主要集中在振动特性分析等方面,对于应用虚拟样机技术动力学建模和扭转振动分析的研究相对较少。
本文以4B3.9-G2型柴油机曲轴轴系为分析对象,利用GT-Crank 软件建立该柴油机轴系多刚体动力学模型,并在此基础上进行扭振和整机振动仿真分析;最后调整影响曲轴扭振的相关因素后再次模拟,并对比分析所得结果。
1动力学虚拟样机的建立定义基本模型是多刚体模型建模的首要步骤,我们必须按照软件的要求输入刚体的参数。
柴油机曲轴的设计首先通过查阅相关设计手册大致了解整个设计的步骤,在给定的原始参数和用途等要求的基础上初步确定总体的设计方案。
为了提高曲轴的疲劳强度,保证曲轴的额定寿命在6000~10000小时,需采用合适的材料和工艺方法[4]。
本次设计为4缸直列式柴油机选用整体式全支撑曲轴,结构简图如图1所示。
图1四缸柴油机曲轴简图曲轴模型包括主轴颈、曲柄以及曲柄销三个模块,是柴油机曲轴轴系虚拟样机模型中最核心的一部分。
GT-Crank 软件中,是根据气缸数量将曲轴分段来建立曲轴模型的。
每段曲轴分为主轴颈、两段曲柄、一段曲柄销。
注意曲轴各个部分前后连接的前后顺序,不同的端口对应不同的零部件和作用,如图2所示。
一般曲轴扭振应力
曲轴扭振应力是发动机中最重要的部件之一,其制造周期长,加工工艺复杂,造价高。
工作时,曲轴同时承受着气缸内气体作用力、往复运动质量及旋转运动质量的惯性力以及功率输出端转矩的作用。
这些周期性的激励会引发曲轴的扭转振动。
扭转振动简称为扭振,不同于我们所说的常规振动。
除了常规的振动之外,扭振是结构动力学行为的另一种表现形式,通常与其他振动荷载同时出现。
评定曲轴轴系扭转振动的主要参数包括扭振应力、振动扭矩和扭振振幅,一般情况下,主要按扭振应力或振动扭矩进行评定。
如果检查轴系扭振应力是否超出许用应力值,一般会以振幅或应力作纵坐标,转速或速比(即临界转速nc与额定转速n e之比)为横坐标在坐标图上画出许用应力。
2 扭转减振器介绍2.1 扭转振动的控制方法对于曲轴的扭振,如果在内燃机工作转速范围内,根据扭振计算以及实测发 现内燃机确实存在着较大的扭转振动,就必须采取适当的措施,以便将扭转振动 予以回避或者将其消减,以保证内燃机工作的安全可靠。
扭转振动的避振预防措 施有很多种,可综合归纳为以下三种方法[5,6]: (1) 频率调整法 由扭转振动特性可知, 当激励扭振的作用频率ω与扭转振动系统的某一固有 频率 ω0 相同时,将会发生极其剧烈的动态放大现象,即共振现象。
因此耍避 开发生ω=ω0,的可能,也即避开动态放大最严重的工况,就可能免除扭转振动 过大所引起的一切后果。
本方法的基本概念就是使ω主动躲过ω0 。
这种方法主 要措施有调整惯量法、调整柔度法等。
通过调整,使系统本身的自振频率躲过激 振频率。
使振动应力降至瞬时许用应力范围之内,这样就避免了因扭转振动过大 对内燃机造成损害。
这种方法是扭转振动预防措施中应用最广的措施之一,这不 仅是由于它的措施比较简易可行,还在于当达到调频要求以后,它的工作将是有 效的与可靠的。
但频率调整法有个缺点是调频的幅度较小,以至于在实际应用中 受到限制。
(2) 减小振能法 激励扭矩是导致扭转振动的动力源。
由于激励扭矩输人系统的能量是扭转振 动得以维持的源泉,如果能够减小输人系统的振动能量,也就能直接减小扭转振 动的量级。
方法之一是改变内燃机的发火顺序,当在机器所使用的转速范围内, 危险的扭转振动是副临界转速时,有可能用此方法来消减危险的扭转振动,减小 其危险程度。
方法之二是改变曲柄布置, 在多缸内燃机中故意选用非等间隔发火, 适当选择曲柄角以改变曲柄布置,可以使任何主、副临界转速中的某些简谐扭振 相互抵消而避开危险的扭转振动。
方法之三是选择最佳的曲柄与功率输出装置的 相对位置,使二者的干扰扭矩互相抵消,可以消减曲轴的扭转振动。
(3) 装设减振器 装设减振器能改变轴系的扭振特性。
汽车发动机曲轴扭转振动分析及控制社会经济在进行着快速的发展中,人们对于汽车的使用量也在逐渐的增加,我国对于汽车建设中是要求也越加严苛。
在汽车公司进行汽车设计的过程中,对于发动机及行驶中的稳定程度越加重视。
汽车发动机曲轴扭转振动是汽车公司在对于发动机研究中的热点课题。
本为对于发动机的曲轴扭转技术进行较为全面的分析。
标签:曲轴系;扭转振动;优化设计0 前言增加对于汽车发动机的振动分析与控制,在一定程度上面可以将汽车的内部结构进行优化,增加发动机的使用时间与汽车行驶过程中的稳定性能。
曲轴扭转是发动机在工作过程中的主要部件,性能的好坏将直接对于汽车的整体性能进行影响。
本文主要对于汽车中的曲轴扭转振动进行分析研究,这项研究是十分具有实际意义的。
1 汽车发动机曲轴扭转振动系统理论分析1.1 ADAMS多刚体动力学理论ADAMS动力学理论主要使用坐标方程式进行汽车在行驶中的发动机系统的分析。
在ADAMS动力学理论中,将动力系统内的关性参考系中的坐标与方位坐标进行标注,并使用相对应的数学方程式进行多余坐标的约束,进而将已经标注的坐标进行变量。
在对于动力学的分析过程中,使用数学方程式可以将计算的效率进行大幅度提升。
1.2 ADAMS多柔体动力学理论在进行汽车生产建设中,在机械系统中已经广泛使用柔性材料,是生产设备运行中速度较快,但是运行的精度也在不断的提升,设备内的动力学性能变得更加繁琐。
刚性研究体系已经不能满足对于动力学的研究,因此柔体动力学理论就在这种情况下产生。
这种研究体系一般情况下是以刚性动力学体系作为参照依据,在对于柔体的研究中进常采用不同的处理形式。
在一定程度上面刚性与柔性的个、动力学体系进行共同使用,可以对系统中的动力学进行更加全面的认识[1]。
2 曲轴动力学研究模型2.1 三维几何模型三维几何模型可以将曲轴系统的中每个零件间的关系进行清晰的展示。
按照零件的规格与参数,利用相对应的三维软件就可以建立相对应的三维几何模型。