当前位置:文档之家› 双法兰差压变送器的误差分析

双法兰差压变送器的误差分析

双法兰差压变送器的误差分析
双法兰差压变送器的误差分析

双法兰差压变送器的误差分析

摘要:双法兰变送器使用过程中受膜片接液温度与环境温度的影响,分析产生测量误差原因,供维护和选型人员参考。

关键词:双法兰;差压变送器;接液温度;环境温度

Abstract: Double flange transmitter uses process by fluid temperature and diaphragm by the influence of the temperature of the environment, and the analysis of measurement error reason, maintenance and selection are as a reference.

Key Words: double flange; differential pressure transmitter; meet fluid temperature; environment temperature

1、前言

与其他差压变送器使用环境不同,双法兰差压变送器适用于测量含有杂质、结晶、凝聚或易自聚的被测介质,用普通的差压变送器来测量这些介质可能会引起连接管线的堵塞,所以双法兰差压变送器是比较理想的选择,而且有安装方便、精度高、维护量小等优点,被广泛用来测量液体、气体和蒸汽的流量、液位、密度和压力,然后输出与测得压差相对应的4~20mA DC信号。但在实际应用中,往往忽略了被测介质温度和环境温度的变化所带来的影响。

2、工艺状况

我厂炼油装置中催化裂化分馏塔底液位安装有两块液位测量仪表,一个是带导压管的普通差压变送器,位号LT-1202B;另一个采用的是双法兰差压变送器,位号LT-1202A。分馏塔底液位是个重要参数,操作人员要通过油浆返塔温度、回炼油补塔、油浆外送、油浆回炼和反应深度等来控制分馏塔底液位。所以该液位测量必须准确可靠,以达到工艺生产需求。

变送器安装见图1:

双法兰差压变送器安装时应注意哪几方面

双法兰差压变送器安装时应注意哪几方面 1、最好是选用双法兰单毛细管的。 2、如果是高温的设备,毛细管充装的介质一定要耐高温,不然,会造成测量误差。 3、最好将变送器安装在下法兰以下,特别是对于真空工况的。正压法兰装在低,负压法兰装在高处.安装时要注意密封压垫不可挤压膜片. 1 对于液面连续测量,宜选用差压式仪表。 对于界面测量,可选用差压式仪表,但要求总液面应始终高于上部取压口。 2 对于在正常工况下液体密度有明显变化时,不宜选用差压式仪表。 3 腐蚀性液体、结晶性液体、粘稠性液体、易气化液体、含选浮物液体宜选用平法兰式差压仪表。 高结晶的液体、高粘度的液体、结胶性的液体、沉淀性的液体宜选用插入式法兰差压仪表。 以上被测介质的液面,如果气相有大量冷凝物、沉淀物析出,或需要将高温液体与变送器隔离,或更换被测介质时,需要严格净化测量头的,可选用双法兰式差压仪表。 4 腐蚀性液体、粘稠性液体、结晶性液体、熔融性液体、沉淀性液体的液面在测量精度要求不高时,宜采用吹气或冲液的方法,配合差压变送仪表进行测量。 5 对于在环境温度下,气相可能冷凝、液相可能汽化,或气相有液体分离的对象,在使用普通差压仪表进行测量时,应视具体情况分别设置冷凝容器、分离容器、平衡容器等部件,或对测量管线保温、伴热。 6 用差压式仪表测量锅炉汽包液面时,应采用温度补偿型双室平衡容器。 7 差压式仪表的正、负迁移量应在选择仪表量程时加以考虑。 补充下通则: 液面和界面测量应选用差压式仪表、浮筒式仪表和浮子式仪表。当不满足要求时,可选用电容式、射频导纳式、电阻式(电接触式)、声波式、磁致伸缩式等仪表。 料面测量应根据物料的粒度、物料的安息角、物料的导电性能、料仓的结构形式及测量要求进行选择。 仪表的结构形式及材质,应根据被测介质的特性来选择。主要的考虑因素为压力、温度、腐蚀性、导电性;是否存在聚合、粘稠、沉淀、结晶、结膜、气化、起泡等现象;密度和密度变化;液体中含悬浮物的多少;液面扰动的程度以及固体物料的粒度。 1、厂家一定要选知明品牌,这样才能保证质量。因为双法兰液位计一般都直接安装在设备的法兰上,没有根部阀门,一旦故障只能停车检修。所以质量第一,价格第二。 2、一定要注意设备上的法兰是否是标准法兰,是否与双法兰液位计所配法

差压式变送器调试方法

差压变送器在工厂有广泛的应用,为保证其正常运行及准确性,定期检查、校准是很有必要的。 现介绍一种不用拆除导压管就进行现场校准的方法。 一.准备工作: 我们知道差压变送器在应用中是与导压管相连接的,通常的做法,需要把导压管和差压变送器的接头拆开,再接入压力源进行校准。这样是很麻烦的,并且工作和劳动强度大,最担心的是拆装接头时把导压管扳断或出现泄漏问题。我们知道不管什么型号的差压变送器,其正、负压室都有排气、排液阀或旋塞;这就为我们现场校准差压变送器提供了方便,也就是说不用拆除导压管就可校准差压变送器。对差压变送器进行校准时,先把三阀组的正、负阀门关闭,打开平衡阀门,然后旋松排气、排液阀或旋塞放空,然后用自制的接头来代替接正压室的排气、排液阀或旋塞;而负压室则保持旋松状态,使其通大气。压力源通过胶皮管与自制接头相连接,关闭平衡阀门,并检查气路密封情况,然后把电流表(电压表)、手操器接入变送器输出电路中,通电预热后开始校准。 二.常规差压变送器的校准: 先将阻尼调至零状态,先调零点,然后加满度压力调满量程,使输出为 20mA,在现场调校讲的是快,在此介绍零点、量程的快速调校法。调零点时对满度几乎没有影响,但调满度时对零点有影响,在不带迁移时其影响约为量程调整量的1/5,即量程向上调整1mA,零点将向上移动约0.2mA,反之亦然。例如: 输入满量程压力为100Kpa,该读数为19.900mA,调量程电位器使输出为19.900+(20.000-19.900)*1.25=20.025mA.量程增加0.125mA,则零点增加1/5* 0.125=0.025.调零点电位器使输出为20.000mA.零点和满量程调校正常后,再检查中间各刻度,看其是否超差?必要时进行微调。然后进行迁移、线性、阻尼的调整工作。 三.智能差压变送器的校准

差压变送器的校验步骤

差压变送器的校验步骤 差压变送器在工厂有广泛的应用,为保证其正常运行及准确性,定期检查、校准是很有必要的。现介绍一种不用拆除导压管就进行现场校准的方法。 一.准备工作 我们知道差压变送器在应用中是与导压管相连接的,通常的做法,需要把导压管和差压变送器的接头拆开,再接入压力源进行校准。这样是很麻烦的,并且工作和劳动强度大,最担心的是拆装接头时把导压管扳断或出现泄漏问题。我们知道不管什么型号的差压变送器,其正、负压室都有排气、排液阀或旋塞;这就为我们现场校准差压变送器提供了方便,也就是说不用拆除导压管就可校准差压变送器。为此dlr加工制作了与排气、排液阀或旋塞相同螺纹的接头(又称为奶嘴),如图所示。 对差压变送器进行校准时,先把三阀组的正、负阀门关闭,打开平衡阀门,然后旋松排气、排液阀或旋塞放空,然后用自制的接头来代替接正压室的排气、排液阀或旋塞;而负压室则保持旋松状态,使其通大气。压力源通过胶皮管与自制接头相连接,关闭平衡阀门,并检查气路密封情况,然后把电流表(电压表)、手操器接入变送器输出电路中,通电预热后开始校准。 二.常规差压变送器的校准 先将阻尼调至零状态,先调零点,然后加满度压力调满量程,使输出为 20mA,在现场调校讲的是快,在此介绍零点、量程的快速调校法。调零点时对满度几乎没有影响,但调满度时对零点有影响,在不带迁移时其影响约为量程调整量的1/5,即量程向上调整1mA,零点将向上移动约 0."2mA,反之亦然。例如: 输入满量程压力为100Kpa,该读数为 19."900mA,调量程电位器使输出为 19."900+( 20."000-

19."900)* 1."25= 20."025m A.量程增加 0."125mA,则零点增加1/5* 0."125= 0." 025."调零点电位器使输出为 20."000m A.零点和满量程调校正常后,再检查中间各刻度,看其是否超差?必要时进行微调。然后进行迁移、线性、阻尼的调整工作。 三.智能差压变送器的校准 用上述的常规方法对智能变送器进行校准是不行的,因为这是由HART变送器结构原理所决定了。因为智能变送器在输入压力源和产生的4-20mA电流信号之间,除机械、电路外,还有微处理芯片对输入数据的运算工作。因此调校与常规方法有所区别。 实际上厂家对智能变送器的校准也是有说明的,如ABB的变送器,对校准就有: “设定量程”、“重定量程”、“微调”之分。其中“设定量程”操作主要是通过LRV.URV的数字设定来完成配置工作,而“重定量程”操作则要求将变送器连接到标准压力源上,通过一系列指令引导,由变送器直接感应实际压力并对数值进行设置。而量程的初始、最终设置直接取决于真实的压力输入值。但要看到尽管变送器的模拟输出与所用的输入值关系正确,但过程值的数字读数显示的数值会略有不同,这可通过微调项来进行校准。由于各部分既要单独调校又必需要联调,因此实际校准时可按以下步骤进行:

压力和差压变送器详细使用说明

压力和差压变送器详细使用说明 (一)差压变送器原理与使用 本节根据实际使用中的差压变送器主要介绍电容式差压变送器。 1. 差压变送器原理 压力和差压变送器作为过程控制系统的检测变换部分,将液体、气体或蒸汽的差压(压力)、流量、液位等工艺参数转换成统一的标准信号(如DC4mA~20mA 电流),作为显示仪表、运算器和调节器的输入信号,以实现生产过程的连续检测和自动控制。 差动电容式压力变送器由测量部分和转换放大电路组成,如图1.1所示。 图1.1 测量转换电路 图1.2 差动电容结构 差动电容式压力变送器的测量部分常采用差动电容结构,如图1.2所示。中心可动极板与两侧固定极板构成两个平面型电容H C和L C。可动极板与两侧固定极板形成两个感压腔室,介质压力是通过两个腔室中的填充液作用到中心可动极板。一般采用硅油等理想液体作为填充液,被测介质大多为气体或液体。隔离膜片的作用既传递压力,又避免电容极板受损。

当正负压力(差压)由正负压导压口加到膜盒两边的隔离膜片上时,通过腔室内硅油液体传递到中心测量膜片上,中心感压膜片产生位移,使可动极板和左右两个极板之间的间距不相对,形成差动电容,若不考虑边缘电场影响,该差动电容可看作平板电容。差动电容的相对变化值与被测压力成正比,与填充液的介电常数无关,从原理上消除了介电常数的变化给测量带来的误差。 2. 变送器的使用 (1)表压压力变送器的方向 低压侧压力口(大气压参考端)位于表压压力变送器的脖颈处,在电子外壳的后面。此压力口的通道位于外壳和压力传感器之间,在变送器上360°环绕。保持通道的畅通,包括但不限于由于安装变送器时产生的喷漆,灰尘和润滑脂,以至于保证过程通畅。图1.3为低压侧压力口。 图1.3 低压侧压力口 (2)电气接线 ①拆下标记“FIELD TERMINALS”电子外壳。 ②将正极导线接到“PWR/COMN”接线端子上,负极导线接到“-”接线端子上。注意不得将带电信号线与测试端子(test)相连,因通电将损坏测试线路中的测试二极管。应使用屏蔽的双绞线以获得最佳的测量效果,为了保证正确通讯,应使用24AWG或更高的电缆线。 ③用导管塞将变送器壳体上未使用的导管接口密封。 ④重新拧上表盖。 (3)电子室旋转 电子室可以旋转以便数字显示位于最好的观察位置。旋转时,先松开壳体旋转固定螺钉。 3. 投运和零点校验

差压流量的计算方法

流量计算的一些认识 先说一下Nm3/h和m3/h的区别? Nm3/h是一个标准的立方米每小时,它是0度或20度,一个标准大气压下的标准流量。 m3/h工作状态下的立方米每小时,它是工作温度及工作压力下的流量。 国际上的标准温度用开尔文温度而且把冰水混合物的温度(0℃)定义为273.15K。 国际上的标准压力为1个标准大气压把它定义为101.325 kPa或0.101325Mpa。 因工况的不同,这就需要用一个统一的标准来表示这些工况,我们把这种标准叫标况。用工况的数据计算出来结果误差会很大,尤其是在气体的流量上,所以我们在计算这些物质的流量和压力时要把它们转换为标况。 例如一台露天的压缩机在冬天使用和夏天使用它的流量用m3/h计算,那么误差就会很大,但转换为Nm3/h时就一样了。 转换Nm3/h和m3/h时主要用的公式就是理想气体状态方程P1V1/T1=P2V2/T2; 其中: P1V1/T1是在一个标准大气压下的气体的体积与标准温度(0℃或20℃)的函数关系。 P2V2/T2是在工作压力下(需转换为绝对压力)的气体体积与工作温度(需转换为绝对温度)的函数关系。 这两者是相等的,用这个就可以算出标况下的流量了。 例如: 有这样一个罗茨风机,他在温度30摄氏度时的流量为950m3/h,压力为50KPa,那么它的标况流量应该是多少? 根据公式P1V1/T1=P2V2/T2; V1=P2V2T1/P1T2=(101+50)*950*273/101*(273+30) =39161850/30603=1279.68Nm3/h 它的标况流量为1279.68Nm3/h 再说一下差压流量变送器的开方的计算方法 因一般液体对温度的影响不大,因此我们先说液体的差压流量变送器开方的计算方法。 我们知道一般的差压流量计都是根据伯努利的能量守恒定理p+ρgz+(1/2)*ρv^2=C(常量)得出。 其中 式中p、ρ、v分别为流体的压强、密度和速度;

如何正确使用双法兰液位变送器

如何正确使用双法兰液位变送器 当用差压式液位计来测觉液位时,若被测容器是敞口的,气相压力为大气压,则差压计的负压室通大气就可以了,这时也可以用压力计来直接测液位的高低。若容器是受压的,则衙将差压计的负压室与容器的气相相连接。以平衡气相压力 pa的静压作用。 测量液位时一般情况况下我们要选择一个参考点来计量初始零液位.这时我们就涉及到零点迁移的问题。 应用差压变送器测量液面时,如果差压变送器正、负压室与容器的取压点处在同一水平面上就不需要迁移。而在实际应用中,出于对设备安装位置和便于维护等方面的考虑.测压仪表不一定

都能与取压点在同一水平面上:又如被测介质是强腐蚀性或重粘度的液体,不能直接把介质引入测 压仪表,必须安装隔离罐.用隔离液来传递压力信号,以防测压仪表被腐蚀,这时就要考虑介质和 隔离液的液柱对测压仪表读数的影响。差压变送器测量液位安装方式主要有三种,为了能够正确指 示液位的商度,差压变送器必须做一些技术处理-即迁移。迁移分无迁移,负迁移和正迁移。 无迁移 将差压变送器的正负压室与容器的取压点安装在同一水平面上。 负迁移 为了防止密闭容器内的液体或气体进入差压变送器的取压室,造成引压管线的堵塞或腐蚀,在 差压变送器的正、负压室与取压点之间分别装有隔离液绕,并充以隔离液。为了使仪表输出和实际 液面相对应,就必须把负压室引压管线这段液柱产生的静压力消除掉,要想消除这个静压力,就 要调校差压变送器,也就是对差压变送器进行负迁移,这个静压力叫做迁移量。 调校差压变送器时,负压室接输入信号,正压室通大气。假设仪表的程为30Kpa 迁移量 P ,gH=30kPa, 调校时,负压室加压30kPa, iJ1, 整差压变送器零点旋钮使其输出为4mA;之后,负压室不加压,调整差压变送器鱼程旋钮,直至输出为20mA, 中间三点按等刻度校验。当液面由空 液面升至满液面时,变送器差压由 6 P=- 30kPa 变化至u P=Ok Pa, 输出电流值由 4mA 变为 20mA。 正迁移 在实际测虽中,变送器的安装位览往往与瑕低液位不在同一水平面上,如图 所示。容器为敞口容器,差压变送器的位置比最低液位低 h 距离, t; P=P

SC-3051DP双法兰差压变送器

双法兰差压变送器 概述 SC-3051DP双法兰差压变送器是一种新型变送器,具有设计原理先进、品种规格齐全、安装使用简便等特点。外观上完全融合了目前国内最为流行,并被广泛使用的两种变送器(罗斯蒙特3051与横河EJA)的结构优点,让使用者有耳目一新的感觉,同时与传统的1151、CECC等系列设备在安装上可直接替换,有很强的通用性和替代能力。为适合国内自动化水平的不断提高和发展,双法兰差压变送器除设计小巧精致外,更推出具有HART现场总线协议的智能化功能。 双法兰差压变送器特点: ●精度高; ●稳定性好; ●二线制; ●固体元件,接插式印刷线路板; ●小型、重量轻、坚固抗振; ●量程、零点外部连续可调; ●正迁移可达500%;负迁移可达600%; ●阻尼可调; ●单向过载保护特性好; ●无机械可动部件,维修工作量少;

●全系列统一结构,零部件互换性强; ●接触介质的膜片材料可选择:(316L、TAN、HAST-C、MONEL等耐腐蚀材料) ●防爆结构,全天候使用。 双法兰差压变送器的功能参数: ◆使用对象:液体、气体和蒸气 ◆测量范围:至0-40MPa ◆输出信号:4~20mA DC(特殊可为四线制220V AC供电,0~10mA DC输出) ◆供电电源:12~45V DC,一般为24V DC ◆负载特性:与供电电源有关,在某一电源电压时带负载能力见图2,负载阻抗RL 与电源电压VS关系式为RL≤50(VS-12) ◆指示表:指针式线性指示0~100%刻度,以及3 1/2位LCD液晶式显示 ◆防爆:a.隔爆型dⅡCT5;b.本质安全型iaⅡCT6 ◆量程和零点:外部连续可调 ◆正负迁移:零点经过正迁移或负迁移后,量程、测量范围的上限值和下限值的绝对值,均不能超过测量范围上限的100%。最大正迁移量为最小校调量程的500%;最大负迁移量为最小校调量程的600%。流量变送器最大正、负迁移量为校准量程的10% ◆温度范围:放大器工作温度范围:-29~+93℃(LT型为:-25~+70℃),灌充硅油的测量元件:-40~+104℃,法兰式变送器灌充高温硅油时:+15~+315℃,普通硅油:-40~+150℃ ◆静压和过载压力:4、10、25、32MPa ◆湿度:相对湿度为0~100%。 ◆振动影响:在任意轴向上,振动频率为200Hz时,误差为测量范围上限的±%/g ◆电源影响:小于输出量程的%/V

变送器压差与电流的计算

变送器(差压;压力)电流换算关系 (1) 知道电流求:差压 或压力值 例如:一台变送器输出信号为4-20mA 压力上限为4000Pa ,求:变送器输出8mA 时,对应的压力值是多少 根据公式计算:4204I px P -???=?? ?-?? 压力上限值 8444000...............40002041614000.. (10004) px pa px pa px pa px px -?????=??=? ? ?-?????=??= 通过计算得出8mA 时对应的压力值为1000pa 公式中各符号的含义:

px p Ix ??变送器被求电流点对应的压力值上限值为变送器的压力上限值 为已知被求压力对应的电流值 20为变送器压力上限时输出电流值4为变送器所受压力为零时输出电流值 (2) 知道(压力或差压值) 求输出电流值 例如:一台变送器压力上限值为4000pa,输出电流为4-20mA ,求:1000pa 时变送器输出的电流值是多少 根据公式计算:164p Ix p ?=?+?上 100011616 4......16 4......4400044448Ix Ix Ix Ix mA =?+=?+=+=+=通过计算得出1000pa 时变送器的电流值为8mA 。 公式中各符号的含义: Ix:变送器被求点输出电流值 :p ??已知变送器所受到的压力值 p 上:已知变送器压力上限值

16+4:为变送器输出电流值,因为变送器在零位时就有4mA 输出,实际变送器输出 应该是20-4=16,计算过程中应该加上4mA 。 4:为变送器零位时输出电流值 (3)知道流量求压力或差压制 例如:一台差压变送器,差压上限值为4000pa,对应孔板最大流量为40000立方每小时,求流量值在20000立方每小时的差压值是多少。 根据公式计算:2 Qx px PX Q ???=?? ???上限值上限值 22 2000014000........400040000214000.......................10004PX Pa px pa px pa px pa ?????=??=? ? ????? ?=??= 通过计算流量在20000立方每小时的差压值为1000pa 公式中各符号含义:

压力变送器的原理安装和使用

压力变送器的原理安装和 使用 This model paper was revised by the Standardization Office on December 10, 2020

压力变送器的安装及使用 压力是重要的工业参数之一, 正确测量和控制压力对保证生产工艺过程的安全性和经济性有重要意义。压力及差压的测量还广泛地应用在流量和液位的测量中。压力变送器的任务是将检测出来的非电量(物理量)大小转换为相应的电信号,传输到显示仪表中进行监视和控制,将非电量转换为电量的方法有: 1电容式压力变送器 2扩散硅压阻变送器 3电感式变送器 4振弦式变送器 20世纪80年代中末期,国内开始引进国外生产的压力变送器,主要是非智能的,在选购变送器时,要根据生产工艺过程的不同压力检测点的压力,来选择不同压力变送器的量程,由于被测压力点数量多,订货时,所定压力变送器的规格多,同时,在备件上造成很大的资金积压。由于早期的压力变送器没有微处理器进行各种性能的补偿,容易受到环境的影响,造成仪表的漂移和测量不准确。 美国霍尼韦尔(HONEYWELL)公司于1983年独家率先向全世界推出智能化现场仪表ST3000 100系列全智能压力变送器,这是对传统现场仪表的一次深刻变革!它为工业自动化仪表及其系统应用,向更高层次的发展奠定了基础,全智能变送器的问世,开创了现场仪表的新纪元。 美国霍尼韦尔公司在92年4月向中国推出了ST3000/900系列全智能变送器,它具有数字式全智能变送器的全部优越性能,而价格接近传统模拟式常规变送器。97年底,霍尼韦尔公司又推出可测高温的压力变送器,现场环境温度最高可达150℃。通过使用专用的手操器,可以对运行中的变送器进行零点、量程、变送器的工作温度、使用单位等很多参

RF-3051LP双法兰液位变送器的详细资料

https://www.doczj.com/doc/52970178.html, 江苏荣丰自动化仪表有限公司 RF1151LP双法兰液位变送器由差压变送器与智能放大板组合,可构成智能远传压力、差压变送器,与符合HART协议的手操器配合,可以相互通讯,进行设定和监控 用途 RF3051LP双法兰液位变送器是一种通过安装在管道或容器上的远传装置来感受被测压力,该压力经毛细管内的灌充硅油(或其它的液体)传递至变送器的主体,然后由变送器主体内的δ室和放大线路板,将压力或差压转换4~20mA.DC信号输出(参见结构原理图)。 RF3051LP差压变送器与智能放大板组合,可构成智能远传压力、差压变送器,与符合HART协议的手操器配合,可以相互通讯,进行设定和监控。 为了适应不同的安装需求,本系列变送器具有多种形式的远传装置供用户选择,变送器的主体结构与差压

相同。 远传变送器主要用于以下场合的测量 高温下粘稠介质 易结晶的介质 带有固体颗粒或悬浮物的沉淀性介质 强腐蚀或剧毒性介质 可消除导压管泄漏污染周围环境现象的发生;可免去采用隔离液时,因测量信号的不稳定,需要经常补充隔离液的繁琐工作。 连续精确测量界面和密度 远传装置可避免不同瞬间介质的交混,从而使测量结果真实地反映过程变化的实际情况。 卫生清洁要求很高的场合 如食品、饮料和医药工业生产中,不仅要求变送器接触介质部位符合卫生标准,并且应便于冲洗,以防止不同批量介质的交叉污染。 产品特点 逐台进行模拟“在线运行”考核,保证变送器在极限环境温度、介质温度和工作压力(包括正压或真空)下,稳定而可靠地工作。 采用“动态型面”远传膜片结构,超载后膜片不会受损;长期工作后精度不会发生变化。 选用全熔焊和刚性密封结构的灌充系统,根除了漏油现象的发生。 设计新颖的毛细管结合部件,使毛细管得到可靠的保护,在现场使用不易折断。 品种、形式和尺寸多样的远传装置,以及丰富的灌充液种类,可以满足各种不同场合的测量需要。 可提供各种特殊需要产品,包括高温、高真空、快响应和不等长毛细管(差值≤4.5米)远传差压变送器。技术参数和性能

计算差压流量计计算公式汇总归纳

计算差压流量计计算公式汇总归纳 已知工艺管道的直径,管道内介质的密度,怎么算出差压变送器的压力.差压变送器是配合弯管流量计一起安装的.尽量说详细点,谢谢 差压式流量计的测量原理是基于流体的机械能相互转换的原理。在水平管道中流动的流体,具有动压能和静压能(位能相等),在一定条件下,这两种形式的能量可以相互转换,但能量总和不变。以体积流量公式为例: Q v = CεΑ/sqr(2ΔP/(1-β^4)/ρ1) 其中:C 流出系数; ε可膨胀系数 Α节流件开孔截面积,M^2 ΔP 节流装置输出的差压,Pa; β直径比 ρ1 被测流体在I-I处的密度,kg/m3; Qv 体积流量,m3/h 按照补偿要求,需要加入温度和压力的补偿,根据计算书,计算思路是以50度下的工艺参数为基准,计算出任意温度任意压力下的流量。其实重要是密度的转换。计算公式如下: Q = 0.004714187 *d^2*ε*@sqr(ΔP/ρ) Nm3/h 0C101.325kPa 也即是画面要求显示的0度标准大气压下的体积流量。 在根据密度公式: ρ= P*T50/(P50*T)* ρ50 其中:ρ、P、T表示任意温度、压力下的值 ρ50、P50、T50表示50度表压为0.04MPa下的工艺基准点 结合这两个公式即可在程序中完成编制。 二.煤气计算书(省略)

三.程序分析 1.瞬时量 温度量:必须转换成绝对摄氏温度;即+273.15 压力量:必须转换成绝对压力进行计算。即表压+大气压力 补偿计算根据计算公式,数据保存在PLC的寄存器内。同时在intouch画面上做监视。 2.累积量 采用2秒中一个扫描上升沿触发进行累积,即将补偿流量值(Nm3/h)比上1800单位转换成每2S的流量值,进行累积求和,画面带复位清零功能。 差压流量计的通用计算公式如下图所示,由式1推导可得到式2。式中Q代表流量,△P代表差压,ρ代表流体密度,K是仪表系数,由流量计出厂标定时得到。 流量与差压的平方根成正比。差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量的仪表。差压式流量计由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组成

水银差压流量计计算公式

差压流量计计算公式 已知工艺管道的直径,管道内介质的密度,怎么算出差压变送器的压力.差压变送器是配合弯管流量计一起安装的.尽量说详细点,谢谢 差压式流量计的测量原理是基于流体的机械能相互转换的原理。在水平管道中流动的流体, 具有动压能和静压能(位能相等),在一定条件下,这两种形式的能量可以相互转换,但能 量总和不变。以体积流量公式为例: Q v = CεΑ/sqr(2ΔP/(1-β^4)/ρ1) 其中:C 流出系数;ε可膨胀系数 Α节流件开孔截面积,M^2 ΔP 节流装置输出的差压,Pa; β直径比ρ1 被测流体在I-I处的密度,kg/m3; Qv 体积流量,m3/h 按照补偿要求,需要加入温度和压力的补偿,根据计算书,计算思路 是以50度下的工艺参数为基准,计算出任意温度任意压力下的流量。其实重要是密度的转 换。计算公式如下: Q = 0.004714187 *d^2*ε*@sqr(ΔP/ρ) Nm3/h 0C101.325kPa 也即是画面要求显示的0度标准大气压下的体积流量。 在根据密度公式:ρ= P*T50/(P50*T)* ρ50 其中:ρ、P、T表示任意温度、压力下的值 ρ50、P50、T50表示50度表压为0.04MPa下的工艺基准点 结合这两个公式即可在程序中完成编制。 二.煤气计算书(省略)三.程序分析1.瞬时量 温度量:必须转换成绝对摄氏温度;即+273.15 压力量:必须转换成绝对压力进行计算。即表压+大气压力 补偿计算根据计算公式,数据保存在PLC的寄存器内。同时在intouch画面上做监视。 2.累积量:采用2秒中一个扫描上升沿触发进行累积,即将补偿流量值(Nm3/h)比上1800 单位转换成每2S的流量值,进行累积求和,画面带复位清零功能。 差压流量计的通用计算公式如下图所示,由式1推导可得到式2。式中Q代表流量,△P代 表差压,ρ代表流体密度,K是仪表系数,由流量计出厂标定时得到。 流量与差压的平方根成正比。差压式流量计是根据安装于管 道中流量检测件产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量 的仪表。差压式流量计由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组 成

双法兰液位计原理及调试复习过程

双法兰液位计原理及 调试

目录 摘要 双法兰液位计在工业中起着非常重要的作用,本文通过对具体的工作原理及结构、以及安装调试的步骤进行阐述,结合现场使用情况来进一步说明双法兰液位计的特点,它测量时介质比较单一,不能测混合物、结晶等凝聚物块,膜盒是它最重要的部分,化工生产维修时要保护好膜盒,必要时加装膜盒盖子。

关键词:双法兰液位计;膜盒 Abstract Double flanged liquid level gauge plays a very important role in the industry, this article through to the specific working principle and structure, and elaborates the installation and debugging steps, combined with the site usage to further illustrate the characteristics of double flange level gauge, it measured medium is a single, cannot mix, crystallization, such as condensed piece, bellows is the most important part of it, the

chemical production maintenance to protect the bellows, if necessary, add membrane lifted the lid. Key words: double flange level gauge, bellows 一、概述 我公司使用的单、双法兰差压式液位变送器由横河和霍尼韦尔两厂家生产,其中,单法兰差压式液位变送器用在灌区,双法兰差压式液位变送器分别用在气化和合成。本规程只是作为检修单、双法兰差压式液位变送器的通用规程,在检修时还应参考相应的变送器说明书。 二、原理

变送器压差与电流的计算

变送器(差压;压力)电流换算关系 (1) 知道电流求:差压或压力值 例如:一台变送器输出信号为 4-20mA 压力上限为 4000Pa ,求:变送器输出 8mA 时,对应的压力值是多少? I - 4 根据公式计算:px =2I 0--44P 压力上限值 通过计算得出 8mA 时对应的压力值为 1000pa 公式中各符号的含义: px 变送器被求电流点对应的压力值 p 上限值为变送器的压力上限值 Ix 为已知被求压力对应的电流值 20为变送器压力上限时输出电流值 4为变送器所受压力为零时输出电流值 px = 8- 4 20- 4000 pa 4 px = 4000 pa 16 px = 4000 pa px =1000 px

(2) 知道(压力或差压值)求输出电流值 例如:一台变送器压力上限值为 4000pa,输 出电流为 4-20mA ,求:1000pa 时变送器输 出的电流值是多少 Ix = 1000 16 + 4 ........ Ix = 1 16 + 4 .... Ix = 16 4000 4 4 Ix = 4 + 4 = 8mA 通过计算得出 1000pa 时变送器的电流 值为 8mA 。 公式中各符号的含义: Ix:变送器被求点输出电流值 p :已知变送器所受到的压力值 p 上:已知变送器压力上限值 16+4:为变送器输出电流值,因为变送 器在零位时就有 4mA 输出,实际变送器 输出 应该是 20-4=16,计算过程中应该 加上 4mA 。 4:为变送器零位时输出电流值 根据公式计算: Ix =p p 上16+4 +4

(3)知道流量求压力或差压制 例如:一台差压变送器,差压上限值为 4000pa,对应孔板最大流量为 40000 立方 每小时,求流量值在 20000 立方每小时 的差压值是多少。 px = 4000 pa ................. px = 1000 pa 通过计算流量在 20000 立方每小时的差 压值为 1000pa 公式中各符号含义: px :被求变送器要求的差压值 p 上限值:为变送器的差压上限值 Qx:为已经知道的流量值 Q 上限值:已知最大流量值(孔板的最大流量值) 注意:流量与差压是平方关系 根据公式计算: px = Qx Q 上限值 PX 上限值 PX = 20000 2 4000 Pa px = 1 2 2 4000 pa

双法兰差压变送器的误差分析

双法兰差压变送器的误差分析 摘要:双法兰变送器使用过程中受膜片接液温度与环境温度的影响,分析产生测量误差原因,供维护和选型人员参考。 关键词:双法兰;差压变送器;接液温度;环境温度 Abstract: Double flange transmitter uses process by fluid temperature and diaphragm by the influence of the temperature of the environment, and the analysis of measurement error reason, maintenance and selection are as a reference. Key Words: double flange; differential pressure transmitter; meet fluid temperature; environment temperature 1、前言 与其他差压变送器使用环境不同,双法兰差压变送器适用于测量含有杂质、结晶、凝聚或易自聚的被测介质,用普通的差压变送器来测量这些介质可能会引起连接管线的堵塞,所以双法兰差压变送器是比较理想的选择,而且有安装方便、精度高、维护量小等优点,被广泛用来测量液体、气体和蒸汽的流量、液位、密度和压力,然后输出与测得压差相对应的4~20mA DC信号。但在实际应用中,往往忽略了被测介质温度和环境温度的变化所带来的影响。 2、工艺状况 我厂炼油装置中催化裂化分馏塔底液位安装有两块液位测量仪表,一个是带导压管的普通差压变送器,位号LT-1202B;另一个采用的是双法兰差压变送器,位号LT-1202A。分馏塔底液位是个重要参数,操作人员要通过油浆返塔温度、回炼油补塔、油浆外送、油浆回炼和反应深度等来控制分馏塔底液位。所以该液位测量必须准确可靠,以达到工艺生产需求。 变送器安装见图1:

压力变送器的精度标定

3051压力变送器的精度标定 精度、计算值或估计值与真值(或被认为是真值)之间的接近程度。准确性,不确定性和错误,是指过程中的实际价值和由传感器示值之间的差额。精度的下降,被称为校准漂移或校准的转变。压力变送器的精度取决于如何对罗斯蒙特变送器校准和多久才可以保持其校准准确度。 压力变送器的设计通常使输入和输出之间的关系主要是呈线性的。因此,为直角坐标系上的压力变送器的校准曲线(XY轴)是一条直线,由下列公式表示: Y = MX + B(1)

其中m是直线的斜率,b是其拦截。斜率也被称为增益,拦截也被称为零偏移或偏离。变送器的测量范围是最小到最大的压力(例如,0到2500磅)。表示输入范围(例如,0至2500 psi)的压力,电信号输出范围(例如,4至20 mA或1至5 V)表示。罗斯蒙特变送器校准的最低压力被称为零和偏移和偏离的代名词。变送器通常标定了理想的压力测量范围(例如,范围0到2500 psi的压力变送器具有500至1500 psi)。这被称为变送器的校准范围或跨度。 校准后的压力变送器的初始精度确定了精度的校准标准,它是基于校准过程中的准确性。精度通常用量程的百分比表示。工业压力变送器(包括绝对和差压变送器)的初始校准通常被称为作为替补出厂的校准。 变送器的精度校准

最有效的减轻压力变送器漂移的办法是通过及时检测和校准。定期校准压力变送器通常包括两个步骤:(1)确定是否需要校准;(2)校准罗斯蒙特变送器。通过应用系统输入的一系列信号如:(0,25,50,75,100,75,50,25,跨度0%),然后调整必要的零跨度,使传感器达到罗斯蒙特变送器校准验收标准。 通常情况下,校准后,仪器将返回到现场,直到它再次出现漂移。一般情况一直校准可以用一到三年的时间。当压力变送器在现场进行校准,校准信号输入往往会产生通过使用一个稳定的压力源(例如,压力瓶和压力调节器)和精密压力表。也可以使用自动压力传感器校准设备,采用数字技术改进校准精度更加方便。这种系统使用一个可编程的压力源产生已知的压力信号便可以了。 随着压力变送器技术的发展,目前市场上出现了包括智能变送器,结合光纤传输能力的光纤传感器,无线传感器等罗斯蒙特变送器。然而减小降低变送器精度的一系列因素如:温度,

单、双法兰式差压液位变送器检修规程

单、双法兰差压式液位变送器检修规程 一、概述 我公司使用的单、双法兰差压式液位变送器由横河和霍尼韦尔两厂家生产,其中,单法兰差压式液位变送器用在灌区,双法兰差压式液位变送器分别用在气化和合成。本规程只是作为检修单、双法兰差压式液位变送器的通用规程,在检修时还应参考相应的变送器说明书。 二、原理 单、双法兰式差压变送器由差压变送器、毛细管和带密封隔膜的法兰组成。密封隔膜的作用是防止管道中的介质直接进入差压变送器,它与变送器之间是靠注满液体(一般采用硅油)的毛细管连接起来的,当膜片受压后产生微小变形,变形位移或频率通过毛细管的液体传递给变送器,由变送器处理后转换成输出信号。 三、外观检查 1 . 法兰检查:检查法兰与设备连接部分的密封是否良好;法兰与毛细管、毛细管与变送器的连接部分及毛细管本身是否有液体泄漏;法兰膜片有无变形、损伤、腐蚀、结垢等不良情况。 2.变送器检查:检查变送器外壳有无损伤、腐蚀和其他故障,发现问题及时处理。 四、验收 1.打开变送器外盖,先检查密封圈有无损坏,如果损坏要及时更换;检查电路板及其他元器件是否良好。 2.检查变送器接线情况是否良好。 3.断开电源,卸下接线,进行绝缘电阻检查,用500V兆欧表检查变送器接线端子与外壳间的绝缘电阻,该电阻值应大于20M ?以上。 五、调试校验 为了保证法兰式差压变送器的测量精度,不能拆开毛细管,所以校验变送器时要与法兰一起校验;在安装前,可用气压模拟信号与HART通讯器进行校验。 零点和量程调整步骤:调整零点和量程输出,使其在允许误差范围内。连续加压,用量程0%,25% ,50% ,75% ,150%的压力进行校验,当压力稳定后记录标准电流表上显示的电流值并做回程误差校验。如果校验误差超过允许误差范围,应重新调整校验。调整时用HART操作,调整方法见相应的HART使用说明。 六、安装

压力及差压变送器的量程选择

压力及差压变送器的量程选择 变送器2010-01-05 16:12:18 阅读65 评论0 字号:大中小订阅 方原柏 The Range Selection of Pressure and Differential Pressure Transmitter FANG Yuan-bai 摘要:压力及差压变送器的量程选择是变送器选型中的一个重要内容,选型时应遵循量程上下可 调、精确度最高、价格最低原则综合考虑。 关键词:变送器量程选择精确度 1 前言 压力及差压变送器是目前自动化仪表中最重要的一类产品,其使用非常广泛。当需要采购变送器时,应先确定所采用变送器的生产厂家及型号,然后根据使用要求确定变送器的量程。 压力及差压变送器的量程选择是变送器选型中的一个重要内容,选型时应遵循量程上下可调、精确 度最高、价格最低原则综合考虑。 2 量程上下可调原则 工艺专业要求的最大压力或差压是量程选择的基础,通常按这个压力或差压值的1.5~2.0倍确定所选 量程。 上世纪六十年代至七十年代末期,我们通常采用的是国产电动II型、III型变送器,其压力、差压产品系列的量程见表1、表2(以广东仪表厂产品为例)。 表1 压力变送器量程系列 表2 差压变送器量程系列

由表1、表2可见,这些早期的变送器产品量程比小(为2.5~6:1),除少数量程范围稍有交叉外(如表1中压力变送器230、240、250、2300、2400、2500),其余量程均不交叉,所需要的量程在哪个量程代号范围内就必须得选哪个量程,所以基本上不存在量程选择问题。 这里提到一个量程比的问题,什么是量程比呢?以表1中DBY-220压力变送器为例,0~2.5~10kPa 量程范围表示这台变送器压力测量满量程值(上限量程-下限量程)的最大值可以设定为10kPa ( 例如可以设定为0~10kPa,如变送器带正负迁移功能,则还可以设定为-10~0kPa、-5~5kPa等等),满量程值的最小值可以设定为2.5kPa ( 例如可以设定为0~2.5kPa,如变送器带正负迁移功能,则还可以设定为 -10~-7.5kPa、-2.5~0kPa、-1.5~1.0kPa、7.5~10kPa等等),量程范围中最大值(URL,如本例中的10kPa)与最小值(LRL,如本例中的2.5kPa)之比(URL:LRL,如本例中的10kPa:2.5kPa=4)则称之为量程 比。 上世纪八十年代初,西安仪表厂引进生产的1151变送器成为国内市场的主流产品,其量程比约为6:1,相邻各量程间约有20%的交叉,如量程代号3、4、5的量程范围分别为0~1.24~7.46kPa、 0~6.22~37.3kPa、0~31.1~186.4kPa,量程代号3和4之间有6.22~7.46kPa的交叉,量程代号4和5之间有31.1~37.3kPa的交叉,在这个交叉量程范围内,您既可选上一量程代号,也可选下一量程代号。此时开始出现量程选择为问题,但如不刻意追求,似乎不管它也可以。 曾几何时,变送器的制造技术飞跃发展,产品的量程比已增大到10:1、20:1、40:1、100:1,甚至还有个别产品达到400:1、555:1,这时某一实际使用量程可能为2~3个量程代号覆盖,究竟选择那一个量程代号,这可能关系到变送器实际使用的精确度、灵活性及价格,是值得我们讨论的。 作者首先建议选型时一般不要走极端,不要将变送器的使用量程定在最小量程(或非常接近最小量程)或最大量程(或非常接近最大量程),因为在生产现场,变更量程的事经常发生,往往需要向上或向下调整量程,如果选型时已经考虑了量程有上下可调的余地,碰到需要调整量程的时候就不至为难了。当然,如果现场条件改变只可能是单向的,如只能向下调整,则选最大量程也无妨。 3 精确度最高原则 市场上一些中高档的变送器,其精确度达到0.2%、0.1%、0.075%、0.05%甚至0.04%。既然选用了高精确度的变送器,我们当然希望所选用的变送器在使用时也能达到最高的使用精确度。 高精确度变送器往往也具有高量程比的特点,变送器的精确度和量程比是两个独立的指标,似乎互不相关,当我们选定某一厂家某一量程代号的变送器时,其精确度似乎也应该是选型样本上所标明的那样。比如早期我们选用1151型变送器,除了DR型微差压变送器的精确度是0.5%以外,其余的大都是0.25%。早期的1151型变送器的量程比是6:1,以量程代号4为例,其量程可调范围是0~6.22~37.3kPa,用户实际使用时,不管你选用的量程是0~6.22kPa最小量程,还是0~37.3kPa最大量程,其精确度指标都是0.25%,这在选型样本“精确度”一栏中是特别注明的:精确度为“校准量程的0.25%”,也就是说,早期变送 器产品在其量程可调范围内的精确度指标是一致的。

压力和差压变送器详细详解使用说明书样本

压力和差压变送器详细使用说明 ( 一) 差压变送器原理与使用 本节根据实际使用中的差压变送器主要介绍电容式差压变送器。 1. 差压变送器原理 压力和差压变送器作为过程控制系统的检测变换部分, 将液体、气体或蒸汽的差压(压力)、流量、液位等工艺参数转换成统一的标准信号(如DC4mA~20mA 电流), 作为显示仪表、运算器和调节器的输入信号, 以实现生产过程的连续检测和自动控制。 差动电容式压力变送器由测量部分和转换放大电路组成, 如图1.1所示。 图1.1 测量转换电路

图1.2 差动电容结构差动电容式压力变送器的测量部分常采用差动电容结构, 如图 1.2所示。中心可动极板与两侧固定极板构成两个平面型电容 H C和L C。可动极板与两侧固定极板形成两个感压腔室, 介质压力是经过两个腔室中的填充液作用到中心可动极板。一般采用硅油等理想液体作为填充液, 被测介质大多为气体或液体。隔离膜片的作用既传递压力, 又避免电容极板受损。 当正负压力(差压)由正负压导压口加到膜盒两边的隔离膜片上时, 经过腔室内硅油液体传递到中心测量膜片上, 中心感压膜片产生位移, 使可动极板和左右两个极板之间的间距不相对, 形成差动电容, 若不考虑边缘电场影响, 该差动电容可看作平板电容。差动电容的相对变化值与被测压力成正比, 与填充液的介电常数无关, 从原理上消除了介电常数的变化给测量带来的误差。 2. 变送器的使用 ( 1) 表压压力变送器的方向 低压侧压力口( 大气压参考端) 位于表压压力变送器的脖颈处,

在电子外壳的后面。此压力口的通道位于外壳和压力传感器之间, 在变送器上360°环绕。保持通道的畅通, 包括但不限于由于安装变送器时产生的喷漆, 灰尘和润滑脂, 以至于保证过程通畅。图1.3为低压侧压力口。 图1.3 低压侧压力口 ( 2) 电气接线 ①拆下标记”FIELD TERMINALS”电子外壳。 ②将正极导线接到”PWR/COMN”接线端子上, 负极导线接 到”-”接线端子 上。注意不得将带电信号线与测试端子( test) 相连, 因通电将损坏测试线路中的测试二极管。应使用屏蔽的双绞线以获得最佳的测量效果, 为了保证正确通讯, 应使用24AWG或更高的电缆线。 ③用导管塞将变送器壳体上未使用的导管接口密封。 ④重新拧上表盖。 ( 3) 电子室旋转 电子室能够旋转以便数字显示位于最好的观察位置。旋转时, 先松开壳体旋转固定螺钉。

相关主题
文本预览
相关文档 最新文档