计算机图形学 三维图形变换
- 格式:doc
- 大小:48.50 KB
- 文档页数:2
计算机图形学中的透视和投影变换计算机图形学是机器图像处理和计算机视觉的理论基础,主要研究计算机生成的三维图形的数学表示和渲染技术。
在计算机生成的三维图形中,透视和投影变换是非常重要的技术,它们可以使三维图形更加直观逼真地呈现出来。
本文将对透视和投影变换进行详细讲解。
一、透视变换透视变换是一种三维立体图像转换为二维平面图像的方法,它可以模拟出现实中的透视效果。
在透视变换中,被变换的三维场景需要经过以下几个步骤:1. 建立三维场景模型。
在建立三维场景模型时,需要确定物体的位置、大小、形状和材质等参数,并将这些参数用数学公式表示出来。
2. 确定观察点位置和视线方向。
观察点是放置在场景外的假想点,用于观察场景中的物体。
视线方向是从观察点指向场景中的物体。
3. 定义投影平面。
投影平面是垂直于视线方向的平面,它用于将三维物体投影到二维平面上。
4. 进行透视变换。
在透视变换中,需要用到透视投影矩阵,它可以将三维图形投影到二维平面上,并使得远离观察点的物体变得更小。
透视变换可以使得生成的二维平面图像更加逼真,同时也可以减少计算量,提高渲染效率。
但是透视变换也有一些缺点,例如不能完全保持原图像的形状和大小,因此在实际应用中需要进行调整。
二、投影变换投影变换是一种将三维物体投影到二维平面上的方法,它可以用于生成平面图像、制作立体影像和建立虚拟现实等应用。
在投影变换中,被变换的三维场景需要经过以下几个步骤:1. 建立三维物体模型。
在建立三维物体模型时,需要确定物体的位置、大小、形状和材质等参数,并将这些参数用数学公式表示出来。
2. 确定相机位置和视线方向。
相机位置是放置在场景外的假想点,用于观察场景中的物体。
视线方向是从相机指向场景中的物体。
3. 定义投影平面。
投影平面是垂直于视线方向的平面,它用于将三维物体投影到二维平面上。
4. 进行投影变换。
在投影变换中,需要用到投影矩阵,它可以将三维图形投影到二维平面上,并保持原图形的形状和大小。
实验报告模板《计算机图形学》实验报告一、实验目的及要求1.实习三维图形的坐标系之间的变换;2.三维图形几何变换;3.掌握三维图形的坐标系之间的变换算法及三维图形几何变换的原理和实现;4.实现二维图形的基本变换(平移、旋转、缩放、错切、对称、复合等);5.实现三维图形的基本变换(平移、旋转、缩放、复合等);二、理论基础在齐次坐标理论下,二维图形几何变换矩阵可用下式表示:⎪⎪⎪⎭⎫⎝⎛===ifchebgdaTnkxx kk2,1,0,)(ϕ平移变换:[x* y* 1] =[x y 1] *0000001ts⎛⎫⎪⎪⎪⎝⎭=[t*x s*y 1]比例变换:[x* y* 1]=[x y 1] *1000101m n⎛⎫⎪⎪⎪⎝⎭=[m+x n+y 1]旋转变换:在平面上的二维图形饶原点逆时针旋转Ө角,变换矩阵为[x* y* 1]=[x y 1] *cos sin0sin cos0001θθθθ⎛⎫⎪- ⎪⎪⎝⎭= [x*cosө-y*sinө]复合变换:以上各种变换矩阵都是以原点为参照点,当以任意参照点进行变换的时候,我们就要用到复合变换矩阵。
三维变换类似于二维,在画图时,把三维坐标转换为二维即可。
三、算法设计与分析二维变换:#define dx 50#define dy 100void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+dx;a[1]=m[i][1]+dy;b[0]=m[i+1][0]+dx;b[1]=m[i+1][1]+dy;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define h 0.1745#include<math.h>void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*cos(h)-m[i][1]*sin(h);a[1]=m[i][1]*cos(h)+m[i][0]*sin(h);b[0]=m[i+1][0]*cos(h)-m[i+1][1]*sin(h);b[1]=m[i+1][1]*cos(h)+m[i+1][0]*sin(h);DDALine(a,b, RGB(0, 200, 255), pDC);}}#define k 2;#define f 2.5void CCGWithVCView::OnTransMove() //缩放{// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Scale Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*k;a[1]=m[i][1]*f;b[0]=m[i+1][0]*k;b[1]=m[i+1][1]*f;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define n 2#define d 0void CCGWithVCView::OnTransOther(){// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Other Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+n*m[i][1];a[1]=m[i][1]+d*m[i][0];b[0]=m[i+1][0]+n*m[i+1][1];b[1]=m[i+1][1]+d*m[i+1][0];DDALine(a,b, RGB(0, 200, 255), pDC);}}三维变换:#include<math.h>#define dx 100#define dy 100#define dz 0void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]+dy-p3d[i][0]+dx/sqrt(2);p2d[i][1]=p3d[i][2]+dz+p3d[i][0]+dx/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}#define k 0.1745void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]*cos(k)-p3d[i][2]*sin(k)-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]*cos(k)+p3d[i][1]*sin(k)+p3d[i][0]/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}四、程序调试及结果的分析二维:三维:五、实验心得及建议在实验过程中,尽管过程中任由许多不会的地方,而且有待于今后的提高和改进,但我加深了对书本上知识的理解与掌握,同时也学到了很多书本上没有东西,并积累了一些宝贵的经验,这对我以后的学习与工作是不无裨益的。
2024年考研高等数学三计算机图形学中的数学算法历年真题数学算法作为计算机图形学的重要组成部分,其在图像处理、三维建模、动画制作等领域具有广泛应用。
下面回顾历年考研高等数学三计算机图形学中涉及到的数学算法真题,以加深对该领域知识的理解。
一、二维图形的表示和处理1. 2015年真题题目描述:给定一个二维平面上的点集P,设计一个算法,统计该点集中在指定矩形内部的点的数量。
解析:该问题可采用扫描线算法来解决。
将矩形按横坐标分割成多个行,并从上至下依次统计每行内的点数量。
具体算法步骤为:先对点集P按照横坐标排序,然后逐行扫描,记录在每一行内x坐标落在矩形范围内的点的数量。
二、三维图形的表示和处理2. 2018年真题题目描述:给定一个三维空间中的点云数据集P,设计一个算法,确定该数据集中所有点的最大距离。
解析:该问题可使用蛮力法(brute-force)来解决。
遍历所有点对的组合,计算它们之间的距离,并在遍历过程中保存最大距离。
具体算法步骤为:对点云数据集P中的每一对点(A, B),计算其欧氏距离dist(A,B),并保留最大的距离值。
三、曲线和曲面的生成及处理3. 2019年真题题目描述:已知一个平面上的曲线关于X轴的转动,设计一个算法,在三维空间内生成该曲线的旋转曲面。
解析:该问题可使用参数方程法来解决。
考虑平面上的曲线由参数方程x=f(t),y=g(t)给出,其中t为参数。
要生成其旋转曲面,首先选择一个旋转轴,假设为Z轴,然后将x和y分别替换为t的函数,可得旋转曲面的参数方程x=f(t)cosθ,y=f(t)sinθ,z=g(t),其中θ为旋转的角度。
通过不同的θ取值,可生成曲线的多个旋转曲面。
四、三维变换4. 2020年真题题目描述:给定一个三维对象的初始位置和一个变换矩阵,设计一个算法,计算该对象在变换后的位置。
解析:该问题可使用齐次坐标和矩阵乘法来解决。
将三维对象的初始坐标表示为齐次坐标[x, y, z, 1],并将变换矩阵表示为4×4的矩阵T。
图形变换(转)主要内容:图形处理是CAD/CAM中的关键技术,包括图形⽣成、编辑和图形变换。
计算机图形学计算机图形学的概念计算机图形学的研究内容图形变换点的变换⼆维图形的变换⼆维图形的齐次变换⼆维图形的基本变换复合变换三维图形的齐次变换三维图形的基本变换复合变换1、什么是计算机图形学计算机图形学(Computer Graphics)是近30年来发展迅速、应⽤⼴泛的新兴学科,是计算机科学最活跃的分⽀之⼀。
计算机图形学是研究在计算机中如何表⽰图形,以及利⽤计算机进⾏图形的计算、处理和显⽰的相关原理与算法的⼀门学科。
随着计算机技术的发展,计算机图形学在CAD/CAM等计算机应⽤领域中占有越来越重要的地位。
计算机图形学的研究内容是⼗分丰富的。
虽然许多研究⼯作已经进⾏了多年,取得了不少成果,但随着计算机技术的进步和图形显⽰技术应⽤领域的扩⼤和深⼊,计算机图形学的研究、开发与应⽤还将得到进⼀步的发展。
2、图形变换的概念根据需要将已定义的图形从屏幕的某⼀位置移动到另⼀位置,或改变图形的⼤⼩和形状或利⽤已有的图形⽣成复杂的图形,这种图形处理的⽅法称为图形的⼏何变换,简称图形变换。
图形变换是计算机图形学的核⼼基础,通过图形变换,能够很⽅便地由简单图形派⽣出所需要的图形。
图形变换主要包括⼆维图形和三维图形的⼏何变换,投影变换等。
图形变换通常采⽤矩阵变换的⽅法,图形变换不同,其变换矩阵也不同,本节将重点介绍图形变换的矩阵⽅法及图形变换的程序设计。
2.1 点的变换在计算机绘图中,常常要进⾏诸如⽐例、对称、旋转、平移、投影等各种变换,图形可以⽤点集来表⽰,也就是点集定了,图形也就确定了。
如果点的位置变了,图形也就随之改变。
因此,要对图形进⾏变换,只要变换点就可以了。
由于点集可以⽤矩阵的⽅法来表达,因此对点的变换可以通过相应的矩阵运算来实现,即旧点(集)×变换矩阵矩阵运算新点(集)。
2.2 ⼆维图形变换⼆维图形变换主要包括⽐例,对称、错切、旋转、平移等。
计算机图形学习题参考答案第1章绪论1、第一届ACM SIGGRAPH会议是哪一年在哪里召开的?解:1974年,在Colorado大学召开了第一届SIGGRAPH年会。
2、计算机图形学之父是谁?解:Sutherland3、列举一些计算机图形学的应用领域(至少5个)。
解:计算机辅助设计、图示图形学、计算机艺术、娱乐、教学与培训、可视化、图像处理、图形用户界面等。
4、简要介绍计算机图形学的研究内容。
解:(1)图形的输入。
如何开发和利用图形输入设备及相关软件把图形输入到计算机中,以便进行各种处理。
(2)图形的处理。
包括对图形进行变换(如几何变换、投影变换)和运算(如图形的并、交、差运算)等处理。
(3)图形的生成和输出。
如何将图形的特定表示形式转换成图形输出系统便于接受的表示形式,并将图形在显示器或打印机等输出设备上输出。
5、简要说明计算机图形学与相关学科的关系。
解:与计算机图形学密切相关的学科主要有图像处理、计算几何、计算机视觉和模式识别等。
计算机图形学着重讨论怎样将数据模型变成数字图像。
图像处理着重研究图像的压缩存储和去除噪音等问题。
模式识别重点讨论如何从图像中提取数据和模型。
计算几何着重研究数据模型的建立、存储和管理。
随着技术的发展和应用的深入,这些学科的界限变得模糊起来,各学科相互渗透、融合。
一个较完善的应用系统通常综合利用了各个学科的技术。
6、简要介绍几种计算机图形学的相关开发技术。
解:(1)OpenGL。
OpenGL是一套三维图形处理库,也是该领域事实上的工业标准。
OpenGL独立于硬件、操作系统和窗口系统,能运行于不同操作系统的各种计算机,并能在网络环境下以客户/服务器模式工作,是专业图形处理、科学计算等高端应用领域的标准图形库。
以OpenGL为基础开发的应用程序可以十分方便地在各种平台间移植;OpenGL与C/C++紧密接合,便于实现图形的相关算法,并可保证算法的正确性和可靠性;OpenGL使用简便,效率高。
第六章 三维图形变换第一节 三维图形变换基础一、三维坐标系xyzxyz右手坐标系左手坐标系三维图形学中习惯上通常是采用右手坐标系。
xy 平面对应于视平面,z 轴垂直于视平面,指向视平面之外。
二、三维齐次坐标及变换矩阵三维图形变换也是基于矩阵运算进行。
矩阵运算的维数被扩展为四维。
三维坐标点采用4元齐次坐标表示:(x , y , z , 1),三维坐标与三维齐次坐标的相互转换如下:三维坐标(x , y ,z )——齐次坐标(x , y ,z , 1) 齐次坐标(x , y ,z , h )——二维坐标(x /h , y /h ,z /h ) 变换矩阵则为4X4的矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s nm kr j i h q f e d p c b a 其中:平移变换第二节 三维几何变换一、三维基本变换 1. 平移变换⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1010000100001nmk T )1,,,()1,,,(n z m y k x T z y x +++=⋅2. 比例变换)1,,,()1,,,(1000000000000jz ey ax T z y x j e a T =⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 3. 旋转变换三维的基本旋转变换分为三种,即绕三个坐标轴的旋转变换。
(1)绕z 轴旋转γ角旋转后z 值不变,x,y 值将发生改变,x,y 值的计算公式与平面旋转相同,即:zz y x y y x x ='+='-='γγγγcos sin sin cos 则变换矩阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=1000010000cos sin 00sin cos γγγγT 有:)1,1,cos sin ,sin cos ()1,,,(γγγγy x y x z y x +-=T(2)绕x 轴旋转α角则旋转后x 的坐标值不变,y 和z 的坐标值将改变,相当于在yz 平面上绕平面原点进行旋转变换。
平面转转变换的公式为:ααααcos sin sin cos y x y y x x +='-='对应而来,这里y 对应于x ,z 对应y ,有:ααααcos sin sin cos z y z z y y +='-='则变换矩阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=10000cos sin 00sin cos 00001ααααT )1,cos sin ,sin cos ,()1,,,(ααααz y z y x z y x +-=T(3)绕y 轴旋转β角这时,z 对应于x ,x 对应于y 。
计算机图形学基础知识计算机图形学是研究如何利用计算机生成和处理图形的学科。
它涵盖了许多领域,如计算机图像处理、计算机辅助设计和虚拟现实等。
掌握计算机图形学的基础知识对于理解和应用这些领域至关重要。
本文将为您介绍计算机图形学的基础知识,并分步详细列出相关内容。
1. 图形学的基础概念- 图形:在计算机图形学中,图形指的是一系列点、线和曲面等的集合。
- 图像:图像是图形学的一种特殊形式,它是由像素组成的二维数组。
- 基本元素:计算机图形学中的基本元素包括点、线和曲面等。
它们是构成图形的基本构件。
2. 图像表示与处理- 位图图像:位图图像是由像素组成的二维数组,每个像素保存着图像的颜色信息。
- 矢量图形:矢量图形使用几何形状表示图像,可以无损地进行放缩和旋转等操作。
- 图像处理:图像处理包括图像的增强、滤波、压缩和分割等操作,用于改善和优化图像。
3. 坐标系统和变换- 坐标系统:坐标系统用于描述和定位图形。
常见的坐标系统有笛卡尔坐标系统和极坐标系统等。
- 变换:变换是指将图形在坐标系统中进行移动、缩放和旋转等操作。
4. 二维图形学- 线性插值:线性插值是计算机图形学中常用的插值方法,用于在两点之间生成平滑的曲线。
- Bézier曲线:Bézier曲线是一种常用的数学曲线模型,可以用于生成平滑的曲线。
- 图形填充:图形填充是指将图形的内部区域用颜色填充,常用的填充算法有扫描线填充算法和边界填充算法。
5. 三维图形学- 三维坐标系统:三维坐标系统用于描述和定位三维空间中的点、线和曲面等。
- 三维变换:三维变换包括平移、缩放、旋转和投影等操作,用于改变和调整三维图形。
- 计算机动画:计算机动画是利用计算机生成连续变化的图像序列,用于呈现逼真的动态效果。
总结:计算机图形学是研究利用计算机生成和处理图形的学科。
它涵盖了图像表示与处理、坐标系统和变换等基础知识。
在二维图形学中,线性插值和Bézier曲线是常用的技术,图形填充则可以实现对图形内部区域的着色。
《计算机图形学》实验报告
实验 三维图形变换
一、实验目的与要求
1. 掌握三维图形的基本变换与复合变换算法原理;
2. 掌握三维图形投影变换与透视变换的算法。
二、实验内容
1. 给定一个长方体8个顶点坐标,编程实现图形的正投影变换与轴测投影变换;
2. 给定一个三维几何体坐标,实现它的轴测投影变换与一点透视变换。
三、重要算法分析
三维变换齐次坐标矩阵:
⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛lm ns cfir behq adgp
从功能上可以将4x4的矩阵分为四个部分:
1. 对图形进行缩放、旋转、对称、错切等变换的矩阵:
⎪⎪⎪⎭
⎫ ⎝⎛cfi beh adg
2. 对图形进行平移变换的矩阵:
()lm n
3. 对图形透视变换的矩阵:
⎪⎪⎪⎭
⎫ ⎝⎛r q p
4. 对图形整体比例变换的矩阵:
()s
三维空间点齐次坐标矩阵变换方法为:
()1'''z y x =()1xyz ⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛lm ns cfir behq adgp
通过上述矩阵对图形上坐标值进行计算,获得相应变换后的坐标值,即可输出要显示的图形。
四、程序运行截图
图1为正投影图形,图2、3分别为正等测投影和正二测投影,图4为一点透视投影。
图1 正投影图形
图2 正等测图形图3 正二测图形
图4 一点透视图形
五、总结与调试经验
三维图形的变换可以产生很好的视觉效果,使的再二维平面上的图形更有立体感,对图形进行变换的过程中,通过使用四维的齐次坐标矩阵可以在计算机中方便的计算出变换前后图形的坐标值,并绘制出图形。