纯培养技术和显微技术
- 格式:doc
- 大小:293.50 KB
- 文档页数:5
第二章微生物的纯培养和显微技术第二章微生物的纯培养和显微技术第一节微生物的分离和纯培养一、无菌技术在分离、转接及培养纯培养物时防止被其他微生物污染,其自身也不污染操作环境的技术被称为无菌技术。
1、微生物培养的常用器具及其灭菌(1)试管、玻璃烧瓶、培养皿。
(2)高压蒸汽灭菌,杀灭所有的微生物,包括休眠体,同时可保持培养基的营养成分不被破坏。
(3)高温干热灭菌。
2、接种操作无菌条件下,用接种环在火焰附近进行操作,或在无菌操作箱或操作室内进行。
二、用固体培养基获得纯培养1、菌落:分散的微生物在适宜的固体培养基表面或内部生长、繁殖到一定程度可以形成肉眼可见的、有一定形态结构的子细胞生长群体。
菌苔:当固体培养基表面众多菌落连成一片时,便成为菌苔。
2、涂布平板法3、稀释倒平板法4、平板划线法5、稀释摇管法对氧气更加敏感的厌氧型微生物。
先将一系列盛无菌琼脂培养基的试管加热,使琼脂融化后冷却,将微生物进行梯度稀释,冷凝后,在琼脂表面倒一层灭菌液体石蜡和固体石蜡的混合物,将培养基隔开。
三、用液体培养基获得纯培养对一些个体大的细菌、许多原生动物、藻类。
稀释法。
接种物在液体培养基中进行顺序稀释,以得到高度稀释的效果,使一支试管中分配不到一个微生物。
经稀释后的大多数试管中没有微生物生长,那么有微生物生长的试管得到的培养物可能就是纯培养物。
只能分离出混杂微生物群体中占数量优势的种类。
四、单细胞(孢子)分离采用显微分离法从混杂群体中直接分离单个细胞或单个个体进行培养以获得纯培养,称为单细胞(单孢子)分离法。
较大的微生物较容易,个体较小的较难。
对较大微生物,用毛细管提取个体,在低倍显微镜下操作;对较小微生物,采用显微操作仪。
五、选择培养根据该微生物的特点,包括营养、生理、生长条件等,采用选择培养分离的方法,或抑制大多数其他微生物生长,或造成有利于该菌生长的环境,培养一段时间后,通过平板稀释等方法进行纯培养分离。
1、选择平板培养2、富集培养制定特定的环境,使仅适应于该条件的微生物生长。
第二章微生物的纯培养和显微镜技术2.纯培养和显微技术一、纯培养技术1、无菌技术包括两方面的内容:(1)用于分离、培养微生物的器具事先不含任何微生物;(2)在转接、培养微生物时防止其它微生物的污染,其自身也不污染环境;2、分离纯化技术(1)固体培养基分离纯培养技术微生物个体微小,常以群体混合状态存在,将单个细胞从群体中分离出来,即纯培养。
菌落:单个(或聚集在一起的一团)微生物在适宜的固体培养基表面或内部生长、繁殖到一定程度可以形成肉眼可见的、有一定形态结构的子细胞生长群体。
菌苔:众多菌落连成一片。
获得纯培养的方法有:倾注平板法:操作较麻烦,对好氧菌、热敏感菌效果不好!涂布平板法:使用较多的常规方法,但有时涂布不均匀!平板划线法:厌氧微生物的分离:(2)液体培养基分离纯培养稀释法进行液体分离必须在同一个稀释度的许多平行试管中,大多数(一般应超过95%)表现为不生长。
(3)选择培养分离:抑制大多数其它微生物的生长;使待分离的微生物生长更快;使待分离的微生物在群落中的数量上升,方便用稀释法对其进行纯化。
使待分离的微生物生长“突出”;直接挑取待分离的微生物的菌落获得纯培养。
3、单细胞分离技术用显微操作仪,在显微镜下进行。
难度与细胞或个体的大小成反比,局限于高度专业化的科学研究中。
4、选择培养分离选择平板:抑制大多数微生物不能生长,或具区别特征的直观结果。
富集培养:造成有利于某种菌生长的环境。
(1)利用选择平板进行直接分离高温培养分离嗜热菌,培养基中不含有N,分离固氮菌;培养基中含有抗生素分离抗生菌。
牛奶培养基分离产蛋白酶菌株。
(2)富集培养利用不同微生物之间的生长特性不同,制定特定的环境条件,使仅适合条件的微生物旺盛生长,从而使其在为生物群落中的比率大大增大,易于从群落中间将墓地君主分离出来。
5、二元培养物培养物中只含有二种微生物,而且有意识地保持二者之间的特定关系的培养物。
如病毒与宿主;蛭弧菌与和E.coli.6、微生物的保藏技术影响微生物菌种稳定性的因素:a. 变异;b. 污染;c. 死亡基本要求:在一定时间内使菌株不死,、不变、不乱基本方法生活态:培养基传代培养(斜面、平板、半固体),多见于冰箱4℃培养。
第二章:纯培养技术和显微技术重点与难点剖析一、纯培养技术1、分离获得微生物的纯培养物是研究利用微生物的基础。
获得纯培养物涉及的相关技术包括:无菌技术、微生物的分离与分离纯化技术和微生物培养和保藏技术。
2、无菌技术:包括培养基和物品的各种灭菌技术和微生物各种接种过程的无菌操作技术等。
重点在实验课中掌握相关的技术原理和操作规范,以牢固树立“无菌”的思想和概念。
3、固体培养基分离纯培养物的基本方法和原理纯培养指的是只有一种微生物组成的细胞群体。
自然环境中微生物是混杂在一起的,因此分离获得纯培养物的基本原理:首先采用方法将单个的细胞与其他细胞分离开,进而提供细胞合适的营养和条件,使其生长成为可见的群体。
进行微生物的分散主要采用稀释的方法,而固体培养基由于能够使分散的细胞固着于一定的位置,与其他的细胞分离,从而生长成为一个单细胞来源的群体-即纯培养,而成为常用而简便的分离介质和营养介质。
固体培养基分离纯培养物由于稀释方法的差异和接种平板的方式差异而分为以下几种方法:(1)划线平板法将合适的无菌培养基倒入无菌培养皿中,冷却后制备成平板,按以下方法划线:平板划线法中细胞的分离和稀释过程发生在接种环在固体平板表面上的划线和移动过程中,产生的单个细胞在培养基表面生长的后代就是纯培养物。
(2)倾注平板法和涂布平板法这两种方法的共同点就是在将细胞接种到培养基之前,通过液体稀释的方法分散细胞,最常用的液体稀释方法为10倍系列稀释,参考下图:随着稀释程度的增大,单位体积中的微生物细胞数量减少,细胞得以分散。
稀释倾注平板法的操作是:选择细胞得以分散的合适稀释度的菌悬液与灭完菌冷却到50-55°C的培养基混合均匀,一起倒入无菌培养皿中,冷却形成平板后,培养。
稀释倾注平板法操作较麻烦。
在进行微生物分离纯化时,该方法需要样品与热的培养基混合,因此对热敏感微生物的影响明显;该方法操作过程中,样品中的微生物有的分布于平板表面,有的则裹在培养基中,后者则会影响严格好氧微生物的生长;而且,对于同一种微生物,平板表面的菌落形态与培养基内的菌落形态会存在着明显的差别,影响菌落形态的判别。
在进行微生物计数时,该方法细胞分散均匀,计数较准确。
稀释涂布平板方法的操作是:首先将灭完菌冷却到50-55°C的培养基倒入无菌培养皿中冷却形成平板,然后选择细胞得以分散的合适稀释度的菌悬液加到平板中央,以三角刮刀将之均匀地涂布于整个平板上,培养。
稀释涂布平板方法操作相对简单,它克服了倾注平板方法对热敏感微生物、严格好氧微生物和培养基内部菌落带来的不利影响,是实验室中经常使用的常规分离方法。
其存在的问题是有时会由于菌液太多或者涂布不均匀而使细胞分散不充分,影响计数结果和分离纯化效果。
(3)稀释摇管法主要用于厌氧微生物的分离纯化,是稀释平板法的一种变通。
其基本操作流程为:试管培养基融化→50度保温→样品梯度稀释后加入试管培养基中→摇匀冷却凝固→石蜡油封闭→培养。
细胞固着于试管的琼脂柱中,再加以石蜡覆盖,就可以进行厌氧菌的分离纯化。
由于氧的存在对严格厌氧微生物有毒害作用,因此严格厌氧菌的培养往往需要专业的厌氧操作设备。
因此,稀释摇管法在虽然观察和挑取菌落时比较困难,但是在缺乏专业设备的条件下,此法仍是一项方便有效地进行厌氧微生物分离、纯化和培养的低成本方法。
所有以稀释为基础达到分离纯培养物的方法,其前提条件是该类群的微生物细胞必须在群体中占有数量上的优势,才能够在不断的稀释中不被淘汰而保留下来。
4、液体培养基分离纯培养的原理液体培养基分离纯培养物仍然基于稀释的基本原理,但是需要高度稀释,致使一支试管中分配不到一个微生物细胞,至多只有一个细胞,这样才能够在液体培养基中获得纯培养物。
因此根据统计学原理,采用稀释法进行液体分离纯培养物时,必须要求在同一个稀释度的许多平行试管中,大多数(一般应超过95%)试管中表现为不生长,这时表现为生长的试管中为纯培养的可能几率就增大(据统计计算,若同一稀释度的试管中有95%表现为不生长,在有细菌生长的试管中培养物来源于一个细胞(即纯培养)的几率为97.5%。
来源于两个细胞的几率为2.44%,来源于三个细胞的几率为0.04%)5、选择培养分离与富集培养所有以稀释为基础达到分离纯培养物的方法,其前提条件是该类群的微生物细胞必须在群体中占有数量上的优势,才能够在不断的稀释中不被淘汰而保留下来。
非数量优势微生物类群的分离纯化则可以首先通过选择培养与富集培养的方式使其数量增加,成为数量优势菌群后,再通过上述各种平板法进行分离和纯化。
选择培养就是通过添加抑制剂,抑制大多数其它微生物的生长;或者选择特定的营养物,使得需要的微生物易于快速生长。
——没有一种培养基或一种培养条件能够满足自然界中一切生物生长的要求,在一定程度上所有的培养基都是选择性的。
富集培养就是利用不同微生物间生命活动特点的不同,制定特定的环境条件,使仅适应于该条件的微生物旺盛生长,从而使其在群落中的数量大大增加,人们能够更容易地从自然界中分离到所需的特定微生物。
6、微生物的保藏技术性状稳定的菌种纯培养物是微生物学工作最重要的基本要求,否则生产或科研都无法正常进行。
影响微生物菌种稳定性的因素:a)变异b)污染c)死亡基本要求:在一定时间内使菌种不死、不变、不乱。
基本方法:生活态:培养基传代培养(斜面、平板、半固体); 寄主传代培养休眠态’ 冷冻(液氮、低温冰箱); 干燥(沙土管、冷冻真空干燥)其它方法:滤纸片;明胶片;蒸馏水对于一些比较重要的微生物菌株,则要尽可能多的采用各种不同的手段进行保藏,以免因某种方法的失败而导致菌种的丧失。
二、显微技术由于微生物微小,多数肉眼无法看见,因此对于微生物世界的认识必须借助于显微技术。
显微技术不仅与显微镜自身的原理和特点有关,也取决于进行显微观察时对显微镜的正确使用及良好的标本制作和观察技术。
因此显微技术是微生物学的重要内容之一,在了解各种显微工具及其原理和应用优势后,还必须紧密结合试验课程熟练掌握微生物学研究的常规显微工具。
1、显微镜的分辨率显微镜物象是否清楚不仅决定于放大倍数,还与显微镜的分辨率(Resolution)有关,它是决定观察效果的最重要的指标。
分辨率(力)(Resolution,R) 指的是显微镜能够分辨两点之间最小距离能力。
能够分辨的距离越小,分辨率越高,反之越低。
依据德国理学家Ernst Abbe,在19世纪70年代建立的在Abbe的公式中,两物体之间的最小可分辨距离被称为最小距离(d)0.5 λ最小可分辨距离: d = ——————n sin θ公式解析:(l)所用光源的光波波长(λ),是影响最小可分辨距离的最主要因素。
可见光光线的波长为400-700nm,,其中蓝光的波长最短(400-500nm),最小可分辨距离最小,所提供的分辨率最高(所以为什麽大多数显微镜的滤光片都是蓝色的)。
(2)θ: 为物镜镜口角的半数,它取决于物镜的直径和工作距离。
(3)n:玻片(样品)与物镜间介质的折射率(空气:干燥物系;香柏油:油浸物系)。
(4)n sinθ : 被称为数值口径(Numerical Aperture, NA),它是决定物镜性能的最重要的指标。
分辨率从定义上讲,与可分辨的最小距离(d)成反比,可表示为:R (1/d)。
以这种方式将最小可分辨距离与分辨率作为两个概念分开理解,比较容易理解提高分辨率的相关措施(获得最小分辨距离 提高分辨率):(1)减短光波波长(λ)。
(2)增加镜口角(θ),这是增加数值口径的因素之一。
(3)增加介质的折射率(n),这是增加数值口径的重要因素。
如,利用油镜进行显微观察时,以香柏油取代空气,其重要作用就是提高介质折射率,使数值口径和分辨率均得到提高,同时香柏油与玻璃的折射率相近,使得很多原来在透镜和载玻片表面因折射和反射而损失的光线可以进入物镜,提高照明亮度,改善观察效果。
2、明视野显微镜明视野显微镜即常用的普通光学显微镜,其照明光线直接进入视野,属透射照明。
生活的细菌在明视野显微镜下观察是透明的,不易看清。
解决的措施,一方面是对观察的样品进行改造,发展出各种染色技术,通过特殊的染色方法使细胞着色,增加与背景的反差,便于观察;另一方面进行显微镜的改造,由此发展出不同种类的显微镜,适用于不同的观察目的。
3、暗视野显微镜暗视野显微镜则利用特殊的聚光器遮挡中心光源,实现斜射照明,使照射到样品上的透射光线无法进入物镜,但由样品反射或折射的光线进入物镜,因此,整个视野是暗的,而样品是明亮的,由此达到增加反差,便于观察的目的。
并且,使用暗视野显微镜,即使所观察微粒的尺寸小于显微镜的分辨率,仍然可以发现其存在。
4、相差显微镜光波的长短表现为颜色差别,光的振幅高低表现为明亮程度的不同。
观察样品各部分厚薄、密度不同,光线通过时直射光和衍射光的光程产生差别,导致出现相位差。
相差显微镜配备了特殊的光学装置,利用光的干涉现象,将光的相位差转变成人眼可辨的振幅差(明暗差),形成反差,从而提高了各种结构间的对比度,使各种结构变得清晰可见,因此相差显微镜很适合观察活的细胞以及细胞内的一些细微结构。
相差显微镜实现这一目的的特殊的光学装置主要是环状光圈和相板。
5、荧光显微镜紫外线光源照射在具有荧光素的样本上,荧光素激发出荧光,使标本在暗的视野中显现出光亮的物体,不同的荧光素还表现为不同的颜色,由此可以进行定性和定量的研究。
主要应用于免疫学、环境微生物学和分子生物学等方面。
6、电子显微镜——透射电子显微镜与扫描电子显微镜电子显微镜与光学显微镜的差异:1)以电子波(波长最短可达到0.005 nm)代替光源,由于波长的极大缩短而大大提高了分辨率。
光镜的最高分辨率可达到0.2μm,这种局限是由可见光的性质决定的,与显微镜自身的性能无关。
电镜实际的分辨率比光镜提高约1000倍。
2)电镜镜筒中要求高真空(在电子的运行中如遇到游离的气体分子会因碰撞而发生偏转,导致物象散乱不清)。
电子显微镜因需在真空条件下工作,所以很难观察活的生物。
3)以电子透镜(电磁圈)代替光学透镜,通过电磁圈使电子“光线”汇聚、聚焦。
4)电子像人肉眼看不到,需用荧光屏来显示或感光胶片作记录。
电子显微镜按结构和用途可分为:透射电子显微镜(transmission electron microscope): 电子束穿过薄切片扫描电子显微镜(scanning electron microscope): 观察样品的表面结构7、扫描隧道显微镜是目前分辨率最高的显微镜,其横向分辨率可以达到0.1-0.2 nm,纵向分辨率可以达到0.001 nm,足以对单个的原子进行观察。
由于在扫描时不接触样品,又没有高能电子束轰击,因而可以避免样品的变形。