固体物理第六章作业
- 格式:pdf
- 大小:109.50 KB
- 文档页数:1
清华大学固体物理:第六章晶格动力学6.1固体物理性质的变化依赖于他们的晶格动力学行为:红外、拉曼和中子散射谱;比热,热膨胀和热导;和电声子相互作用相关的现象如金属电阻,超导电性和光谱的温度依赖关系是其中的一部分。
事实上,借助于声子对这些问题的了解最令人信服地说明了目前固体的量子力学图像是正确的。
晶格动力学的基础理论建立于30年代,玻恩和黄昆1954年的专题论文至今仍然是这个领域的参考教科书。
这些早期的系统而确切地陈述主要建立了动力学矩阵的一般性质,他们的对称和解析性质,没有考虑到和电子性质的联系,而实际上正是电子性质决定了他们。
直到1970年才系统地研究了这些联系。
一个系统电子的性质和晶格动力学之间的联系的重要性不仅在原理方面,主要在于通过使用这些关系,才有可能计算特殊系统的晶格动力学性质。
现在用ab initio 量子力学技术,只要输入材料化学成分的信息,理论凝聚态物理和计算材料科学就可以计算特殊材料的特殊性质。
在晶格动力学性质的特殊情况下,基于晶格振动的线性响应理论,大量的ab initio 计算在过去十年中通过发展密度泛函理论已经成为可能。
密度泛函微扰理论是在密度泛函理论的理论框架之内研究晶格振动线性响应。
感谢这些理论和算法的进步,现在已经可以在整个布里渊区的精细格子上精确计算出声子色散关系,直接可以和中子衍射数据相比。
由此系统的一些物理性质(如比热、熱膨胀系数、能带隙的温度依赖关系等等)可以计算。
1从固体电子自由度分离出振动的基本近似是Born-Oppenhermer (1927) 的绝热近似。
在这个近似中,系统的晶格动力学性质由以下薛定谔方程的本征值,R和本征函数决定。
,22ERRR,,, (6.1.1) 22MRIII这里RRER是第I个原子核的坐标,是相应原子核的质量,是所有原子核坐标的集合,是RMIII系统的系统的限位离子能量,常常称为Born-Oppenhermer能量表面。
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 31.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω31230,,22(),0,224,,022a aa a a a a a a a Ω=⋅⨯==,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++ 同理可得:232()2()b i j k ab i j k aππ=-+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
黄昆固体物理课后习题答案6第六章⾃由电⼦论和电⼦的输运性质思考题1.如何理解电⼦分布函数)(E f 的物理意义是: 能量为E 的⼀个量⼦态被电⼦所占据的平均⼏率[解答]⾦属中的价电⼦遵从费密-狄拉克统计分布, 温度为T 时, 分布在能级E 上的电⼦数⽬1/)(+=-Tk E E BF e gn ,g 为简并度, 即能级E 包含的量⼦态数⽬. 显然, 电⼦分布函数11)(/)(+=-Tk E E BF e E f是温度T 时, 能级E 的⼀个量⼦态上平均分布的电⼦数. 因为⼀个量⼦态最多由⼀个电⼦所占据, 所以)(E f 的物理意义⼜可表述为: 能量为E 的⼀个量⼦态被电⼦所占据的平均⼏率. 2.绝对零度时, 价电⼦与晶格是否交换能量[解答] 晶格的振动形成格波,价电⼦与晶格交换能量,实际是价电⼦与格波交换能量. 格波的能量⼦称为声⼦, 价电⼦与格波交换能量可视为价电⼦与声⼦交换能量. 频率为i ω的格波的声⼦数11/-=Tk i B i e n ωη.从上式可以看出, 绝对零度时, 任何频率的格波的声⼦全都消失. 因此, 绝对零度时, 价电⼦与晶格不再交换能量.3.你是如何理解绝对零度时和常温下电⼦的平均动能⼗分相近这⼀点的[解答]⾃由电⼦论只考虑电⼦的动能. 在绝对零度时, ⾦属中的⾃由(价)电⼦, 分布在费密能级及其以下的能级上, 即分布在⼀个费密球内. 在常温下, 费密球内部离费密⾯远的状态全被电⼦占据, 这些电⼦从格波获取的能量不⾜以使其跃迁到费密⾯附近或以外的空状态上, 能够发⽣能态跃迁的仅是费密⾯附近的少数电⼦, ⽽绝⼤多数电⼦的能态不会改变. 也就是说, 常温下电⼦的平均动能与绝对零度时的平均动能⼀定⼗分相近. 4.晶体膨胀时, 费密能级如何变化[解答] 费密能级3/2220)3(2πn m E Fη=,其中n 是单位体积内的价电⼦数⽬. 晶体膨胀时, 体积变⼤, 电⼦数⽬不变, n 变⼩, 费密能级降低.5.为什么温度升⾼, 费密能反⽽降低[解答]当0≠T 时, 有⼀半量⼦态被电⼦所占据的能级即是费密能级. 温度升⾼, 费密⾯附近的电⼦从格波获取的能量就越⼤, 跃迁到费密⾯以外的电⼦就越多, 原来有⼀半量⼦态被电⼦所占据的能级上的电⼦就少于⼀半, 有⼀半量⼦态被电⼦所占据的能级必定降低. 也就是说, 温度升⾼, 费密能反⽽降低.6.为什么价电⼦的浓度越⼤, 价电⼦的平均动能就越⼤[解答]由于绝对零度时和常温下电⼦的平均动能⼗分相近,我们讨论绝对零度时电⼦的平均动能与电⼦浓度的关系.价电⼦的浓度越⼤价电⼦的平均动能就越⼤, 这是⾦属中的价电⼦遵从费密-狄拉克统计分布的必然结果. 在绝对零度时, 电⼦不可能都处于最低能级上, ⽽是在费密球中均匀分布. 由式3/120)3(πn k F =可知, 价电⼦的浓度越⼤费密球的半径就越⼤,⾼能量的电⼦就越多, 价电⼦的平均动能就越⼤. 这⼀点从和式看得更清楚. 电⼦的平均动能E 正⽐与费密能0F E , ⽽费密能⼜正⽐与电⼦浓度3/2n:()3/222032πn mE Fη=,()3/2220310353πn mE EF η==.所以价电⼦的浓度越⼤, 价电⼦的平均动能就越⼤.7.对⽐热和电导有贡献的仅是费密⾯附近的电⼦, ⼆者有何本质上的联系[解答]对⽐热有贡献的电⼦是其能态可以变化的电⼦. 能态能够发⽣变化的电⼦仅是费密⾯附近的电⼦. 因为, 在常温下, 费密球内部离费密⾯远的状态全被电⼦占据, 这些电⼦从格波获取的能量不⾜以使其跃迁到费密⾯附近或以外的空状态上, 能够发⽣能态跃迁的仅是费密⾯附近的电⼦, 这些电⼦吸收声⼦后能跃迁到费密⾯附近或以外的空状态上.对电导有贡献的电⼦, 即是对电流有贡献的电⼦, 它们是能态能够发⽣变化的电⼦. 由式)(00ε+=v τe E f f f可知, 加电场后,电⼦分布发⽣了偏移. 正是这偏移)(0εv τe E f部分才对电流和电导有贡献. 这偏移部分是能态发⽣变化的电⼦产⽣的. ⽽能态能够发⽣变化的电⼦仅是费密⾯附近的电⼦, 这些电⼦能从外场中获取能量, 跃迁到费密⾯附近或以外的空状态上. ⽽费密球内部离费密⾯远的状态全被电⼦占拒, 这些电⼦从外场中获取的能量不⾜以使其跃迁到费密⾯附近或以外的空状态上. 对电流和电导有贡献的电⼦仅是费密⾯附近电⼦的结论从式xk Sxx ESv e j Fετπ?=d 4222和⽴⽅结构⾦属的电导率E S v e k S xF ?=?d 4222τπσ看得更清楚. 以上两式的积分仅限于费密⾯, 说明对电导有贡献的只能是费密⾯附近的电⼦.总之, 仅仅是费密⾯附近的电⼦对⽐热和电导有贡献, ⼆者本质上的联系是: 对⽐热和电导有贡献的电⼦是其能态能够发⽣变化的电⼦, 只有费密⾯附近的电⼦才能从外界获取能量发⽣能态跃迁.8.在常温下, 两⾦属接触后, 从⼀种⾦属跑到另⼀种⾦属的电⼦, 其能量⼀定要达到或超过费密能与脱出功之和吗[解答] 电⼦的能量如果达到或超过费密能与脱出功之和, 该电⼦将成为脱离⾦属的热发射电⼦. 在常温下, 两⾦属接触后, 从⼀种⾦属跑到另⼀种⾦属的电⼦, 其能量通常远低于费密能与脱出功之和. 假设接触前⾦属1和2的价电⼦的费密能分别为1F E 和2F E , 且1F E >2F E , 接触平衡后电势分别为1V 和2V . 则两⾦属接触后, ⾦属1中能量⾼于11eV E F -的电⼦将跑到⾦属2中. 由于1V ⼤于0, 所以在常温下, 两⾦属接触后, 从⾦属1跑到⾦属2的电⼦, 其能量只⼩于等于⾦属1的费密能.9.两块同种⾦属, 温度不同, 接触后, 温度未达到相等前, 是否存在电势差为什么[解答]两块同种⾦属, 温度分别为1T 和2T , 且1T >2T . 在这种情况下, 温度为1T 的⾦属⾼于0FE 的电⼦数⽬, 多于温度为2T 的⾦属⾼于0F E 的电⼦数⽬. 两块⾦属接触后, 系统的能量要取最⼩值, 温度为1T 的⾦属⾼于0F E 的部分电⼦将流向温度为2T 的⾦属. 温度未达到相等前, 这种流动⼀直持续. 期间, 温度为1T 的⾦属失去电⼦, 带正电; 温度为2T 的⾦属得到电⼦, 带负电, ⼆者出现电势差.10.如果不存在碰撞机制, 在外电场下, ⾦属中电⼦的分布函数如何变化[解答]如果不存在碰撞机制, 当有外电场ε后, 电⼦波⽮的时间变化率ηεe t -=d d k .上式说明, 不论电⼦的波⽮取何值, 所有价电⼦在波⽮空间的漂移速度都相同. 如果没有外电场ε时, 电⼦的分布是⼀个费密球, 当有外电场ε后, 费密球将沿与电场相反的⽅向匀速刚性漂移, 电⼦分布函数永远达不到⼀个稳定分布. 11.为什么价电⼦的浓度越⾼, 电导率越⾼[解答]电导σ是⾦属通流能⼒的量度. 通流能⼒取决于单位时间内通过截⾯积的电⼦数(参见思考题18). 但并不是所有价电⼦对导电都有贡献, 对导电有贡献的是费密⾯附近的电⼦. 费密球越⼤, 对导电有贡献的电⼦数⽬就越多. 费密球的⼤⼩取决于费密半径3/12)3(πn k F =.可见电⼦浓度n 越⾼, 费密球越⼤, 对导电有贡献的电⼦数⽬就越多, 该⾦属的电导率就越⾼.12.电⼦散射⼏率与声⼦浓度有何关系电⼦的平均散射⾓与声⼦的平均动量有何关系[解答]设波⽮为k 的电⼦在单位时间内与声⼦的碰撞⼏率为),',(θΘk k , 则),',(θΘk k 即为电⼦在单位时间内与声⼦的碰撞次数. 如果把电⼦和声⼦分别看成单原⼦⽓体, 按照经典统计理论, 单位时间内⼀个电⼦与声⼦的碰撞次数正⽐与声⼦的浓度.若只考虑正常散射过程, 电⼦的平均散射⾓θ与声⼦的平均波⽮q 的关系为由于F k k k ==', 所以ηηF F k q k q 222sin==θ.在常温下, 由于q <ηηF F k q k q ==θ.由上式可见, 在常温下, 电⼦的平均散射⾓与声⼦的平均动量q η成正⽐.13.低温下, 固体⽐热与3T 成正⽐, 电阻率与5T 成正⽐, 2T 之差是何原因[解答]按照德拜模型, 由式可知, 在甚低温下, 固体的⽐热34)(512D B V T Nk C Θπ=.⽽声⼦的浓度-=-=mB mB T k pT k ce v e D V n ωωωωωωπωω0/2320/1d 231d )(1ηη,作变量变换T k x B ωη=,得到甚低温下333232T v Ak n p Bηπ=,其中∞-=021d xe x x A .可见在甚低温下, 固体的⽐热与声⼦的浓度成正⽐. 按照§纯⾦属电阻率的统计模型可知, 纯⾦属的电阻率与声⼦的浓度和声⼦平均动量的平⽅成正⽐. 可见, 固体⽐热与3T 成正⽐, 电阻率与5T 成正⽐, 2T 之差是出⾃声⼦平均动量的平⽅上. 这⼀点可由式得到证明. 由可得声⼦平均动量的平⽅286220/240/3321d 1d )(T v v Bk e v e v q s p B T k s T k p D B D B =--=??ωωωωωωωωηηηη,其中∞∞--=02031d 1d x xe x x e x x B 。
第六章 自由电子论和电子的输运性质思 考 题1.如何理解电子分布函数)(E f 的物理意义是: 能量为E 的一个量子态被电子所占据的平均几率[解答]金属中的价电子遵从费密-狄拉克统计分布, 温度为T 时, 分布在能级E 上的电子数目1/)(+=-T k E E B F e g n ,g 为简并度, 即能级E 包含的量子态数目. 显然, 电子分布函数11)(/)(+=-T k E E B F e E f是温度T 时, 能级E 的一个量子态上平均分布的电子数. 因为一个量子态最多由一个电子所占据, 所以)(E f 的物理意义又可表述为: 能量为E 的一个量子态被电子所占据的平均几率.2.绝对零度时, 价电子与晶格是否交换能量[解答]晶格的振动形成格波,价电子与晶格交换能量,实际是价电子与格波交换能量. 格波的能量子称为声子, 价电子与格波交换能量可视为价电子与声子交换能量. 频率为i ω的格波的声子数11/-=T k i B i e n ω .从上式可以看出, 绝对零度时, 任何频率的格波的声子全都消失. 因此, 绝对零度时, 价电子与晶格不再交换能量.3.你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的[解答]自由电子论只考虑电子的动能. 在绝对零度时, 金属中的自由(价)电子, 分布在费密能级及其以下的能级上, 即分布在一个费密球内. 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的少数电子, 而绝大多数电子的能态不会改变. 也就是说, 常温下电子的平均动能与绝对零度时的平均动能一定十分相近.4.晶体膨胀时, 费密能级如何变化[解答]费密能级3/2220)3(2πn m E F=,其中n 是单位体积内的价电子数目. 晶体膨胀时, 体积变大, 电子数目不变, n 变小, 费密能级降低.5.为什么温度升高, 费密能反而降低[解答]当0≠T 时, 有一半量子态被电子所占据的能级即是费密能级. 温度升高, 费密面附近的电子从格波获取的能量就越大, 跃迁到费密面以外的电子就越多, 原来有一半量子态被电子所占据的能级上的电子就少于一半, 有一半量子态被电子所占据的能级必定降低. 也就是说, 温度升高, 费密能反而降低.6.为什么价电子的浓度越大, 价电子的平均动能就越大[解答]由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子浓度的关系.价电子的浓度越大价电子的平均动能就越大, 这是金属中的价电子遵从费密-狄拉克统计分布的必然结果. 在绝对零度时, 电子不可能都处于最低能级上, 而是在费密球中均匀分布. 由式3/120)3(πn k F =可知, 价电子的浓度越大费密球的半径就越大,高能量的电子就越多, 价电子的平均动能就越大. 这一点从和式看得更清楚. 电子的平均动能E 正比与费密能0F E , 而费密能又正比与电子浓度3/2n :()3/22232πn m E F =,()3/2220310353πn m E E F ==.所以价电子的浓度越大, 价电子的平均动能就越大.7.对比热和电导有贡献的仅是费密面附近的电子, 二者有何本质上的联系[解答]对比热有贡献的电子是其能态可以变化的电子. 能态能够发生变化的电子仅是费密面附近的电子. 因为, 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的电子, 这些电子吸收声子后能跃迁到费密面附近或以外的空状态上.对电导有贡献的电子, 即是对电流有贡献的电子, 它们是能态能够发生变化的电子. 由式)(00ε⋅∂∂+=v τe E f f f可知, 加电场后,电子分布发生了偏移. 正是这偏移 )(0ε⋅∂∂v τe E f部分才对电流和电导有贡献. 这偏移部分是能态发生变化的电子产生的. 而能态能够发生变化的电子仅是费密面附近的电子, 这些电子能从外场中获取能量, 跃迁到费密面附近或以外的空状态上. 而费密球内部离费密面远的状态全被电子占拒, 这些电子从外场中获取的能量不足以使其跃迁到费密面附近或以外的空状态上. 对电流和电导有贡献的电子仅是费密面附近电子的结论从式x k S x x E S v e j F ετπ∇=⎰d 4222和立方结构金属的电导率 E S v e k S x F ∇=⎰d 4222τπσ 看得更清楚. 以上两式的积分仅限于费密面, 说明对电导有贡献的只能是费密面附近的电子.总之, 仅仅是费密面附近的电子对比热和电导有贡献, 二者本质上的联系是: 对比热和电导有贡献的电子是其能态能够发生变化的电子, 只有费密面附近的电子才能从外界获取能量发生能态跃迁.8.在常温下, 两金属接触后, 从一种金属跑到另一种金属的电子, 其能量一定要达到或超过费密能与脱出功之和吗[解答]电子的能量如果达到或超过费密能与脱出功之和, 该电子将成为脱离金属的热发射电子. 在常温下, 两金属接触后, 从一种金属跑到另一种金属的电子, 其能量通常远低于费密能与脱出功之和. 假设接触前金属1和2的价电子的费密能分别为1F E 和2F E , 且1F E >2F E , 接触平衡后电势分别为1V 和2V . 则两金属接触后, 金属1中能量高于11eV E F -的电子将跑到金属2中. 由于1V 大于0, 所以在常温下, 两金属接触后, 从金属1跑到金属2的电子, 其能量只小于等于金属1的费密能.9.两块同种金属, 温度不同, 接触后, 温度未达到相等前, 是否存在电势差 为什么[解答]两块同种金属, 温度分别为1T 和2T , 且1T >2T . 在这种情况下, 温度为1T 的金属高于0F E 的电子数目, 多于温度为2T 的金属高于0F E 的电子数目. 两块金属接触后, 系统的能量要取最小值, 温度为1T 的金属高于0F E 的部分电子将流向温度为2T 的金属. 温度未达到相等前, 这种流动一直持续. 期间, 温度为1T 的金属失去电子, 带正电; 温度为2T 的金属得到电子, 带负电, 二者出现电势差.10.如果不存在碰撞机制, 在外电场下, 金属中电子的分布函数如何变化[解答]如果不存在碰撞机制, 当有外电场ε后, 电子波矢的时间变化率 εe t -=d d k .上式说明, 不论电子的波矢取何值, 所有价电子在波矢空间的漂移速度都相同. 如果没有外电场ε时, 电子的分布是一个费密球, 当有外电场ε后, 费密球将沿与电场相反的方向匀速刚性漂移, 电子分布函数永远达不到一个稳定分布.11.为什么价电子的浓度越高, 电导率越高[解答]电导σ是金属通流能力的量度. 通流能力取决于单位时间内通过截面积的电子数(参见思考题18). 但并不是所有价电子对导电都有贡献, 对导电有贡献的是费密面附近的电子. 费密球越大, 对导电有贡献的电子数目就越多. 费密球的大小取决于费密半径3/12)3(πn k F =.可见电子浓度n 越高, 费密球越大, 对导电有贡献的电子数目就越多, 该金属的电导率就越高.12.电子散射几率与声子浓度有何关系 电子的平均散射角与声子的平均动量有何关系[解答]设波矢为k 的电子在单位时间内与声子的碰撞几率为),',(θΘk k , 则),',(θΘk k 即为电子在单位时间内与声子的碰撞次数. 如果把电子和声子分别看成单原子气体, 按照经典统计理论, 单位时间内一个电子与声子的碰撞次数正比与声子的浓度.若只考虑正常散射过程, 电子的平均散射角θ与声子的平均波矢q 的关系为由于F k k k ==', 所以F F k q k q 222sin==θ.在常温下, 由于q <<k , 上式可化成 F F k q k q ==θ.由上式可见, 在常温下, 电子的平均散射角与声子的平均动量q 成正比. 13.低温下, 固体比热与3T 成正比, 电阻率与5T 成正比, 2T 之差是何原因[解答]按照德拜模型, 由式可知, 在甚低温下, 固体的比热 34)(512D B V T Nk C Θπ=.而声子的浓度⎰⎰-=-=m B m B T k p T k ce v e D V n ωωωωωωπωω0/2320/1d 231d )(1 ,作变量变换 T k x B ω =,得到甚低温下 333232T v Ak n p Bπ=, 其中 ⎰∞-=021d x e x x A .可见在甚低温下, 固体的比热与声子的浓度成正比.按照§纯金属电阻率的统计模型可知, 纯金属的电阻率与声子的浓度和声子平均动量的平方成正比. 可见, 固体比热与3T 成正比, 电阻率与5T 成正比, 2T 之差是出自声子平均动量的平方上. 这一点可由式得到证明. 由可得声子平均动量的平方286220/240/3321d 1d )(T v v Bk e v e v q s p B T k s T k p D B D B =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎰⎰ωωωωωωωω ,其中⎰⎰∞∞--=02031d 1d x x e x x e x x B 。
《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r 同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
电科固体物理第六章第七章思考题和作业题一、基本概念1. 自由电子气、2. 费米面、3. 费米分布函数、4. 电子的亲和势、5. 功函数、6. 接触电势差、7. 布洛赫函数、8. 近自由电子近似、9. 禁带宽度、10. 紧束缚近似、11. 有效质量、12. 空穴二、思考题1. 自由电子气的经典模型和量子模型的主要区别是什么?2. 你是如何理解绝对零度下和常温下电子的平均动能相近这一点的?3. 为什么价电子的浓度越大,价电子的平均动能就越大?4. 为什么价电子的浓度越高,电导率越高?5. 在常温下,两金属接触后,从一种金属跑到另一种金属的电子,其能量一定要达到或超过费米能和脱出功之和吗?6. 近自由电子近似模型和紧束缚近似模型在解释能带和禁带的形成方面有什么不同?7. 在布里渊区边界上电子的能带有何特点?8. 一维周期势函数的傅里叶级数∑=n nx a i ne V x V π2)(中,指数函数nx a i e π2的形式是由什么条件决定的?9. 紧束缚模型下,内层电子的能带与外层电子的能带相比较,哪一个宽?为什么?10. 带顶和带底附近电子的有效质量有何特点?11. 能带理论是如何解释导体和绝缘体相区别的本质的?12. 本征半导体的能带与绝缘体的能带有何异同?三、作业题1. 试证明二维金属中自由电子气的单位面积能态密度为2)(h πm E g =。
2. 二维电子气的能态密度为2)(h πm E g =,证明费米能为()[]1/exp ln 2−=T mk n T k E B B F h π,其中n 为单位面积的电子数。
3. 每个原子占据体积3a ,绝对零度时价电子的费米半径为()a k F3/1206π=,计算每个原子的价电子数目。
4. Show that the kinetic energy of a three-dimensional gas of N free electrons at 0 K is F NE E 53=. 5. 晶格常数为a 的一维晶体中,电子的波函数为x a i x k πψ3cos)(=,求电子在以上状态中的波矢。
第六章自由电子论和电子的输运性质习题1. 一金属体积为V ,电子总数为N ,以自由电子气模型(1)在绝热条件下导出电子气的压强为 其中.5300F NE U = (2)证明电子气体的体积弹性模量【解答】(1)在绝热近似条件下,外场力对电子气作的功W 等于系统内能的增加dU ,即式中P 是电子气的压强.由上式可得由此得到(2将2.证明费米能其中n 作变量变换则有即T k E B F e +1由上式解得3.证明解法二:电子总数由以上两式解得4.由同种金属制做的两金属块,一个施加30个大气压,另一个承受一个大气压,设体积弹性模量为21110m N ,电子浓度为328105m ⨯,计算两金属块间的接触电势差.【解答】两种金属在同一环境下,它们的费密能相同,之间是没有接触电势差的.但当体积发生变化,两金属的导电电子浓度不同,它们之间将出现接触电势差.设压强为0时金属的费密能为F E ,金属1受到一个大气压后,费密能为1F E ,金属2受到30个大气压后,费密能为2F E ,则由《固体物理教程》(6.25)式可知,金属1与金属2间的接触电势差由上边第3题可知由《固体物理教程》(2.10)式可知,固体的体积变化V ∆与体积弹性模量K 和压强P 的关系为所以两金属的接触电势差将代入两金属的接触电势差式子,得5.若磁场强度B 沿z 轴,电流密度沿x 轴,金属中电子受到的碰撞阻力为P P ,/τ-是电子的动量,试从运动方程出发,求金属的霍尔系数.【解答】电子受的合力 ()().B v mv B v P dt P d F ⨯+--=⨯+--==ετετ(1) 由于电子受的阻力与它的速度成正比,所以电场力与阻力平衡时的速度是最高平均速度,此时电子的加速度变为0,(1)式化成().B v me v ⨯+-=ετ(2) 因为电流的方向沿x 轴,平衡后,电子沿z 轴方向和y 轴的速度分量为0.因此,由(2)式得,x x m e v ετ-=(3)0=y ε=图6.3x j =和(5R H 得到 R H 其中l 令则(W 式中F τ是费密面上的电子的平均自由时间.电子的平均自由时间F τ和平均速度F v 与平均自由程l的关系是而平均速度由下式求得于是得到 ()2102223F B mE T k nl k π=.7.设沿xy 平面施加一电场,沿z 轴加一磁场,试证,在一级近似下,磁场不改变电子的分布函数,并用经典力学解释这一现象. 【解答】在只有磁场和电场情况下,《固体物理教程》(6.47)式化成由上式可解得考虑到外界磁场和电场对电子的作用远小于原子对电子的作用,必有f k ∇0f k ∇≈.于是有相当好的近似所以 可见在一级近似下,磁场对分布函数并无贡献.由经典理论可知,电子在磁场中运动受到一洛伦兹力B v e ⨯-,该力与电子的运动方向v 垂直,它只改变电子的运动方向,并不增加电子的能量,即不改变电子的能态.也就是说,从经典理论看,磁场不改变电子的分布函数. 8.0f 是平衡态电子分布函数,证明【解答】金属中导电电子处于平衡态时,其分布函数 ()110+=-T k E E B F e f .令则有 9.立方晶系金属,电流密度j 与电场ε和磁场B 的关系是εεβεαεσ2B B B B j -•+⨯+= ,式中 其中10.其中B A >(1(2(1所以 *m F v = A B 于是因为B A >,所以A 金属电子的费米速度大.(2)如果外电场沿x 方向,则x 方向的电场x ε与电流密度x j 的关系(参见《固体物理教程》6.84式)为上式积分沿费米面进行.将上式与比较,可得立方晶系金属的电导率 在费米面是一球面的情况下,上式积分为其中利用了v E k =∇.将关系式代入电导率式得可见B 金属的电导率大.11.求出一维金属中自由电子的能态密度、费米能级、电子的平均动能及一个电子对比热的贡献.【解答】设一维一价金属有N 个导电电子,晶格常数为α.如图6.4所示,在dE E E +-图6.4一维金属中自由电子的能带 能量区间波矢数目为利用自由电子的能量于波矢的关系可得dE E E +-能量区间的量子态数目由此得到能态密度其中=E F E ,所以能量E 图6.5其中能量其中平均一个电子所具有的能量利用分布积分,得到利用《固体物理教程》(6.7)和(6.10)两式得平均一个电子对热容量的贡献为13.证明热发射电子垂直于金属表面运动的平均动能为T k B ,平行于表面运动的平均动能也是T k B .【解答】当无外加电场,温度也不太高时,金属中的价电子是不会脱离金属的,因为金属中的价电子被原子实紧紧的吸引着,电子处于深度为0E 一势阱中.如图6.6所示,要使最低能级上的电子逃离金属,它至少要从外界获得0E 的能量.要使费米面上的电子逃离金属,它至少要从外界获得()F E E -=0ϕ的能量.为方便计,取一单位体积的金属.在k 空间内k d范围内的电子数目图6.6深度为0E 势阱其中转换成速度空间,则在v d v v+→区间内的电子数目 式中利用了关系对于能脱离金属的热发射电子,其能量E 必满足()ϕ>-F E E 对大多数金属来说,T k B >>ϕ,所以必有 式中已取于是设金属表面垂直于z 轴,热发射电子沿z 轴方向脱离金属,则要求而速度分量v 利用积分公式得到利用积分公式得到 0E 因为在v 利用积分公式14.其中(0F E N 式中于是由此可得(),100F F E N E =--- 15.每个原子占据的体积为3a ,绝对零度时价电子的费密半径为计算每个原子电子数目.【解答】由《固体物理教程》(6.4)式可知,在绝对零度时导电电子的费密半径现在已知一金属导电电子的费密半径所以,该金属中导电电子的密度 3a 是一个原子占据的体积,由此可知,该金属的原子具有两个价电子.16.求出绝对零度时费密能0F E 、电子浓度n 、能态密度()0F E N及电子比热e V C 与费密半径0F k 的关系. 【解答】绝对零度时电子的费密半径电子浓度n 与费密半径的关系是 由《固体物理教程》(6.3)式可得到绝对零度时电子的费密能与费密半径的关系为由《固体物理教程》(5.103)式可知,自由电子的能态密度是由此可得由《固体物理教程》(6.13)式可知平均一个电子对热容量的贡献为因为所以一个电子的热容与费密半径的关系为17.【解答】F k 将漂移速度将代入上式,近的少数电子由于n <<'18.则A 由上式的到齐次方程的通解为 τt e B - .电子漂移速度满足的方程的解为 d v =τt e B - ().10t i e i m e ωωττε+-当电子达到稳定态后,上式右端的第一项趋于0.于是d v =().10t ie i m e ωωττε+- 按照经典理论,电流密度j 与漂移速度d v ,电导σ和电场强度ε的关系为j =()().102εωσωτεω=+=-t i d e t i m ne v ne 由上式得其中如果设电场为则有19.求出立方晶系金属的积分1P 、32P P和 【解答】由《固体物理教程》(6.119),(6.120)和(6.123)三式得以上三式中的面积分是在一个等能面上进行,对于等能面是球面的情况,面积分的值E =因为另外21.,方向与温与正向温差电流反向,条件更不可少其实此问题用6.19题的结果也可证明.忽略费密能随温度的变化,则将6.19题的21P P 和代入上式,得22.当金属中存在温度梯度时,电子分布函数()x f 可以看成是平衡分布函数0f 的刚性平移,证明平移量为.【解答】 当金属中存在温度梯度时,导电子的分布函数变成了(参见《固体物理教程》6.116式) 其中v 是电子的平均速度,n 是电子浓度,ε是温差电场.将代入上式得到将上式与下式比较得到上式表明,当金属中存在温度梯度时,导电电子的分布函数()k f 可看成平衡分布函数()k f0在波矢空间里的刚性平移,平移量为。
1.什么是负微分电导现象:答:dJ/dE为微分电导当半导体中电流密度随电场增加而减小时微分电导小于零称为负微分电导即总电流随着电场的增大反而减小的现象。
2.分析半导体GaAs在电场作用下的谷间电子转移效应和输运特性:转移效应:由于GaAs导带存在着两种能谷,即卫星能谷和中心能谷。
在零场和弱场的情况下,所有的电子都处于中心能谷,总电流为中心能谷迁移电流:J=J1eμ1F当电场增大,一部分电子跃迁到卫星能谷,使得总电流密度同时由卫星能谷和中心能谷提供:J=J1eμ1F+J2eμ2F由于卫星能谷的电子迁移速率远小于中心能谷,因此产生总电流密度随着外电场见效的现象即负微分电导现象最后当电场加大所有电子迁移到卫星能谷,整个电流密度由卫星能谷提供:J=J2eμ2F总电流密度随外电场增大而增大。
输运特性:由于负微分电导现象的产生,较强的电场意味着电子速度较小,因此累积层的前沿出现电子耗尽而厚颜出现电子的进一步累积。
直到累积层内的电场增大到一定程度使得累积层内外电子速度一样时,达到稳定状态并以恒定速度漂移。
其循环往复就形成了GUUN震荡。
3.分析超晶格中微带输运和级联隧穿两种情况下的负微分电导特性:微带输运:源于电子被较大的电场驱入负的有效质量区,电子的漂移速度随外电场的增大而减小。
出现负微分电导现象。
级联共振隧穿:主要源于相邻阱束缚态能级之间的级联共振隧穿,可以产生多个负微分电导区。
无论是微带运输还是级联共振隧穿,超晶格中的负微分电导特性都会导致电场畴的形成。
4.描述负微分电导特性导致电场畴产生的物理过程:由于负微分电导特性,一个较强的电场意味着电子的速度较小,因此累积层的前沿出现电子的耗尽,同时在累积层的后沿出现电子的进一步累积,这使累积层增大,累积层内的电厂也在增大。
直到使得累积层内外的电子速度一样时,达到稳定状态,并以恒定速度在电厂中漂移,整个样品的电厂分布分为偶极层的强场区和样品其余部分的弱场区,偶极层强场区称为电场畴。