锐角三角函数(余弦 余切)
- 格式:doc
- 大小:82.00 KB
- 文档页数:2
解直角三角形知识要点:1、 锐角三角函数:正弦、余弦、正切、余切sin A =斜边的对边A ∠, cos A =斜边的邻边A ∠,tan A =的邻边的对边A A ∠∠, cot A = 的对边的邻边A A ∠∠(1)平方关系:1cos sin 22=+A A ; (2)倒数关系:1cotA tanA =⋅; (3)商的关系:tanA=AAcos sin (4)互余两角的正余弦、正余切关系:如果ο90=∠+∠B A ,那么B A A cos )90cos(sin =-=ο;tanA=cot (90°-A )=cotB2、 解直角三角形3、 解直角三角形的应用:坡度问题、测量问题、航海问题 关键是把实际问题转化为数学问题来解决 (构造直角三角形) 几个专用名词:俯角、仰角、坡角、坡度(或坡比)、方向角 一:转化思想在解直角三角形中的应用转化的思想在数学中应用十分广泛,在不含直角三角形的图形中(如斜三角形、梯形等),我们应通过作适当的垂线构造直角三角形,从而转化为解直角三角形问题,希望同学们在不断地学习中总结这种添加垂线的技巧例1. 在△ABC 中,已知AB=6,∠B=45°,∠C=60°,求AC 、BC 的长.已知条件解法一边及 一锐角直角边a 及锐角A B =90°-A ,b =a·tanA,c=sin a A斜边c 及锐角A B =90°-A ,a =c·sinA,b =c·cosA两边两条直角边a 和b,B =90°-A ,直角边a 和斜边csinA=ac,B =90°-A ,例2. 如图所示,△ABC中,∠BAC=120°,AB=5,AC=3,求sinB·sinC的值.例3.如图,在ΔABC中,∠C=90°,∠A的平分线交BC于D,则CDACAB-等于().A .sin A B. cos A C . tan A D . cot A例4.如图所示,在ΔABC中,∠B=60°,且∠B所对的边b=1,AB+BC=2,求AB的值.例5.已知:在ΔABC中,∠B=60°,∠C=45°,BC=5,求ΔABC的面积.例6.如图,ΔABC中,∠A=90°,AB=AC,D是AC上的一点,且AD∶DC=1∶3,求tan∠DBC的值.二:可解的非直角三角形的类型与解法解这类三角形一般都需要三个条件,它的解题思路是:作垂线,构造含特殊角的直角三角形来解决,下面分类举例说明,供同学们参考.一、“SSS”型:例1.已知:如图1,BC=2,AC=6,AB=31+,求△ABC各内角的度数.BA DC图1二、“SAS ”型:例2.已知:如图,△ABC 中,∠A=1500,AB=5,AC=4,求△ABC 的面积三、“AAS ”型:例3.已知:如图3,△ABC 中,∠C=600,∠A=750,BC=33+, 求AB 、AC 的长. 四、“ASA ”型:例4.已知等腰∆ABC 的底边长为2,底角为75°,求腰长.五、其他类型:例5.已知:如图,△ABC 中,∠B=600,AB=5,sinC=57,求AC 和BC 的长.相关强化练习:1.等腰三角形底边为20,面积为31003,求各角的大小.2.如图,四边形BCDG 为矩形,∠ABG=45°,GB=20,BC=4,tanE=3,求EC 的长度.3.已知:如图,在△ABC 中,BC=6,AC=63,∠A=30°,求AB 的长.CBDA BA C D图2 ACD 图4BA CD图5例题: 如图23,ABCD 为正方形,E 为BC 上一点,将正方形折叠,使A 点与E 点重合,折痕为MN ,若10,31tan =+=∠CE DC AEN 。
锐角三角函数公式值
锐角三角函数公式值指的是在直角三角形中,对于一个角度小于90度的锐角,其正弦、余弦、正切、余切、正割、余割的数值,可以通过特定的公式进行计算得出。
具体公式如下:
正弦(sin): sinθ=对边/斜边
余弦(cos): cosθ=邻边/斜边
正切(tan): tanθ=对边/邻边
余切(cot): cotθ=邻边/对边
正割(sec): secθ=斜边/邻边
余割(csc): cscθ=斜边/对边
其中,对边、邻边、斜边分别指直角三角形中的三条边,对边指与角度相对的边,邻边指与角度相邻的边,斜边指直角三角形的斜边。
需要注意的是,上述公式中的角度单位为弧度制。
如果给出的角度是度数,则需要先将其转化为弧度制,即弧度=角度×π/180。
- 1 -。
sincostan度数公式以及常见角度数值
锐角三角函数是以锐角为自变量,以此值为函数值的函数。
在直角三角形ABC 中,我们把锐角∠A的正弦、余弦、正切和余切都叫做∠A的锐角函数。
初中数学主要考察正弦(sin)、余弦(cos)和正切(tan)的计算公式。
正弦(sin)
在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=∠A的对边/斜边。
sin30°=1/2 sin45°=√2/2 sin60°=√3/2
余弦(cos)
在直角三角形中,任意一锐角∠A的临边与斜边的比叫做∠A的余弦,记作cosA,即cosA=∠A的临边/斜边。
cos30°=√3/2 cos45°=√2/2 cos60°=1/2
正切(tan)
在直角三角形中,任意一锐角∠A的对边与临边的比叫做∠A的正切,记作tanA,即tanA=∠A的对边/临边。
tan30°=√3/3 tan45°=1 tan60°=√3
三角函数顺口溜
正弦对比斜,余弦邻比斜,正切对比邻,正弦余弦互逆运算。
sin30°=cos60°=1/2
sin60°= cos30°=√3/2
sin45°=cos45°=√2/2。
锐角三角函数基本概念三角函数是数学中的重要概念,用于描述角度与边长之间的关系。
锐角三角函数是指在单位圆上定义的三角函数,它们是我们在解决三角形相关问题时经常使用的基本工具。
本文将介绍锐角三角函数的基本概念,并探讨它们的性质和用法。
一、正弦函数(sin)正弦函数是最基本的锐角三角函数之一,它表示一个角的对边与斜边之比。
在单位圆上,设角A对应的点为P(x,y),则正弦函数可以表示为:sinA = y正弦函数的定义域是所有锐角,值域是[-1,1]。
在解决三角形问题时,我们可以利用正弦函数来求解缺失的边长或角度。
二、余弦函数(cos)余弦函数是另一个重要的锐角三角函数,它表示一个角的邻边与斜边之比。
在单位圆上,设角A对应的点为P(x,y),则余弦函数可以表示为:cosA = x与正弦函数类似,余弦函数的定义域是所有锐角,值域也是[-1,1]。
在实际问题中,我们可以通过余弦函数来计算未知边长或角度。
三、正切函数(tan)正切函数是通过正弦函数和余弦函数的比值而得到的,它表示一个角的对边与邻边之比。
在单位圆上,设角A对应的点为P(x,y),则正切函数可以表示为:tanA = sinA / cosA = y / x正切函数的定义域是所有锐角,但值域却没有限制。
正切函数在解决问题时,常用于求解未知边长或角度。
四、割函数(sec)、余割函数(csc)和余切函数(cot)割函数(sec)、余割函数(csc)和余切函数(cot)是正弦函数、余弦函数和正切函数的倒数。
它们的定义如下:secA = 1 / cosA, cscA = 1 / sinA, cotA = 1 / tanA这三个函数在解决三角形问题时也经常使用,用于求解缺失的边长或角度。
五、三角恒等式锐角三角函数之间存在一些重要的恒等式,它们可以帮助我们简化计算或推导出其他有用的关系。
以下是一些常用的锐角三角函数恒等式:1. 余弦函数与正弦函数的平方和等于1:cos^2 A + sin^2 A = 12. 正切函数与割函数的乘积等于1:tanA · secA = 13. 正弦函数与余割函数的乘积等于1:sinA · cscA = 1除了这些基本的锐角三角函数,还有其他一些相关的三角函数,如反正弦函数、反余弦函数、反正切函数等。
一、锐角三角函数的增减性当角度在0°~90°之间变化时:1.正弦值随着角度的增大而增大;2.余弦值随着角度的增大而减小;3.正切值随着角度的增大而增大。
4.锐角三角函数值都是正值.5.正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大);6.正切值随着角度的增大(或减小)而增大(或减小),余切值随着角度的增大(或减小)而减小(或增大);7.正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。
8.当角度在0°≤A≤90°间变化时,0≤sinA≤1, 1≥cosA≥0;当角度在0°<A0, cotA>0。
二、锐角三角函数:锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
初中学习的锐角三角函数值的定义方法是在直角三角形中定义的,所以在初中阶段求锐角的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到某个直角三角形中。
所谓锐角三角函数是指:我们初中研究的都是锐角的三角函数。
初中研究的锐角的三角函数为:正弦(sin),余弦(cos),正切(tan)。
正弦:在直角三角形中,锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即;余弦:在直角三角形中,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即;正切:在直角三角形中,锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即,锐角A的正弦、余弦、正切都叫做A的锐角三角函数。
三、锐角三角函数的关系式:同角三角函数基本关系式tanα·cotα=1sin2α·cos2α=1cos2α·sin2α=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα(sinα)2+(cosα)2=11+tanα=secα1+cotα=cscα诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)二倍角、三倍角的正弦、余弦和正切公式Sin(2α)=2sinαcosαCos(2α)=(cosα)2-(sinα)2=2(cosα)2-1=1-2(sinα)2Tan(2α)=2tanα/(1tanα)sin(3α)=3sinα4sin3α=4sinα·sin(60°+α)sin(60°α)cos(3α)=4cos3α3cosα=4cosα·cos(60°+α)cos(60°α)tan(3α)=(3tanαtan3α)/(13tan2α)=tanαtan(π/3+α)tan(π/3α)和差化积、积化和差公式sinα+sinβ=2sin[(α+β)/2]·cos[(αβ)/2]sinαsinβ=2cos[(α+β)/2]·sin[(αβ)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(αβ)/2] cosαcosβ=2sin[(α+β)/2]·sin[(αβ)/2] sinαcosβ=[sin(α+β)+sin(α-β)] sinαsinβ=[1][cos(α+β)cos(αβ)]/2 cosαcosβ=[cos(α+β)+cos(αβ)]/2 sinαcosβ=[sin(α+β)+sin(αβ)]/2 cosαsinβ=[sin(α+β)sin(αβ)]/2。
初中锐角三角函数公式表公式有如下几个:sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2];sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2];cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2];cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2];cosαcosβ=[cos(α+β)+cos(α-β)]/2;sinαcosβ=[sin(α+β)+sin(α-β)]/2;cosαsinβ=[sin(α+β)-sin(α-β)]/2 。
锐角三角函数是以锐角为自变量,以比值为函数值的函数。
如图:我们把锐角∠A的正弦、余弦、正切和余切都叫做∠A的锐角函数。
锐角三角函数值都是正值正弦。
(sin)等于对边比斜边;余弦(cos)等于邻边比斜边;正切(tan)等于对边比邻边;余切(cot)等于邻边比对边;正割(sec)等于斜边比邻边;余割(cs c)等于斜边比对边。
扩展资料1、同角三角函数间的关系·平方关系:sin^2(A)+cos^2(A)=1·积的关系:sinA=tanA·cosAcosA=cotA·sinAcotA=cosA·cscAtanA·cotA=1·倒数关系:直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边,余切等于邻边比对边3、三角函数值(1)特殊角三角函数值(2)0°~90°的任意角的三角函数值,查三角函数表。
(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤∠A≤90°间变化时,0≤sinα≤1, 1≥cosA≥0,当角度在0°<∠A<90°间变化时,tanA>0, cotA>0.特殊的三角函数值0°30°45°60°90°0 1/2 √2/2 √3/2 1 ←sinA1 √3/2 √2/2 1/2 0 ←cosA0 √3/3 1 √3 None ←tanANone √3 1 √3/3 0 ←cotA。
锐角三角函数公式正弦:sin α=∠α的对边/∠α的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边面积公式长方形,正方形以及圆的面积公式面积公式包括扇形面积共式,圆形面积公式,弓形面积公式,菱形面积公式,三角形面积公式,梯形面积公式等多种图形的面积公式。
扇形面积公式在半径为R的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S=πR^2,所以圆心角为n°的扇形面积:S=nπR^2÷360比如:半径为1cm的圆,那么所对圆心角为135°的扇形的周长:C=2R+nπR÷180=2×1+135×3.14×1÷180=2+2.355=4.355(cm)=43.55(mm)扇形的面积:S=nπR^2÷360=135×3.14×1×1÷360=1.1775(cm^2)=117.75(mm^2)扇形还有另一个面积公式S=1/2lR其中l为弧长,R为半径三角形面积公式任意三角形的面积公式(海伦公式):S=√p(p-a)(p-b)(p-c), p=(a+b+c)/2,a.b.c,为三角形三边。
证明:证一勾股定理分析:先从三角形最基本的计算公式S△ABC = aha入手,运用勾股定理推导出海伦公式。
证明:如图ha⊥BC,根据勾股定理,得: x = y = ha = = = ∴S△ABC = aha= a× = 此时S△ABC为变形④,故得证。
证二:斯氏定理分析:在证一的基础上运用斯氏定理直接求出ha。
斯氏定理:△ABC边BC上任取一点D,若BD=u,DC=v,AD=t.则t 2 = 证明:由证一可知,u = v = ∴ha 2 = t 2 = -∴S△ABC = aha = a × = 此时为S△ABC的变形⑤,故得证。
三角函数锐角三角函数公式正弦:sin α =∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式sin2A=2sinA?cosAcos2A=cos^2A-sin^2A=1-2sin^2A=2cos^2A-1 tan2A=(2tanA)/(1-tan^2A)三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina=2sina(1-sin^2a)+(1-2sin^2a)sina=3sina-4sin^3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos^2a-1)cosa-2(1-cos^a)cosa=4cos^3a-3cosasin3a=3sina-4sin^3a=4sina(3/4-sin^2a)=4sina[(√3/2)^2-sin^2a]=4sina(sin^260°-sin^2a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos^3a-3cosa=4cosa(cos^2a-3/4)=4cosa[cos^2a-(√3/2)^2]=4cosa(cos^2a-cos^230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tanh(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)A·sin(ωt+θ)+ B·sin(ωt+φ) =√{(A^2 +B^2 +2ABcos(θ-φ)} ? sin{ωt + arcsin[ (A?sinθ+B?sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }√表示根号,包括{……}中的内容诱导公式sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式其它公式(1)(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)编辑本段内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
A
B
C
D
总课题 锐角三角函数
总课时
课题
余弦 余切
课型
新授
教学目标
知识目标
使学生知道当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边
的比值也都固定这一事实.
能力目标
逐步培养学生观察、比较、分析、概括的思维能力
情感目标
合作交流
教学重点
理解余弦、正切的概念
教学难点
熟练运用锐角三角函数的概念进行有关计算
教具准备 小黑板 三角板
板 书 设 计
余弦 余切
定义 例题讲解 小结
教学过程
教 学 内 容
教师活动内容、方式
学生活动方式、内容 设计意图
(一)复习引入 1、口述正弦的定义 2、(1)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且AB =5,BC =3. 则sin ∠BAC= ;sin ∠ADC= . (2)﹙2006成都﹚如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。
已知AC= 5 ,BC=2,那么sin ∠ACD =( ) A .53 B .23 C .255 D .52
(二)实践探索
一般地,当∠A 取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?
如图:Rt △ABC 与Rt △A`B`C`,∠C=∠C` =90o
,∠B=∠B`=α,
那么
与
有什么关系?
分析:由于∠C=∠C` =90o
,
∠B=∠B`=α, 所以Rt△ABC∽Rt△A`B`C`,
,即
使学生知道当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实.
E O
A B C D ·
教师活动内容、方式学生活动方式、内容设计意图
如图,在Rt△ABC中,∠C=90o,把锐角B的邻边与
斜边的比叫做∠B的余弦,记作cosB即
把∠A的对边与邻边的比叫做∠A的正切.记作
tanA,即
锐角A的正弦,余弦,正切都叫做∠A的锐角三角函数.
(三)教学互动
例2:如图,在中, ,BC=6,
求cos和tan的值.
解: ,
.
又
例3:(1)如图(1), 在中,
,,,求的度数.
(2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB的倍,求. 结论:在直角三角形中,当锐角
B的度数一定时,不管三角形的
大小如何,∠B的邻边与斜边的
比也是一个固定值。
逐步培养学生
观察、比较、
分析、概括的
思维能力
教师活动内容、方式学生活动方式、内容设计意图
(四)巩固再现
1.在中,∠C=90°,a,b,c分别是∠A、
∠B、∠C的对边,则有()
A.B.C.
D.
2. 在中,∠C=90°,如果那么
的值为()
A.B.C.D.
四、布置作业
P85 1
教
后
反
思
在直角三角形中,当锐角B的度数一定时,不管三角形的大
小如何,∠B的邻边与斜边的比也是一个固定值。
如图,。