固体物理学答案详细版
- 格式:wps
- 大小:1.32 MB
- 文档页数:33
(1) 共价键结合的特点?共价结合为什么有“饱和性”和“方向性”?饱和性和方向性饱和性:由于共价键只能由为配对的电子形成,故一个原子能与其他原子形成共价键的数目是有限制的。
N<4,有n 个共价键;n>=4,有(8-n )个共价键。
其中n 为电子数目。
方向性:一个院子与其他原子形成的各个共价键之间有确定的相对取向。
(2) 如何理解电负性可用电离能加亲和能来表征?电离能:使原子失去一个电子所必须的能量其中A 为第一电离能,电离能可表征原子对价电子束缚的强弱;亲和势能:中性原子获得电子成为-1价离子时放出的能量,其中B 为释放的能量,也可以表明原子束缚价电子的能力,而电负性是用来表示原子得失电子能力的物理量。
故电负性可用电离能加亲和势能来表征。
(3) 引入玻恩-卡门条件的理由是什么?在求解原子运动方程是,将一维单原子晶格看做无限长来处理的。
这样所有的原子的位置都是等价的,每个原子的振动形式都是一样的。
而实际的晶体都是有限的,形成的键不是无穷长的,这样的链两头原子就不能用中间的原子的运动方程来描述。
波恩—卡门条件解决上述困难。
(4) 温度一定,一个光学波的声子数目多呢,还是一个声学波的声子数目多? 对同一振动模式,温度高时的声子数目多呢,还是温度低的声子数目多?温度一定,一个声学波的声子数目多。
对于同一个振动模式,温度高的声子数目多。
(5) 长声学格波能否导致离子晶体的宏观极化?不能。
长声学波代表的是原胞的运动,正负离子相对位移为零。
(6)晶格比热理论中德拜(Debye )模型在低温下与实验符合的很好,物理原因是什么?爱因斯坦模型在低温下与实验存在偏差的根源是什么?在甚低温下,不仅光学波得不到激发,而且声子能量较大的短声学波也未被激发,得到激发的只是声子能量较小的长声学格波。
长声学格波即弹性波。
德拜模型只考虑弹性波对热容德贡献。
因此,在甚低温下,德拜模型与事实相符,自然与实验相符。
爱因斯坦模型过于简单,假设晶体中各原子都以相同的频率做振动,忽略了各格波对热容贡献的差异,按照爱因斯坦温度的定义可估计出爱因斯坦频率为光学支格波。
一·简答题1.晶格常数为a 的体心立方、面心立方结构,分别表示出它们的基矢、原胞体积以及最近邻的格点数。
(答案参考教材P7-8)(1)体心立方基矢:123()2()2()2ai j k a i j k ai j k ααα=+-=-++=-+,体积:312a ,最近邻格点数:8(2)面心立方基矢:123()2()2()2a i j a j k ak i ααα=+=+=+,体积:314a ,最近邻格点数:122.习题1.5、证明倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。
证明:因为33121323,a aa a CA CB h h h h =-=-,112233G h b h b h b =++ 利用2i j ij a b πδ⋅=,容易证明12312300h h h h h h G CA G CB ⋅=⋅=所以,倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。
3.习题 1.6、对于简单立方晶格,证明密勒指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长;解:简单立方晶格:123a a a ⊥⊥,123,,a ai a aj a ak ===由倒格子基矢的定义:2311232a a b a a a π⨯=⋅⨯,3121232a a b a a a π⨯=⋅⨯,1231232a a b a a a π⨯=⋅⨯倒格子基矢:123222,,b i b j b k a a aπππ=== 倒格子矢量:123G hb kb lb =++,222G hi k j l k a a aπππ=++ 晶面族()hkl 的面间距:2d Gπ=2221()()()h k l a a a=++4.习题1.9、画出立方晶格(111)面、(100)面、(110)面,并指出(111)面与(100)面、(111)面与(110)面的交线的晶向。
固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。
《固体物理学》习题解答第一章 晶体结构1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为a 。
解:氯化钠与金刚石型结构都是复式格子。
氯化钠的基元为一个Na +和一个Cl -组成的正负离子对。
金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。
由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:123()2()2()2a a a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩a j k a k i a i j相应的晶胞基矢都为:,,.a a a =⎧⎪=⎨⎪=⎩a ib jc k2. 六角密集结构可取四个原胞基矢123,,a a a 与4a ,如图所示。
试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的晶面指数()h k l m 。
解:(1).对于13O A A '面,其在四个原胞基矢上的截矩分别为:1,1,12-,1。
所以,其晶面指数为()1121。
(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,12-,∞。
所以,其晶面指数为()1120。
(3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。
所以,其晶面指数为()1100。
(4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。
所以,其晶面指数为()0001。
3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方:6π;。
证明:由于晶格常数为a ,所以:(1).构成简立方时,最大球半径为2m aR =,每个原胞中占有一个原子,334326m a V a ππ⎛⎫∴== ⎪⎝⎭36m V a π∴= (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R =,每个晶胞中占有两个原子,334322348m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭328m V a ∴=(3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R =,每个晶胞占有4个原子,334244346m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭346m V a ∴=(4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高则正好是其原胞基矢c 的长度的一半,由几何知识易知3m R =c 。
《固体物理学》部分习题解答1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。
解由倒格子定义体心立方格子原胞基矢倒格子基矢同理可见由为基矢构成的格子为面心立方格子面心立方格子原胞基矢倒格子基矢同理可见由为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为,其中为正格子原胞体积证倒格子基矢倒格子体积1.5证明:倒格子矢量垂直于密勒指数为的晶面系。
证:容易证明与晶面系正交。
1.6如果基矢构成简单正交系证明晶面族的面间距为说明面指数简单的晶面,其面密度较大,容易解理证简单正交系倒格子基矢倒格子矢量晶面族的面间距面指数越简单的晶面,其晶面的间距越大晶面上格点的密度越大,这样的晶面越容易解理1.9 指出立方晶格(111)面与(100)面,(111)面与(110)面的交线的晶向解(111)面与(100)面的交线的AB-AB平移,A与O重合。
B点位矢(111)与(100)面的交线的晶向——晶向指数(111)面与(110)面的交线的AB——将AB平移,A与原点O重合,B点位矢(111)面与(110)面的交线的晶向――晶向指数2.1.证明两种一价离子组成的一维晶格的马德隆常数为.证设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用r表示相邻离子间的距离,于是有前边的因子2是因为存在着两个相等距离的离子,一个在参考离子左面,一个在其右面,故对一边求和后要乘2,马德隆常数为当X=1时,有2.3 若一晶体的相互作用能可以表示为求1)平衡间距2)结合能W(单个原子的)3)体弹性模量4)若取,计算值。
解1)晶体内能平衡条件2) 单个原子的结合能3) 体弹性模量晶体的体积——A为常数,N为原胞数目晶体内能体弹性模量由平衡条件体弹性模量()4)2.6.用林纳德—琼斯(Lennard—Jones)势计算Ne在bcc(球心立方)和fcc(面心立方)结构中的结合能之比值.解2.7.对于,从气体的测量得到Lennard—Jones势参数为计算结合成面心立方固体分子氢时的结合能(以KJ/mol单位),每个氢分子可当做球形来处理.结合能的实验值为0.751kJ/mo1,试与计算值比较.解以为基团,组成fcc结构的晶体,如略去动能,分子间按Lennard—Jones势相互作用,则晶体的总相互作用能为:因此,计算得到的晶体的结合能为2.55KJ/mol,远大于实验观察值0.75lKJ/mo1.对于的晶体,量子修正是很重要的,我们计算中没有考虑零点能的量子修正,这正是造成理论和实验值之间巨大差别的原因.3.1.已知一维单原子链,其中第个格波,在第个格点引起的位移为,,为任意个相位因子,并已知在较高温度下每个格波的平均能量为,具体计算每个原子的平方平均位移。
第一章、晶体的结构习题1.以刚性原子球堆积模型,计算以下各结构的致密度分别为:(1)简立方,;(2)体心立方,6π;83(3)面心立方,(4)六角密积,;62;62π(5)金刚石结构,;163[解答]设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度,设n 为一个晶胞中的刚性原子球数,r 表示刚性原子球半径,V 表示晶胞体积,则致密度=ρVr n 334π(1)对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积,如图1.2所示,中心在1,2,3,4处的原子球将依次相切,因为,,433a V r a ==面1.2简立方晶胞晶胞内包含1个原子,所以=ρ6)(33234π=a a (2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如图1.3所示,体心位置O 的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为晶胞内包含2个原子,所以,,433a V r a ===ρππ83(*2334334=aa图1.3体心立方晶胞(3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为,1个晶胞内包含4个原子,所以3,42a V r a ===.ρ62(*4334234ππ=a a图1.4面心立方晶胞(4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。
5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切,图 1.5六角晶胞图 1.6正四面体晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高h =223232c r a ==晶胞体积V =,222360sin ca ca =�一个晶胞内包含两个原子,所以ρ=.ππ62)(*22233234=ca a(5)对金刚石结构,任一个原子有4个最近邻,若原子以刚性球堆积,如图1.7所示,中心在空间对角线四分之一处的O 原子与中心在1,2,3,4处的原子相切,因为,83r a =晶胞体积,3a V=图1.7金刚石结构一个晶胞内包含8个原子,所以ρ=.163)83(*83334ππ=aa 2.在立方晶胞中,画出(102),(021),(1),和(2)晶面。
固体物理学习题答案朱建国版HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】《固体物理学》习题参考第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f和R b代表面心立方和体心立方结构中最近邻原子间的距离,试问R f/R b等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a:对于面心立方,处于面心的原子与顶角原子的距离为:R f=2a 对于体心立方,处于体心的原子与顶角原子的距离为:R b那么,RfRb=31.2 晶面指数为(123)的晶面ABC是离原点O最近的晶面,OA、OB和OC分别与基失a1,a2和a3重合,除O点外,OA,OB和OC上是否有格点若ABC面的指数为(234),情况又如何答:根据题意,由于OA、OB和OC分别与基失a1,a2和a3重合,那么1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:正方a=b 六方a=b矩形带心矩形a=b平行四边1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213) 答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id=== ……… (1) 由于a 3=–(a 1+ a 2) 把(1)式的关系代入,即得 根据上面的证明,可以转换晶面族为(001)→(0001),(133)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(2)体心立方:8(3)面心立方:6(4)六方密堆积:6(5)。
第一章、 晶体的结构习 题1. 以刚性原子球堆积模型,计算以下各结构的致密度分别为: (1)简立方,6π; (2)体心立方, ;83π (3)面心立方,;62π (4)六角密积,;62π (5)金刚石结构,;163π [解答]设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度,设 n 为一个晶胞中的刚性原子球数,r 表示刚性原子球半径,V 表示晶胞体积,则致密度ρ=Vr n 334π(1) 对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积,如图1.2所示,中心在1,2,3,4处的原子球将依次相切,因为,,433a V r a ==面1.2 简立方晶胞 晶胞内包含1个原子,所以ρ=6)(33234ππ=aa(2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如图1.3所示,体心位置O 的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为,,433a V r a ==晶胞内包含2个原子,所以ρ=ππ83)(*2334334=a a图1.3 体心立方晶胞(3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图 1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为3,42a V r a ==,1个晶胞内包含4个原子,所以ρ=62)(*4334234ππ=a a .图1.4面心立方晶胞(4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。
5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切,图 1.5 六角晶胞 图 1.6 正四面体晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高h =223232c r a == 晶胞体积 V = 222360sin ca ca =, 一个晶胞内包含两个原子,所以ρ=ππ62)(*22233234=ca a .(5)对金刚石结构,任一个原子有4个最近邻,若原子以刚性球堆积,如图1.7所示,中心在空间对角线四分之一处的O 原子与中心在1,2,3,4处的原子相切,因为,83r a =晶胞体积 3a V =,图1.7金刚石结构一个晶胞内包含8个原子,所以ρ=163)83(*83334ππ=aa . 2.在立方晶胞中,画出(102),(021),(122-),和(201-)晶面。
固体物理学·习题指导配合《固体物理学(朱建国等编著)》使用2020年6月21日第1章晶体结构 0第2章晶体的结合 (13)第3章晶格振动和晶体的热学性质 (22)第4章晶体缺陷 (35)第5章金属电子论 (39)第1章晶体结构有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f和R b代表面心立方和体心立方结构中最近邻原子间的距离,试问R f/R b等于多少答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a:对于面心立方,处于面心的原子与顶角原子的距离为:R f=2a对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a那么,Rf Rb晶面指数为(123)的晶面ABC是离原点O最近的晶面,OA、OB和OC分别与基失a1,a2和a3重合,除O点外,OA,OB和OC上是否有格点若ABC面的指数为(234),情况又如何答:晶面族(123)截a1,a2,a3分别为1,2,3等份,ABC面是离原点O最近的晶面,OA的长度等于a1的长度,OB的长度等于a2长度的1/2,OC的长度等于a3长度的1/3,所以只有A 点是格点。
若ABC面的指数为(234)的晶面族,则A、B和C都不是格点。
二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型,两晶轴ba、,夹角ϕ,如下表所示。
4长方2,πϕ=≠ba简单长方(图中4所示)有心长方(图中5所示)1mm,2mm1 简单斜方2 简单正方3 简单六角4 简单长方5 有心长方二维布拉维点阵在六方晶系中,晶面常用4个指数(hkil)来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a1,a2,a3上的截距a1/h,a2/k,a3/i,第四个指数表示该晶面的六重轴c上的截距c/l.证明:i=-(h+k)并将下列用(hkl)表示的晶面改用(hkil)表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil)的晶面间距为d,晶面法线方向的单位矢量为n°。
固体物理习题参考答案1.尝试用Drude模型推导焦耳定律W=RI2解:记电子在两次碰撞之间经过的距离为l,导体横截面为S,总电子数为N,则R=lσS,I=jS.在Drude模型中j=−env,结合j=σE得到:j2=−envσE,因此nEv=−j2σe.因此,W=NF v=−nSleEv=Sle j2σe=Slj2σ=RI2此即焦耳定律。
2.用无限深势阱代替周期性边界条件,即在边界处有无限高势垒,试确定:(1)波矢k的取值和k空间状态密度(2)能量空间状态密度(3)零温度时的费米能级和电子气总能(4)电子出现在空间任何一点的几率(5)平均动量(6)问:由上面这些结果,无限深势阱边界条件与周期性边界条件的解有什么不同?两种边界条件的解的根本差别在哪里?用哪个边界条件更符合实际情况?更合理?为什么?解:(1)容易得到无限深势阱内波函数的形式为ψ(x,y,z)=A sin(k x x)sin(k y y)sin(k z z)其中,k i=n iπL,i=x,y,z;n i=±1,±2,±3,···由边界条件给出。
归一化波函数得到A=√8L3=√8V.由于每个状态在k空间所占的体积为∆k=π3/V,所以k空间状态密度为1∆k =Vπ3.(2)能量E到E+d E之间的状态数为d N=2×Vπ34πk2d k而d E= 22m2k d k→d k=(m2 2)1/21√Ed E所以d N=4Vπ2(2m2)3/2√E d E.能量空间状态密度为D(E)=d Nd E=4Vπ2(2m2)3/2√E.(3)状态密度积分得到电子总数∫E0F 04Vπ2(2m2)3/2√E d E=N.所以费米能级可表示为E0F =28m(3π2n)2/3,其中n=N/V。
因此系统总能量为∫E0F 04Vπ2(2m2)3/2E√E d E=35E0FN.(4)电子出现在空间任意一点的几率为|ψ(x,y,z)|2=8Vsin2(k x x)sin2(k y y)sin2(k z z).(5)电子x方向的平均动量为(y,z方向类似)<p x>=∫L0∫L∫Lψi∂ψ∂xd x d y d z=√2Ln xπi∫Lsinπn x xLcosπn x xLd x=0.(6)讨论驻波解:(a)驻波解不是动量算符的本征解。
第一章 晶体结构1.1、 如果将等体积球分别排成下列结构,设x 表示钢球所占体积与总体积之比,证明:结构 X简单立方52.06=π体心立方68.083≈π 面心立方74.062≈π 六角密排74.062≈π 金刚石34.063≈π解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06834343333====πππrra r x (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)334(3423423333≈=⨯=⨯=πππr r a r x (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)22(3443443333≈=⨯=⨯=πππr r a r x (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062)22(3443443333≈=⨯=⨯=πππr r a r x (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.06333834834833333≈=⨯=⨯=πππr r a r x 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a 那么,Rf Rb1.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()o o a n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为(001)→(0001),(133)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(2(3)面心立方:6(4)六方密堆积:6(5)金刚石:。
《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a 那么,Rf Rb1.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()o o a n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为(001)→(0001),(133)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(2(3)面心立方:6(4)六方密堆积:6(5)金刚石:。
答:令Z 表示一个立方晶胞中的硬球数,Ni 是位于晶胞内的球数,Nf 是在晶胞面上的球数,Ne 是在晶胞棱上的球数,Nc 是在晶胞角隅上的球数。
于是有:111248i f e c Z N N N N =+++ 边长为a 的立方晶胞中堆积比率为334*3r F Z aπ=假设硬球的半径都为r ,占据的最大面积与总体积之比为θ,依据题意 (1)对于简立方,晶胞中只含一个原子,简立方边长为2r ,那么:θ= 334/3(2)r r π= 6π(2)对于体心立方,晶胞中有两个原子,其体对角线的长度为4r,那么:θ= 3= 8(3)对于面心立方,晶胞中有四个原子,面对角线的长度为4r ,则其边长为r ,那么:θ= 3= 6(4)对于六方密堆积一个晶胞有两个原子,其坐标为(000)(1/3,2/3,1/2),在理想的密堆积情况下,密排六方结构中点阵常数与原子半径的关系为a=2r ,因此θ342()r π⨯=6 (5)对于金刚石结构Z=8 8r =那么33344*8(338r F Z a ππ==⨯⨯=16.1.6 有一晶格,每个格点上有一个原子,基失(以nm 为单位)a=3i ,b=3j ,c=1.5(i+j+k ),此处i ,j ,k 为笛卡儿坐标系中x ,y ,z 方向的单位失量.问: (1)这种晶格属于哪种布拉维格子?(2)原胞的体积和晶胞的体积各等于多少? 答:(1)因为a=3i ,b=3j ,而c=1.5(i+j+k )=1/2(3i+3j+3k )=1/2(a+b+c ′)式中c ′=3c 。
显然,a 、b 、c ′构成一个边长为3*10-10m 的立方晶胞,基矢c 正处于此晶胞的体心上。
因此,所述晶体属于体心立方布喇菲格子。
(2)晶胞的体积= c (a b)'⨯= 3k (3i 3j)⨯=27*10-30(m 3)原胞的体积=c (a b)⨯=1(333)(33)2i j k i j +++=13.5*10-30(m 3) 1.7六方晶胞的基失为:2a a ai j =+,2a b j =+,c ck = 求其倒格子基失,并画出此晶格的第一布里渊区.答:根据正格矢与倒格矢之间的关系,可得: 正格子的体积Ω=a·(b*c )=2c 那么,倒格子的基矢为12()b c b π⨯=Ω2j a π=+ ,22()c a b π⨯=Ω2j a π=+ ,32()a b b π⨯=Ω2k c π= 其第一布里渊区如图所示:1.8 若基失a ,b ,c 构成正交晶系,求证:晶面族(hkl )的面间距为hkl d =答:根据晶面指数的定义,平面族(hkl )中距原点最近平面在三个晶轴a 1,a 2,a 3上的截距分别为1a h ,2a k ,3a l。
该平面(ABC )法线方向的单位矢量是 123dh dk dl n x y z a a a =++ 这里d 是原点到平面ABC 的垂直距离,即面间距。
由|n|=1得到222123()()()1dh dk dl a a a ++= 故12222123[()()()]h k l d a a a -=++1.9 用波长为0.15405nm 的X 射线投射到钽的粉末上,得到前面几条衍射谱线的布拉格角θ(1)各谱线对应的衍射晶面族的面指数; (2)上述各晶面族的面间距;(3)利用上两项结果计算晶格常数.答:对于体心立方结构,衍射光束的相对强度由下式决定:2222|[1cos ()]sin ()hkl I F f n h k l f n h k l ππ∞=++++++考虑一级衍射,n=1。
显然,当衍射面指数之和(h+k+l )为奇数时,衍射条纹消失。
只有当(h+k+l )为偶数时,才能产生相长干涉。
因此,题给的谱线应依次对应于晶面(110)、(200)、(211)、(220)和(310)的散射。
由布喇格公式2sin (1)hkl d n θλ==得 1011011.54052.29510()2sin 2sin19.611od m λθ-===⨯ 同法得1020021.633410()2sin d m λθ-==⨯1021131.337710()2sin d m λθ-==⨯1022031.160910()2sin d m λθ-==⨯1031041.040310()2sin d m λθ-==⨯应用立方晶系面间距公式222hkl a d h k l=++可得晶格常数222hkl a d h k l =++把上面各晶面指数和它们对应的面间距数值代入,依次可得a 的数值*10-10m 为3.2456,3.2668,3.2767,3.2835,3.2897取其平均值则得103.272510()a m -=⨯1.10 平面正三角形,相邻原子的间距为a ,试给出此晶格的正格矢和倒格矢;画出第一和第二布里渊区.答:参看下图,晶体点阵初基矢量为1a ai =21322a ai aj =+用正交关系式{022,i ji j ij i j b a ππδ≠===求出倒易点阵初基矢量b1,b2。
设 111x y b b i b j =+ 222x y b b i b j =+由112b a π= 120b a = 210b a = 222b a π= 得到下面四个方程式11()2x y ai b i b j π+= (1)1113()()022x y ai aj b i b j ++= (2) 22()0x y ai b i b j += (3)2213()()222x y ai b i b j π++= (4) 由(1)式可得:12x b aπ=由(2)式可得:13y b a=由(3)式可得:20x b = 由(4)式可得:2y b =于是得出倒易点阵基矢12b i j a π=- 2b j =第三章 习题答案3.1 试求由5个原子组成的一堆单原子晶格的格波频率,设原子质量m =8.35×10-27kg ,恢复力常数β=15N ·m -1解:一维单原子链的解为)(qna t i n Ae X -=ω据周期边界条件 11+=N X X ,此处N=5,代入上式即得 1)5(=-qa i e所以 aq 5=2π ( 为整数) 由于格波波矢取值范围:aq aππ<<-。
则 2525<<-故 可取-2,-1,0,1,2这五个值 相应波矢:a 54π-,a 52π-,0, a 52π,a54π由于2sin4qam βω=,代入β,m 及q 值 则得到五个频率依次为(以rad/sec 为单位) 8.06×1013,4.99×1013,0,4.99×1013,8.06×10133.2 求证由N 个相同原子组成的一维单原子晶格格波的频率分布函数可以表示为 ()2122)(2--=ωωπωρmN式中m m βω4=是格波的最高频率,并求证它的振动模总数恰为N解:对一维单原子链,()()dq q qd q d dN ρρωωρ2ˆ)(=== 所以()()dqd q ωρωρ2= (1)由色散关系2sin4qam βω= 求得2/12)2sin 1(2422cos 4qaa m aqa m dqd -=•=ββω2/12])4[(2ωβ-=m a (2)而()ππρ22NaL q ==, 则由(1)式可得 ()2/1222/12)(2]4[222--=-=ωωπωβπωρm N m a Na 由于m mωβ=4 ,则总的振动模数为 ()ωωωπωωρd Nd N m w w mm 2/1220)(2--==⎰⎰令θωωsin =m,则积分限为0到2/π , 故 ()N Nd N ===-⎰21202cos cos 2πθπθθθπππ3.3 设晶体由N 个原子组成,试用德拜模型证明格波的频率分布函数为()239ωωωρmN=解:由书上(3-69)式可得 ()()32223vv g ωπωωρ== (1)由(3-71)可得 ()v n m D 3/126πωω==由此可得 n v m32332ωπ= ,代入(1)式得 ()239ωωωρmN=3.4 对一堆双原子链,已知原子的质量m =8.35×10-27kg ,另一种原子的质量M =4m ,力常数β=15N ·m -1,试求(1) 光学波的最高频率和最低频率m ax ω和m in ω; (2) 声学波的最高频率Am ax ω; (3) 相应的声子能量(以eV 为单位);(4) 在300K 可以激发频率为m ax ω, m in ω和Am ax ω的声子的数目; (5) 如果用电磁波来激发长光学波振动,电磁波的波长大小。