传热学-第二章-稳态热传导精讲
- 格式:ppt
- 大小:19.59 MB
- 文档页数:73
第二章 稳态导热本章重点:具备利用导热微分方程式建立不同边界条件下稳态导热问题的数学模型的能力第一节 通过平壁的导热1-1 第一类边界条件 研究的问题:(1)几何条件:设有一单层平壁,厚度为δ,其宽度、高度远大于其厚度(宽度、高度是厚度的10倍以上)。
这时可认为沿高度与宽度两个方向的温度变化率很小,温度只沿厚度方向发生变化。
(属一维导热问题)(2)物理条件:无内热源,材料的导热系数λ为常数。
(3) 边界条件:假设平壁两侧表面分别保持均匀稳定的温度1w t 和2w t ,21w w t t >。
(为第一类边界条件,同时说明过程是稳态的)求:平壁的温度分布及通过平壁的热流密度值。
方法1 导热微分方程:采用直角坐标系,这是一个常物性、无内热源、一维稳态导热问题(温度只在 x 方向变化)。
导热微分方程式为:022=dxtd (2-1)边界条件为:10w x t t == , 2w x t t ==δ (2-2)对式(2-1)连续积分两次,得其通解: 21c x c t += (2-3)这里1c 、2c 为常数,由边界条件确定 ,解得:⎪⎩⎪⎨⎧=-=11221ww w t c t t c δ (2-4)最后得单层平壁内的温度分布为: x t t t t w w w δ211--= (2-5)由于δ 、1w t 、2w t 均为定值。
所以温度分布成线性关系,即温度分布曲线的斜率是常数(温度梯度),const t t dx dt w w =-=δ12 (2-6)热流密度为:)(21w w t t dx dt q -=-=δλλ2/m W (2-7) 若表面积为 A, 在此条件下 , 通过平壁的导热热流量则为 :t A qA ∆==Φδλ W (2-8)考虑导热系数随温度变化的情况:对于导热系数随温度线形变化,即)1(0bt +=λλ,此时导热微分方程为:0=⎪⎭⎫⎝⎛dx dt dx d λ 解这个方程,最后得:⎥⎦⎤⎢⎣⎡++-+⎪⎭⎫ ⎝⎛+=+)(211212121121122w w w w w w t t b x t t bt t bt t δ 或 x tt t t b b t b t w w w w w δ12211)(21122-⎥⎦⎤⎢⎣⎡+++⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+说明:壁内温度不再是直线规律,而是按曲线变化。