高中数学《椭圆》
- 格式:ppt
- 大小:1.22 MB
- 文档页数:17
⾼中数学椭圆知识点总结椭圆知识点知识点⼀:椭圆的定义平⾯内⼀个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若2121F F PF PF <+,则动点P 的轨迹⽆图形. 知识点⼆:椭圆的简单⼏何性质椭圆:12222=+b y a x )0(>>b a 与 12222=+bx a y )0(>>b a 的简单⼏何性质标准⽅程12222=+b y a x )0(>>b a 12222=+b x a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤b x ≤,a y ≤对称性关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ±轴长长轴长=a 2,短轴长=b 2 长半轴长=a ,短半轴长=b (注意看清题⽬)离⼼率)10(<<=e ace c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1;(p是椭圆上⼀点)(不等式告诉我们椭圆上⼀点到焦点距离的范围)注意:①与坐标系⽆关的椭圆本⾝固有的性质,如:长轴长、短轴长、焦距、离⼼率等;②与坐标系有关的性质,如:顶点坐标、焦点坐标等知识点三:椭圆相关计算1.椭圆标准⽅程中的三个量c,的⼏何意义222cba+=2.通径:过焦点且垂直于长轴的弦,其长ab22焦点弦:椭圆过焦点的弦。
3.最⼤⾓:p是椭圆上⼀点,当p是椭圆的短轴端点时,2 1PFF∠为最⼤⾓。
第八章 平面解析几何INNOVATIVE DESIGN第5节 椭 圆考试要求1.理解椭圆的定义、几何图形、标准方程.2.掌握椭圆的简单几何性质(范围、对称性、顶点、离心率).3.掌握椭圆的简单应用.内容索引考点突破题型剖析分层精练巩固提升知识诊断基础夯实Z H I S H I Z H E N D U A N J I C H U H A N G S H I知识诊断 基础夯实11.椭圆的定义(1)平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做______.这两个定点叫做椭圆的______,两焦点间的距离叫做椭圆的______,焦距的一半称为半焦距.(2)其数学表达式:集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数:①若________,则集合P 为椭圆;②若________,则集合P 为线段;③若________,则集合P 为空集.知识梳理椭圆焦点焦距a >c a =c a <c2.椭圆的标准方程和几何性质2a2b2c(0,1)a2-b2[常用结论]诊断自测1.思考辨析(在括号内打“√”或“×”)××√√解析 (1)由椭圆的定义知,当该常数大于|F1F2|时,其轨迹才是椭圆,而常数等于|F1F2|时,其轨迹为线段F1F2,常数小于|F1F2|时,不存在这样的图形.2.(选修一P 115习题3.1T6改编)如图,圆O 的半径为定长r ,A 是圆O 内一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和半径OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( )A.椭圆 B.双曲线C.抛物线D.圆解析 连接QA (图略).由已知得|QA |=|QP |,所以|QO |+|QA |=|QO |+|QP |=|OP |=r .又因为点A 在圆内,所以|OA |<|OP |,根据椭圆的定义知,点Q 的轨迹是以O ,A 为焦点,r 为长轴长的椭圆.A又2a=2(2b),即a=2b,则有a2-b2=3b2=c2=3,解得a2=4,b2=1,K A O D I A N T U P O T I X I N G P O U X I考点突破 题型剖析2考点一 椭圆的定义及应用C(2)已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆M在圆C1内部且和圆C1相内切,和圆C2相外切,则动圆圆心M的轨迹方程为__________________.解析 设圆M的半径为r,则|MC1|+|MC2|=(13-r)+(3+r)=16>8=|C1C2|,所以M的轨迹是以C1,C2为焦点的椭圆,且2a=16,2c=8,椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等.(2)通常将定义和余弦定理结合使用求解关于焦点三角形的周长和面积问题.C得|MF1|+|MF2|=2×3=6,当且仅当|MF1|=|MF2|=3时等号成立.(2)若△ABC的两个顶点为A(-3,0),B(3,0),△ABC周长为16,则顶点C的轨迹方程为_______________________.解析 由题知点C到A,B两点的距离之和为10,故C的轨迹为以A(-3,0),B(3,0)为焦点,长轴长为10的椭圆,故2a=10,c=3,b2=a2-c2=16.又A,B,C三点不能共线,考点二 椭圆的标准方程例2求满足下列各条件的椭圆的标准方程:(1)长轴是短轴的3倍且经过点A(3,0);解 若焦点在x轴上,∵椭圆过点A(3,0),∵2a=3×2b,∴b=1,若焦点在y轴上,∵椭圆过点A(3,0),又2a=3×2b,∴a=9,解 设方程为mx2+ny2=1(m>0,n>0,m≠n),求椭圆方程的方法:(1)定义法:根据题目所给条件确定动点的轨迹是否满足椭圆的定义.(2)待定系数法:根据题目所给的条件确定椭圆中的a,b.当不知焦点在哪一个坐标轴上时,一般可设所求椭圆的方程为mx2+ny2=1(m>0,n>0,m≠n),不必考虑焦点位置,用待定系数法求出m,n的值即可.BCD解析 依题意,当A为上顶点,F为右焦点时,B为左顶点,则|AF|=a=3,a+c=5,∴c=2,又a2=b2+c2,b2=5,当A为右顶点,F为右焦点,B为左顶点时,|BF|=a+c=5,|AF|=a-c=3,当B为上顶点,F为右焦点,A为右顶点时,|BF|=a=5,|AF|=a-c=3,考点三 椭圆的简单几何性质角度1 离心率A易知|AF1|=|F1F2|=2c,在△AF1F2中,又|AF2|=2a-|AF1|=2a-2c,解析 ∵△PF1F2为直角三角形,∴PF1⊥F1F2,又|PF1|=|F1F2|=2c,角度2 与椭圆几何性质有关的最值、范围问题C解析 若椭圆上存在点P,使得PF1⊥PF2,则以原点为圆心,F1F2为直径的圆与椭圆必有交点,D解析 设左焦点F0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵|AF |+|BF |=4,∴|AF |+|AF 0|=4,∴a =2.解析 由题知圆E的圆心为E(1,0),半径为1.∵直线MN与圆E相切于点N,∴NE⊥MN,且|NE|=1.设M(x0,y0),FENCENGJINGLIAN GONGGUTISHENG分层精练 巩固提升31.已知F 1,F 2是定点,|F 1F 2|=6.若动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是( )A.直线B.线段C.圆D.椭圆解析 动点M 到F 1,F 2两点的距离之和等于6,而6正好等于两定点F 1,F 2的距离,则动点M 的轨迹是以F 1,F 2为端点的线段.B 【A级 基础巩固】DBB所以所求椭圆的焦点在y轴上,且c2=9-4=5,C由题可知a=2,即A(-2,0).又|NA|=1,∠NAB=60°,CCD△PF1F2的周长为2a+2c=4+2=6,故B不正确;在△PF1F2中,当P点移动到椭圆C的短轴端点处时,∠F1PF2最大,∴∠F1PF2=60°<90°,故C正确;∵a-c≤|PF1|≤a+c,∴1≤|PF1|≤3,故D正确.。
高中数学椭圆的公式有哪些高中数学椭圆的公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。
高中数学常考知识及解题技巧1、函数函数题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2.方程或不等式如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3.初等函数面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4.选择与填空中的不等式选择与填空中出现不等式的题目,优选特殊值法;5.参数的取值范围求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线问题圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.曲线方程求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);9.离心率求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;11.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;13.导数导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;14.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;15.换元法遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;16.二项分布注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;17.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;18.平移与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;19.中心对称关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高中数学椭圆知识点公式大全椭圆是一种重要的数学曲线,几何上可以看作是平面内与两个定点F1、F2和总距离为2a的动点P的轨迹,数学上可以通过方程来描述。
椭圆的性质和公式涉及到椭圆的焦点、顶点、长轴、短轴、离心率等概念,下面将详细介绍高中数学椭圆的知识点公式。
一、椭圆的定义与性质1.定义:椭圆是平面上与两个定点F1、F2的距离之和等于定值2a的点的轨迹。
2.基本性质:a.焦半径定理:过椭圆上任意一点P引两条直线分别与两焦点相交于A和B,则AP+BP=2a。
b.反奇异性:椭圆上任意一条直线与两个焦点的连线的夹角等于该直线到两个离心点的距离之差的绝对值。
c.双曲率定理:椭圆上任意一点的曲率半径之和等于椭圆的长轴和短轴的和。
d.弦长定理:椭圆上任意两点P、Q的弦长PQ满足PQ^2=PF1^2+PF2^2+2a^2二、椭圆的方程1.标准方程:椭圆的标准方程有两种形式:a.第一种形式:(x^2/a^2)+(y^2/b^2)=1,其中a为长轴的一半,b 为短轴的一半。
b.第二种形式:(x^2/b^2)+(y^2/a^2)=1,其中a为长轴的一半,b 为短轴的一半。
2.直角坐标系下其他形式方程:a.椭圆的顶点在原点的方程:x^2/a^2+y^2/b^2=1b.椭圆的中心在原点的方程:(x-h)^2/a^2+(y-k)^2/b^2=1,其中(h,k)为中心坐标。
c.椭圆的顶点在y轴上的方程:(x-h)^2/a^2+y^2/b^2=1d.椭圆的顶点在x轴上的方程:x^2/a^2+(y-k)^2/b^2=13. 极坐标系下的方程:r = (a * b) / sqrt(b^2 cos^2 θ + a^2 sin^2 θ),其中(a, b)为半轴。
三、椭圆的重要参数1.焦距:引如椭圆的两个焦点之间的距离,记为2c。
2.离心率:e=c/a,表示焦点与顶点之间的距离与长轴的比值。
3.焦点坐标:F1(-c,0),F2(c,0)。
高二人教版数学椭圆知识点椭圆是高中数学中一个重要的几何图形,它在二维平面上呈现出特定的形状和性质。
本篇文章将为大家介绍高二人教版数学课程中关于椭圆的基本知识点。
一、椭圆的定义椭圆是指到两个定点F1和F2距离之和等于常数2a的点P的轨迹。
其中,F1和F2称为椭圆的焦点,2a为椭圆的长轴长度。
二、椭圆的性质1. 焦距性质:椭圆上任意一点P到两个焦点F1和F2的距离之和等于常数2a。
2. 对称性质:椭圆关于长轴和短轴都具有对称性。
3. 半焦距性质:椭圆的焦点到椭圆上任意一点P的距离之和等于椭圆的长轴长度2a。
4. 离心率性质:椭圆的离心率定义为离心率e = F1P / PF2,其中P为椭圆上任意一点。
离心率决定了椭圆形状的圆形程度,当离心率小于1时,椭圆更加靠近圆形。
三、椭圆的方程椭圆的标准方程可以表示为(x - h)² / a² + (y - k)² / b² = 1,其中(h, k)为椭圆的中心坐标,a和b分别为椭圆的长轴半径和短轴半径。
四、椭圆的参数方程椭圆的参数方程可以表示为x = h + acosθ,y = k + bsinθ,其中θ为参数。
五、椭圆的几个重要点1. 中心点:椭圆的中心点坐标为(h, k)。
2. 长轴端点:椭圆的长轴端点坐标为(h ± a, k)。
3. 短轴端点:椭圆的短轴端点坐标为(h, k ± b)。
4. 焦点坐标:椭圆的焦点坐标为(h ± c, k),其中c = √(a² - b²)。
六、椭圆的参数方程的参数意义在椭圆的参数方程中,参数θ表示椭圆上的任意一点的弧度角,取值范围为0至2π。
通过改变θ的取值,可以得到椭圆上的所有点坐标。
七、椭圆的图像与实际应用椭圆图形在现实生活中有广泛的应用。
例如,椭圆形状的行星轨道、地球绕太阳的轨迹等都可以用椭圆来描述。
此外,椭圆在艺术设计和建筑设计中也常常被使用。
高中数学椭圆知识点总结第一篇:椭圆的定义及基本性质一、椭圆的定义椭圆是指平面内到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
两点F1和F2称为椭圆的焦点,中间的线段称为椭圆的长轴,垂直于长轴的线段称为椭圆的短轴,长轴的一半a称为椭圆的半长轴,短轴的一半b称为椭圆的半短轴。
二、椭圆的基本性质1. 椭圆上的任意一点P到两焦点F1和F2的距离之和等于椭圆的长轴长度2a。
2. 椭圆上的任意一点P到两焦点F1和F2的距离之差等于椭圆的短轴长度2b。
3. 椭圆上与长轴平行的直线称为椭圆的次中心轴,垂直于长轴的直线称为椭圆的主中心轴。
4. 椭圆的离心率e等于焦点距离除以长轴长度,即e=√(a²-b²)/a。
5. 椭圆的面积为πab。
6. 椭圆的周长无解析式,但可以通过积分求解。
7. 椭圆对称性:关于长轴、短轴、次中心轴和主中心轴都有对称轴。
三、椭圆的求解椭圆的标准方程为(x²/a²)+(y²/b²)=1,其中a和b 分别为半长轴和半短轴的长度。
椭圆的一般方程为Ax²+Bxy+Cy²+Dx+Ey+F=0,其中A、B、C、D、E、F为常数。
常用的求解方法有以下几种:1. 椭圆的标准方程变形法。
通过移项、变形等方法将一般方程转化为标准方程。
2. 半坐标轴法。
通过平移和旋转椭圆,使其长轴与坐标轴平行或垂直。
3. 矩阵法。
通过矩阵运算,将一般方程转化为标准方程。
四、椭圆的应用椭圆在生活和工程中有广泛的应用。
例如,在太阳系中行星的运动轨迹、卫星的轨道以及天体的椭球形等都具有椭圆的特征。
此外,在建筑设计中,椭圆形的建筑物也十分常见,如伦敦的温布利球场和巴黎的凯旋门等。
椭圆也广泛应用于牙轮、机械手、调速器等机械制造中。
1高中数学选修一第2章-2.2椭圆-知识点1、椭圆:平面内到两个定点F 1,F 2的距离之和等于常数2a (2a ﹥F 1F 2)的点的轨迹。
定点F 1,F 2是椭圆的焦点,F 1F 2=2c 叫做焦距。
★注意:①当a ﹥c 时,轨迹是椭圆,②当a = c 时;轨迹是线段F 1F 2;③当a ﹤c 时,轨迹不存在。
2、椭圆的标准方程及性质: 标准方程12222=+b y a x (a>b>0)12222=+b x a y (a>b>0)图形焦点在x 轴上焦点在 y 轴上性 质对称性 对称轴:坐标轴,对称中心:原点焦点 F 1(-c,0),F 2(c,0) F 1(0,-c),F 2(0,c) 顶点 A 1(-a ,0),A 2(a ,0), B 1(0,-b ),B 2(0,b )。
A 1(0,-a ),A 2(0,a ),B 1(-b ,0),B 2(b ,0)。
轴 长轴A 1A 2的长为 2a ,短轴B 1B 2的长为 2b 。
范围 x ϵ[-a,a],y ϵ[-b,b]。
x ϵ[-b,b],y ϵ[-a,a]。
离心率 e= c/a ,( 0<e<1 )a,b,c 的关系 a 2=c 2+b 23、求椭圆方程,一般用待定系数法,先确定焦点位置,然后再建立关于a ,b 的方程组,如果焦点位置不确定,可设为mx 2+ny 2=1,m>0, n>0,m ≠n 。
4、焦点三角形:椭圆上点P 与椭圆两焦点构成的三角形。
若∠F 1PF 2=θ,△F 1PF 2的面积S=b 2·tan(θ/2)。
5、点P(x 0,y 0)与椭圆12222=+b y a x 位置关系:①PF 1+PF 2﹤2a ⇔点在椭圆内⇔2222b y a x +﹤1;②PF 1+PF 2 = 2a ⇔点在椭圆上⇔2222b y a x + =1;③PF 1+PF 2﹥2a ⇔点在椭圆外⇔2222b y a x +﹥1。
椭圆Ⅰ 定义与推论1、定义1的的认知:设M 为椭圆上任意一点,F 1、F 2 分别为椭圆两焦点,A 1、A 2 分别为椭圆长轴端点, 则有(1)明朗的等量关系:a MF MF 221=+ (解决双焦点半径问题的首选公式)(2)隐蔽的不等关系:a MA MA 221≥+, c MF MF 221≤- 2、定义2的推论:根据椭圆第二定义,设),(00y x M 为椭圆12222=+by a x )0(>>b a 。
上任意一点,F 1、F 2分别为椭圆左、右焦点,则有:(d 1为点M 到左准线l 1的距离);(d 2为点M 到右准线l 2的距离)由此导出椭圆的焦点半径公式:,Ⅱ 标准方程与几何性质 1、椭圆的标准方程中心在原点,焦点在x 轴上的椭圆标准方程 ① 中心在原点,焦点在y 轴上的椭圆标准方程②(1)标准方程①、②中的a 、b 、c 具有相同的意义与相同的联系:(2)标准方程①、②统一形式:2、椭圆的几何性质(1)范围: (有界曲线)(2)对称性:关于x 轴、y 轴及原点对称(两轴一中心,椭圆的共性) (3)顶点与轴长:顶点 ,长轴2a ,短轴2b(由此赋予a 、b 名称与几何意义)(4)离心率: 刻画椭圆的扁平程度(5)准线:左焦点对应的左准线; 右焦点对应的右准线(6)椭圆共性:两准线垂直于长轴;两准线之间的距离为 ;中心到准线的距离为;焦点到相应准线的距离为.Ⅲ 挖掘与引申1、具特殊联系的椭圆的方程 (1)共焦距的椭圆的方程,且 (2)同离心率的椭圆的方程,且2、弦长公式:设斜率为k 的直线l 与椭圆交于不同两点 ,则 ;或 。
1、椭圆标准方程的两种形式是:12222=+b y a x 和12222=+bx a y )0(>>b a 。
2、椭圆12222=+b y a x )0(>>b a 的焦点坐标是)0(,c ±,准线方程是c a x 2±=,离心率是a ce =,通径的长是ab 22。
高中椭圆的知识点总结椭圆是数学中的一个重要概念,具有很多应用。
在高中数学中,椭圆也是一个必修的内容,考试中经常会涉及到相关的知识点。
在本文中,我们将对高中椭圆的知识点进行总结和归纳。
一、椭圆的定义椭圆是平面上到两个定点F1和F2距离之和等于定长2a的点P的轨迹。
这两个定点F1和F2被称作椭圆的焦点,定长2a被称为椭圆的长轴,长轴的中点O被称为椭圆的中心,距离中心最远的两点A和B被称为椭圆的顶点,椭圆的离心率为e=(F1F2)/2a。
二、椭圆的方程椭圆的标准方程为 (x^2/a^2)+(y^2/b^2)=1, 其中a>b>0,a为长轴长度,b为短轴长度。
当椭圆的中心不在坐标原点时,可通过平移变换将其移到原点,然后再求解方程。
三、椭圆的性质1. 椭圆的中心位于坐标原点或者与坐标轴的交点上。
2. 椭圆的长轴是平行于x或y轴的直线,短轴是垂直于长轴的直线。
3. 椭圆的离心率e=(F1F2)/2a, e<1。
4. 椭圆的焦点与顶点之间的距离F1A、F2B互相相等,且等于椭圆的长轴长度2a。
5. 椭圆上任意一点到两焦点的距离之和等于定长2a。
6. 椭圆的面积为πab。
7. 椭圆的周长无法用初等函数表示,通常用级数来表示。
四、椭圆的几何意义椭圆的几何意义可以简单地用两条绳子相互交错吊起一个重物来表现。
在两条绳子构成的平面上,可以画出一个椭圆形的轨迹,此时重物到两条绳子的距离之和为定值2a,而椭圆的顶点即为两条绳子的交点。
五、椭圆的应用椭圆具有很多应用,在物理、工程、天文学、生物学等领域中经常会涉及到。
1. 通讯卫星轨道:通讯卫星通常被放置在椭圆轨道上,使得其在地球上的可见度更广,信号传输距离更长。
2. 医学图像:医学图像中的组织轮廓通常是椭圆形的,因此椭圆形适用于医学图像处理。
3. 自动打标机:自动打标机通常采用椭圆形的摆线轮廓来控制字母和数字的运动轨迹。
4. 椭圆滤波器:椭圆滤波器是一种常用的数字信号处理技术,用于高通、低通、带通、带阻等滤波。
高二数学椭圆1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形.2、椭圆的标准方程1).当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;2).当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;3:椭圆12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系标准方程12222=+b y a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤ b x ≤,a y ≤ 对称性关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ±),0(a ±,)0,(b ±轴长 长轴长=a 2,短轴长=b 2离心率)10(<<=e ace 准线方程 c a x 2±=ca y 2±=焦半径01ex a PF +=,02ex a PF -= 01ey a PF +=,02ey a PF -=4、椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
高中数学椭圆知识点椭圆(Ellipse)是二次曲线中最基本的一种,可以说是一种由椭圆状的闭合曲线构成的图形,它是任意两个焦点到一条椭圆之间的所有直线距离之和为固定值的曲线。
椭圆除了形状完全不一样外,一般曲线具有的性质它也都有,比如顶点(vertex)、最长轴、极点(pole)等。
椭圆的概念可以用数学的角度来理解:椭圆可以由椭圆的基本方程表示,即:$ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $公式中的$a$、$b$ 称为椭圆的长轴和短轴,$a > b$时,此椭圆为长轴椭圆,否则为短轴椭圆。
$(0, 0)$ 为椭圆的中心,上式当中的变量$ x$、$y$ 表示方程的变量。
椭圆是对称的曲线,因此,它具有四对对称轴,以椭圆中心为中心,四条虚线将椭圆分为四份,这四条虚线叫做最长轴及它的对角线,称为主轴,可以看出椭圆的最长轴是由中心向焦点投射出来的一条直线,这条直线分别是长轴及它的对角线。
椭圆的长轴即最长轴,它双向延伸 4a 长度;短轴即它的对角线,它双向延伸 4b 长度。
椭圆的长轴和短轴代表椭圆的特性,即长轴加上短轴等于椭圆的周长,其长度为$2 π (a^2+b2^ )籤$.椭圆有两个特殊点,它们是椭圆上在最长轴上点的一组坐标,称为椭圆的焦点(focus),即一个点在最长轴上的坐标的相对值,这个点叫焦点。
其它椭圆的点,至少经过一个焦点,椭圆的两个焦点之间的距离叫做椭圆的近焦距(focal length),符号为$2 c$,$c = √(a2-b2)$。
此外,椭圆有两个特性点,即最长轴上的两个端点,称为椭圆的顶点(vertex)或极点(pole),最长轴的长度称为短半径,等于$2a$。
椭圆的端点(vertex)具有重要的意义,即椭圆的顶点可以定义椭圆的方向,用来表示一个椭圆。
当$a≤b$时,端点的位置也有所区别,顶点的横坐标将大于等于0,纵坐标等于0,即端点在x轴上;当$a>b$ 时,顶点的位置又发生变化,顶点的横坐标和纵坐标分别等于$\pm$ a 和$\pm$ b 。
高中文科数学椭圆知识点总结高中数学椭圆知识点1一、椭圆知识点总结1、椭圆的概念在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆、这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距。
集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集。
2、椭圆的标准方程和几何性质一条规律椭圆焦点位置与x2,y2系数间的`关系:两种方法(1)定义法:根据椭圆定义,确定a2、b2的值,再结合焦点位置,直接写出椭圆方程。
(2)待定系数法:根据椭圆焦点是在x轴还是y轴上,设出相应形式的标准方程,然后根据条件确定关于a、b、c的方程组,解出a2、b2,从而写出椭圆的标准方程。
三种技巧(1)椭圆上任意一点M到焦点F的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a+c,最小距离为a-c。
(2)求椭圆离心率e时,只要求出a,b,c的一个齐次方程,再结合b2=a2-c2就可求得e(0<e<1)。
(3)求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:①中心是否在原点;②对称轴是否为坐标轴。
二、复习指导1、熟练掌握椭圆的定义及其几何性质会求椭圆的标准方程。
2、掌握常见的几种数学思想方法——函数与方程、数形结合、转化与化归等、体会解析几何的本质问题——用代数的方法解决几何问题。
高中数学椭圆知识点2正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py直棱柱侧面积S=c.h斜棱柱侧面积S=c'.h正棱锥侧面积S=1/2c.h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi.r2圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l弧长公式l=a.ra是圆心角的弧度数r>0扇形面积公式s=1/2.l.r 锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s.h圆柱体V=p.r2h乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab +b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1.X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac<0注:方程没有实根,有共轭复数根高中数学椭圆知识点3椭圆的标准方程共分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a^2—c^2=b^2推导:PF1+PF2>F1F2(P为椭圆上的点F为焦点)椭圆的对称性:不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。
高中数学椭圆
椭圆是广泛应用于有很多领域的几何图形,它是由大量数学知识构成的,是学习高中数学的重要组成部分。
在这里,我们将介绍椭圆的定义、椭圆的几何性质和在数学中的应用。
一、椭圆的定义
椭圆是一种曲线,它的几何图形可以由椭圆方程来描述。
简单来说,椭圆方程就是由两个不平行的直线(叫做焦点),以及两个不同点(叫做离心率)组成的方程式。
通俗地讲,椭圆是由一个长短轴组成的椭圆形,在椭圆周围,椭圆的距离不会发生变化。
二、椭圆的几何性质
椭圆通过四个参数来描述,它们是:长短轴,焦点,离心率(也就是离共线焦点的距离),以及极点(就是椭圆的最近的焦点)。
除此之外,椭圆还具有一些重要的几何性质,它们包括:面积、周长、长短轴之比、关于焦点的三角函数、及椭圆上点有关自身的坐标。
三、椭圆在数学中的应用
由于椭圆的特殊性,它可以用于解决一些精确的电子或机械设计问题,例如用于计算电路和太空几何等。
此外,椭圆还可以用于从圆柱和圆锥形体的变换,从而获得更高的准确性和精度。
在哲学和历史方面,椭圆的存在也有着重要的意义,比如用椭圆方程来描述运动。
该方程可用于研究行星运行的轨道,并被称为“极大距离和极近距离”的原则,对科学的研究有着重大的意义。
总之,椭圆是一种非常实用的几何图形,有着多个应用场景,我们可以从中学习到很多数学知识,提高数学素养。
椭圆的方程及其性质知识集结知识元椭圆的定义知识讲解1.椭圆的定义【知识点的认识】1.椭圆的第一定义平面内与两个定点F1、F2的距离的和等于常数2a(2a>|F1F2|)的动点P的轨迹叫做椭圆,其中,这两个定点F1、F2叫做椭圆的焦点,两焦点之间的距离|F1F2|叫做焦距.2.椭圆的第二定义平面内到一个定点的距离和到一条定直线的距离之比是常数e=(0<e<1,其中a是半长轴,c是半焦距)的点的轨迹叫做椭圆,定点是椭圆的焦点,定直线叫椭圆的准线,常数e 叫椭圆的离心率.3.注意要点椭圆第一定义中,椭圆动点P满足{P||PF1|+|PF2|=2a}.(1)当2a>|F1F2|时,动点P的轨迹是椭圆;(2)当2a=|F1F2|时,动点P的轨迹是线段F1F2;(3)当2a<|F1F2|时,动点P没有运动轨迹.【命题方向】利用定义判断动点运动轨迹,需注意椭圆定义中的限制条件:只有当平面内动点P与两个定点F1、F2的距离的和2a>|F1F2|时,其轨迹才为椭圆.1.根据定义判断动点轨迹例:如图,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是()A.椭圆B.双曲线C.抛物线D.圆分析:根据CD是线段MF的垂直平分线.可推断出|MP|=|PF|,进而可知|PF|+|PO|=|PM|+|PO|=|MO|结果为定值,进而根据椭圆的定义推断出点P的轨迹.解答:由题意知,CD是线段MF的垂直平分线.∴|MP|=|PF|,∴|PF|+|PO|=|PM|+|PO|=|MO|(定值),又显然|MO|>|FO|,∴根据椭圆的定义可推断出点P轨迹是以F、O两点为焦点的椭圆.故选A点评:本题主要考查了椭圆的定义的应用.考查了学生对椭圆基础知识的理解和应用.2.与定义有关的计算例:已知椭圆上的一点P到左焦点的距离为,则点P到右准线的距离为()A.2B.2C.5D.3分析:先由椭圆的第一定义求出点P到右焦点的距离,再用第二定义求出点P到右准线的距离d.解答:由椭圆的第一定义得点P到右焦点的距离等于4﹣=,离心率e=,再由椭圆的第二定义得=e=,∴点P到右准线的距离d=5,故选C.点评:本题考查椭圆的第一定义和第二定义,以及椭圆的简单性质.例题精讲椭圆的定义例1.'点M(x,y)与定点F(4,0)的距离和它到直线l:x=的距离的比是常数,求M的轨迹.'例2.'已知P为⊙B:(x+2)2+y2=36上一动点,点A(2,0),线段AP垂直平分线交直线BP于点Q,求点Q的轨迹方程.'例3.'已知△ABC 的周长等于18,B 、C 两点坐标分别为(0,4),(0,-4),求A 点的轨迹方程.'椭圆的标准方程知识讲解1.椭圆的标准方程【知识点的认识】椭圆标准方程的两种形式:(1)(a >b >0),焦点在x 轴上,焦点坐标为F (±c ,0),焦距|F 1F 2|=2c ;(2)(a >b >0),焦点在y 轴上,焦点坐标为F (0,±c ),焦距|F 1F 2|=2c .两种形式相同点:形状、大小相同;都有a >b >0;a 2=b 2+c 2两种形式不同点:位置不同;焦点坐标不同.标准方程(a >b >0)中心在原点,焦点在x 轴上(a >b >0)中心在原点,焦点在y 轴上图形顶点A(a ,0),A ′(﹣a ,0)B (0,b ),B ′(0,﹣b )A (b ,0),A ′(﹣b ,0)B (0,a ),B ′(0,﹣a )对称轴x 轴、y 轴,长轴长2a ,短轴长2b焦点在长轴长上x 轴、y 轴,长轴长2a ,短轴长2b焦点在长轴长上焦点F 1(﹣c ,0),F 2(c ,0)F 1(0,﹣c ),F 2(0,c )焦距|F 1F 2|=2c (c >0)c 2=a 2﹣b 2|F 1F 2|=2c (c >0)c 2=a 2﹣b 2离心率e =(0<e <1)e =(0<e <1)准线x =±y =±例题精讲椭圆的标准方程例1.'已知椭圆的焦点在x 轴上,长轴长为12,离心率为,求椭圆的标准方程.'例2.'写出适合下列条件的曲线方程:(1)求椭圆的标准方程.(2)已知双曲线两个焦点分别为F 1(-5,0),F 2(5,0),双曲线上一点P 到F 1,F 2距离差的绝对值等于6,求双曲线的标准方程.'例3.'若椭圆ax2+by2=1与直线x+y=1交于A、B两点,M为AB的中点,直线OM(O为原点)的斜率为,且OA⊥OB,求椭圆的方程.'椭圆的性质知识讲解1.椭圆的性质【知识点的认识】1.椭圆的范围2.椭圆的对称性3.椭圆的顶点顶点:椭圆与对称轴的交点叫做椭圆的顶点.顶点坐标(如上图):A1(﹣a,0),A2(a,0),B1(0,﹣b),B2(0,b)其中,线段A1A2,B1B2分别为椭圆的长轴和短轴,它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长.4.椭圆的离心率①离心率:椭圆的焦距与长轴长的比叫做椭圆的离心率,用e表示,即:e=,且0<e<1.②离心率的意义:刻画椭圆的扁平程度,如下面两个椭圆的扁平程度不一样:e越大越接近1,椭圆越扁平,相反,e越小越接近0,椭圆越圆.当且仅当a=b时,c=0,椭圆变为圆,方程为x2+y2=a2.5.椭圆中的关系:a2=b2+c2.例题精讲椭圆的性质例1.'求满足下列条件的椭圆或双曲线的标准方程:(1)椭圆的焦点在y轴上,焦距为4,且经过点A(3,2);(2)双曲线的焦点在x轴上,右焦点为F,过F作重直于x轴的直线交双曲线于A,B两点,且|AB|=3,离心率为.'例2.'已知中心在原点的椭圆C的两个焦点和椭圆C1:4x2+9y2=36的两个焦点是一个正方形的四个顶点,且椭圆C过点A(2,-3).(1)求椭圆C的方程;(2)若PQ是椭圆C的弦,O是坐标原点,OP⊥OQ,已知直线OP的斜率为,求点Q的坐标.'例3.'如图,椭圆E:+=1(a>b>0)经过点A(0,1),且离心率为.(1)求椭圆E的方程;(2)若M点为右准线上一点,B为左顶点,连接BM交椭圆于N,求的取值范围;(3)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点P,Q(均异于点A)证明:直线AP与AQ的斜率之和为定值.'当堂练习解答题练习1.'已知椭圆的中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与直线AB相交于点D,与椭圆相交于E,F两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)若,求k的值;(Ⅲ)求四边形AEBF面积的最大值.'练习2.'椭圆C:=1(a>b>0)的左焦点为F1(-1,0),点P(1,)在椭圆上.(1)求椭圆C的方程;(2)直线l:y=kx+m与椭圆C交于A,B两点,椭圆C上另一点M满足△ABM的重心为坐标原点O,求△ABM的面积.'练习3.'已知P是右焦点为F的椭圆Γ:上一动点,若|PF|的最小值为1,椭圆的离心率为.(Ⅰ)求椭圆Γ的方程;(Ⅱ)当PF⊥x轴且点P在x轴上方时,设直线l与椭圆Γ交于不同的两点M,N,若PF平分∠MPN,则直线l的斜率是否为定值?若是,求出这个定值;若不是,说明理由.'练习4.'己知椭圆的一个顶点坐标为(2,0),离心率为,直线y=x+m 交椭圆于不同的两点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)设点C(1,1),当△ABC的面积为1时,求实数m的值.'练习5.'已知椭圆Γ:,B1,B2分别是椭圆短轴的上下两个端点,F1是椭圆的左焦点,P是椭圆上异于点B1,B2的点,若△B1F1B2的边长为4的等边三角形.(1)写出椭圆的标准方程;(2)当直线PB1的一个方向向量是(1,1)时,求以PB1为直径的圆的标准方程;(3)设点R满足:RB1⊥PB1,RB2⊥PB2,求证:△PB1B2与△RB1B2的面积之比为定值.'练习6.'已知曲线Γ:=1的左、右顶点分别为A,B,设P是曲线Γ上的任意一点.(1)当P异于A,B时,记直线PA,PB的斜率分别为k1,k2,求证:k1∙k2是定值;(2)设点C满足=λ(λ>0),且|PC|的最大值为7,求λ的值.'练习7.'已知椭圆C:的左、右焦点分别是E、F,离心率,过点F的直线交椭圆C于A、B两点,△ABE的周长为16.(1)求椭圆C的方程;(2)已知O为原点,圆D:(x-3)2+y2=r2(r>0)与椭圆C交于M、N两点,点P为椭圆C 上一动点,若直线PM、PN与x轴分别交于G、H两点,求证:|OG|∙|OH|为定值.'练习8.'已知椭圆E:=1(a>b>0)的离心率为,且过点A(2,0).(1)求椭圆E的标准方程;(2)问:是否存在过点M(0,2)的直线l,使以直线l被椭圆E所截得的弦CD为直径的圆过点N(-1,0),若存在,求出直线l的方程;若不存在,请说明理由.'练习9.'已知椭圆C:=1(a>b>0)的短轴长为2,离心率为,直线l:y=k(x-1)与椭圆C交于不同的两点M,N,A为椭圆C的左顶点.(1)求椭圆C的标准方程;(2)当△AMN的面积为时,求1的方程.'练习10.'求与双曲线-=1有相同的焦点,且过点M(2,1)的椭圆的方程.'练习11.'求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,a=6,e=;(2)焦点在y轴上,c=3,e=.'练习12.'已知椭圆的中心在原点,它在x轴上的一个焦点与短轴两端点连线互相垂直,且此焦点和x轴上的较近端点的距离为4(-1),求椭圆方程.'。