高等代数[北大版]第1章习题参考答案解析
- 格式:docx
- 大小:156.09 KB
- 文档页数:31
高等代数(北大版第三版)习题答案I I(总95页)-本页仅作为预览文档封面,使用时请删除本页-高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。
证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。
故必存在非退化线性替换Y C X 1-=使()BY Y ACY C Y AX X '=''='-12222122221n p p p y y y y y y ----+++=++ ,且在规范形中必含带负号的平方项。
于是只要在Y C Z 1-=中,令p y y y === 21,1,021=====++n p p y y y 则可得一线性方程组 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++1102211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21 =使()0111000<--=----+++='p n AX X s s, 即证存在0≠X ,使0<'A X X 。
13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。
证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X ,因此()0>'+'=+'BX X AX X X B A X ,于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。
若()()()x m x l x h +=,且()()x m x p |,()()x l x p |/,则()()x h x p |/。
证法1: 由()()x m x p |/有 ()()()x p x m x m 1=。
由()()x l x p |/有()()()()()0,1≠+=x r x r x p x l x l 。
于是 ()()()()()()()()x r x p x l x m x m x l x h ++=+=11。
因()0≠x r ,故()()x h x p |/。
证明2:用反证法。
若()()x h x p |,即()()()()x m x l x p +|, 又()()x m x p |,故()()()()()x m x m x l x p -+|,即()()x l x p |,矛盾。
问:若()()()()x g x h x f x h |,|//, 则()()()()x g x f x h +|成立吗?试举例说明。
答:不一定。
例如 ()()()1,1,+=-==x x g x x f x x h ,则()()()()x g x h x f x h |,|//,但()()()()x g x f x h +|。
例如 ()()()2,1,+=-==x x g x x f x x h , 则()()()()x g x h x f x h |,|//,且()()()()x g x f x h +/|。
例 求m l ,, 使()2523+++=x lx x x f 能被()12++=mx x x g 整除。
解法1:因()()3=∂x f ,()()2=∂x g ,故商()x q 满足()()1=∂x q ,且设()p x x q +=,则由 ()()()x g x q x f =,可得()()p x pm x p m x x lx x +++++=+++1252323,l m p pm p =+=+=,51,2,从而 4,2,2===l m p 。
第一章多项式一、习题及参考解答1 .用g(x)除了(x),求商g(x)与余式r(x):1 ) f (x) = x3 - 3x2 - x -1, g(x) = 3x2 - 2x +1;2 ) f(x) = x4 -2x + 5,g(x) = x2 - x + 2。
解1)由带余除法,可得q(x) =L-Z,“x) =-竺x-2 ;2)同理可得g(x) = / +x-l,r(x) = -5x + 7。
2. 〃?,PM适合什么条件时,有1 ) X2 +/?1¥-1 I X3 + px + c/ 92) x2 + nix + 11 x4 + px2 +q。
解1 )由假设,所得余式为0,即(〃 + l + 〃?2)x + (q-〃?) = O,所以当 1 + 。
时有 /+〃a-11 X* + px +g 0q _ in = 0 .2)类似可得= 于是当〃? = 0时,代入(2)可得〃=夕+ 1;q + 1 —〃一" = 0而当2- 〃 -J = 0时,代入(2)可得4 = 1 04 = ] _, 时,皆有 / + + 1 I X,+ px2 + 9。
综上所诉,当p + nr = 23 .求g(x)除f(x)的商q(x)与余式:1 ) /(x) = 2«?-5x3-8x,g(x) = x + 3 ;2) f(x) = x3-x2 - xg(x) = x-l + 2i o解[)q(x) = 2x4 - 6x3 +13x2 - 39A+ 109 ,r(x) = -327 '2)= x2 -2LV-(5+2/)r(x) = -9 + 8/ °4 .把/1(X)表示成x-%的方幕和,即表成c()+ G(X —“0)+。
2(X — X。
)~ + …+ C n(X — X。
)” + …的形式:1)/(x) = x',x()= 1 ;2) /(X)= X4-2X2+3,X0 =-2 ;3) f (x) = x4 + 2汉3 -(1 + i)x2 -3x + 7 + i,x0 =-i o解 1 ) 由综合除法,可得f(x) = l + 5(x-l) + 10(x-l)2 + 10(x-1)3+5(X-1)4 + (x-1)5 ;2 ) 由综合除法,可得X4-2X2+3=11-24(X + 2) + 22* + 2)2 -8(.r + 2)3 + (x + 2),;3)由综合除法,可得『+2立3_(1 +82_3工+ (7 +,)= (7 + 5i)-5(x + i) + (-l-i)(x + i)2 -2i(x + i)3 + (x + i),。
习题1.1解答1.下列数集哪些是数域?哪些是数环?哪些既非数域也非数环?1)所有正实数所成的集合.2)所有偶数(或奇数)构成的集合. 3)某个整数a 的所有整数倍所成的集合.4)F={Q b a b a ∈+,23}.解 1)所有正实数所成的集合对减法不封闭,所以不是数环,当然也非数域.2)所有偶数构成的集合对加、减、乘均封闭,所以是数环;但对除法不封闭,所以不是数域.3)某个整数a 的所有整数倍所成的集合对加、减、乘均封闭,所以是数环;但对除法不封闭,所以不是数域.4)在F={Q b a b a ∈+,23} 中取32,显然32×32∉F ,即对乘法不封闭,所以F 不是数环,当然也非数域.2.证明:两个数域的交是一个数域.解 设A ,B 是两个数域,则0,1∈A ,0,1∈B ,从而0,1∈A ∩B ;对任意x,y ∈A ∩B ,有x,y ∈A 和x,y ∈B ,从而x+y ∈A ,x-y ∈A ,x ×y ∈A ,x ÷y ∈A (对y ≠0),同样也有x+y ∈B ,x-y ∈B ,x ×y ∈B ,x ÷y ∈B (对y ≠0),所以x+y ∈A ∩B ,x-y ∈A ∩B ,x ×y ∈A ∩B ,x ÷y ∈A ∩B (对y ≠0),故A ∩B 是数域.3*.证明:F={a+bi|a,b ∈Q}(i 是虚单位)是一个数域.解 显然0=0+0i ∈F ,1=1+0i ∈F ;对任意a+bi,c+di ∈F ,有(a+bi)+(c+di)=(a+c)+(b+d)i ∈F ,(a+bi)-(c+di)=(a-c)+(b-d)i ∈F ,(a+bi)×(c+di)=(ac-bd)+(ad+bc)i ∈F ,若c+di ≠0,则(a+bi)÷(c+di)=F i d c ad cb d c bd ac d c di c bi a ∈+-+++=+-+222222)())((.所以F 是数域.4*.证明:G={a+bi|a,b ∈Z}是数环而不是数域.解 对任意a+bi,c+di ∈G ,有(a+bi)+(c+di)=(a+c)+(b+d)i ∈G ,(a+bi)-(c+di)=(a-c)+(b-d)i∈G ,(a+bi)×(c+di)=(ac-bd)+(ad+bc)i ∈G ,所以G 是数环.数1=1+0i ∈G ,2=2+0i ∈G ,2≠0,但1÷2∉G ,所以G 不是数域.习题1.2解答1.用行的初等变换,将下列矩阵化为行最简形.①⎪⎪⎪⎭⎫⎝⎛-213312011 ②⎪⎪⎪⎪⎪⎭⎫⎝⎛-2605573314122321③⎪⎪⎪⎭⎫⎝⎛---443112110013 ④⎪⎪⎪⎪⎪⎭⎫⎝⎛-----133331241246104210521 解 ①⎪⎪⎪⎭⎫ ⎝⎛-213312011→⎪⎪⎪⎭⎫ ⎝⎛-240330011→⎪⎪⎪⎭⎫ ⎝⎛--200110011→⎪⎪⎪⎭⎫⎝⎛100010001 ②⎪⎪⎪⎪⎪⎭⎫⎝⎛-2605573314122321→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------129100123032302321→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------129100123032302321→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----23/700200032302321→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----200023/70032302321→⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001 ③⎪⎪⎪⎭⎫ ⎝⎛---443112110013→⎪⎪⎪⎭⎫ ⎝⎛---443100131211→⎪⎪⎪⎭⎫ ⎝⎛----564036401211 →⎪⎪⎪⎭⎫ ⎝⎛---200036401211→⎪⎪⎪⎭⎫ ⎝⎛--100006400211→⎪⎪⎪⎭⎫ ⎝⎛-100002/31002/101 ④⎪⎪⎪⎪⎪⎭⎫⎝⎛-----133331241246104210521→⎪⎪⎪⎪⎪⎭⎫⎝⎛----231890126306600010521→⎪⎪⎪⎪⎪⎭⎫⎝⎛----660002318901263010521 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----11000130001263010521→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---40000110001263010521→⎪⎪⎪⎪⎪⎭⎫⎝⎛--10000010000063000521 →⎪⎪⎪⎪⎪⎭⎫⎝⎛100000100000310001012*.用行的与列的初等变换,将上题中的③化成形为⎪⎪⎭⎫ ⎝⎛000sE 的矩阵. 解 接上题中的③的行最简形⎪⎪⎪⎭⎫ ⎝⎛-100004/61002/101→⎪⎪⎪⎭⎫ ⎝⎛100000100001→⎪⎪⎪⎭⎫⎝⎛010*********习题1.3解答1.写出以下列行最简形矩阵为增广矩阵的线性方程组的全部解.①⎪⎪⎪⎭⎫ ⎝⎛-000032100301 ②⎪⎪⎪⎭⎫ ⎝⎛110000010010011 解 ①对应的线性方程组可写为⎩⎨⎧+=-=32312330x x x x令x 3=c ,得x 1=-3c ,x 2=3+2c ,全部解可表示为⎪⎩⎪⎨⎧=+=-=c x c x c x 321233 其中c 为任意数.② 对应的线性方程组可写为⎪⎩⎪⎨⎧==-=1014321x x x x令x 2=c ,得⎪⎪⎩⎪⎪⎨⎧===-=1014321x x c x c x 其中c 为任意数.2.解下列线性方程组:①⎪⎩⎪⎨⎧=+=+-=-+8311102322421321321x x x x x x x x ②⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++69413283542432321321321321x x x x x x x x x x x x③⎪⎩⎪⎨⎧=--+=+-+=+-+12222412432143214321x x x x x x x x x x x x ④⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534432312432143214321x x x x x x x x x x x x 解 ① 对应的增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛--80311102132124~⎪⎪⎪⎭⎫ ⎝⎛---2/54/112/502/174/112/502124~⎪⎪⎪⎭⎫ ⎝⎛---101110034111002124~⎪⎪⎪⎭⎫ ⎝⎛---2400034111002124 由于系数矩阵的秩不等于增广矩阵的秩,所以原方程组无解.② 对应的增广矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328341325421~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----147702814140147705421~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0000000021105421 对应的同解方程组可写为⎩⎨⎧+=--=-323212452x x x x x令x 3=c ,全部解可表示为⎪⎩⎪⎨⎧=+=--=cx c x cx 321221 其中c 为任意数.③对应的增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛----111122122411112~⎪⎪⎪⎭⎫⎝⎛---020000100011112 ~⎪⎪⎪⎭⎫⎝⎛-00000010002/102/12/11 对应的同解线性方程组可写为⎩⎨⎧=+-=02/12/12/14321x x x x令x 2=c 1,x 3=c 2,得⎪⎪⎩⎪⎪⎨⎧===+-=021212142312211x c x cx c c x 其中c 1,c 2为任意数.④ 对应的增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛-----253414312311112~⎪⎪⎪⎭⎫ ⎝⎛-----111124312325341~⎪⎪⎪⎭⎫ ⎝⎛------5957010181014025341~⎪⎪⎪⎭⎫ ⎝⎛----000005957025341 对应的同解线性方程组可写为⎩⎨⎧+-=--+-=+432432195575324x x x x x x x令x 3=c 1,x 4=c 2,得⎪⎪⎩⎪⎪⎨⎧==-+-=++=24132122117/97/57/57/7/7/6c x c x c c x c c x 其中c 为任意数.3.解下列齐次线性方程组:①⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ②⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ③⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x 解 ① 对应的系数矩阵为⎪⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎪⎭⎫ ⎝⎛----430013101211~⎪⎪⎪⎭⎫ ⎝⎛---430030103/4001 令x 4=c ,得⎪⎪⎩⎪⎪⎨⎧==-=-=cx c x c x c x 43213/433/4 中c 为任意数.② 对应的系数矩阵为⎪⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎪⎭⎫ ⎝⎛---040004001121~⎪⎪⎪⎭⎫⎝⎛--000004001121对应的同解方程为⎩⎨⎧=-+-=+04234231x x x x x令x 2=c 1,x 4=c 2,得⎪⎪⎩⎪⎪⎨⎧===+-=2431221102c x x c x c c x ③ 对应的系数矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----5132631472137421~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----199703419901410707421 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----51007/1127/43001410707421~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----510011243001410707421~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---100051001410707421 系数矩阵的秩为4,对应的齐次线性方程组只有零解⎪⎪⎩⎪⎪⎨⎧====00004321x x x x4.讨论a,b 取什么值时下面的线性方程组无解,有唯一解,有无穷多解?①⎪⎩⎪⎨⎧=-++=++=-+b x a x x x x x x x x 3221321321)5(322 ②⎪⎩⎪⎨⎧=++=++=++4234321321321x bx x x bx x ax x x 解 ①系数矩阵的行列式为5111211112--a =400211112--a =(a-2)(a+2)当a ≠2且a ≠-2时,方程组有唯一解。
高等代数北大编第1章习题参考答案第一章多项式一、习题及参考解答1.用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。
解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当=-=++0012m q m p 时有q px x mx x ++-+32|1。
2)类似可得=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当??+==10q p m 或=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+L 的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。
WORD 格式可编辑第一章 多项式0时,代入2)可得q2pm1. 用 g(x)除 f (x), 求商q(x)与余式r(x):1) f (x) x 3 3x * 22x 1, g(x) 3x 2x 2) f(x) x 4 2x5,g(x) x 211)由带余除法,可得q(x)亍討(X)26 x92同理可得q(x) x x 1, r(x) 5x 7。
1) 2 x mx 1| x 3px q , 2)2 ..4 2x mx 1 | x px q 。
解 1) 由假设, 所得余式为 0, 即(p 所以当 p 1 2 m 时有x 2 mxq m 0m(2 p m 2) 0 2) m, p,q 适合什么条件时,有 2. 1 |xq 1 p2,于是当m 21 m2 )x (q m) 0,pxm 0时,代入(2)可得综上所诉,当时,皆有x 2mx 1|x 4 px 2 q 。
1) f(x)2x 5 5x 3 8x, g(x) x3 ; 2) f (x) x 3 x 2x, g(x) x 12i 。
1)q(x) 2x 4 6x 3 1 13x 239x 109r(x) 327q(x ))x 22ix(52i)or(x) 9 8i求g(x)除f (x)的商q(x)与余式:解 2) 把f (x)表示成x X o 的方幕和,即表成3.4.C o C|(X X o ) C 2(X X o )2... C n (X X 。
)" L 的形式:51) f (X ) X , X o 1 ; 2)f (X ) x 4 2X 2 3,X o 2 ;3) 43f (X ) X 2ix (1i)x 23X 7 i,X o i o解 1)由综合除法,可得 f(x)1 5(X 1) 10(x21) 10(x 1)3 5(X 1)4 (X 1)5 ; 2) 由综合除法,可得 X 42X 2 3 11 24(X 2) 22(X 2)2 8(X2)3 (X 2)4 ;3) 由综合除法,可得X 42ix 3(1 i)x 2 3X (7i)(7 5i) 5(X i) ( 1 i)(x i)2 2i(x i)3 (X i)4。
5.求f (X )与g(x)的最大公因式: 1) f (X) 4X3X23X 4X1,g(x) X 3 x 2 X 1 ;2)f (X) 4X 4X 3 1,g(x) X 3 3X 21 ;3)f (X)4X 10x 2 1,g(x)X 4 4.2x 3 6X 2 4. 2X 1 o解 1) (f(x),g(x)) X 1 ; 2)(f (X),g(x))1 ;3) (f (x),g(x)) X 2 2」2X 1 o6.求 u(x),v(x) 使 u(x)f (X ) v(x)g(x) (f (X), g(x)) o 1) f (X ) x 4 2X 3 x 2 4X 2, g(x) x 4 x 3 X 2 2X 2 ; 2) f (X ) 4X 4 2X 316X 2 5X 9, g (X ) 2X 3 X 2 5X 4 ;43223) f (X ) X X 4X 4X 1,g(X ) X x 1。
2解 1)因为(f(x),g(x)) X 2 r 2(x)f (X ) q(x)g(x) n(x)再由,g(x) q 2(x)n(x) D (X )解得「2(X)g(x) q2(x)「1(x)g(x) Mg)[q2(x)]f(x) [1 q(x)q2(x)]g(x)曰u(x) q2(x) x 1疋v(x) 1 q(x)q2(x) 1 1c(x 1) x 2式,求t,u的值。
(u 2t 4) 0u(3 t) 0 '从而可解得u1或u22o t12 t238.证明:如果d(x) | f (x), d (x) | g(x),且d(x)为f (x)与g(x)的组合,那么d (x)是f (x) 与g(x)的一个最大公因式。
证易见d(x)是f (x)与g(x)的公因式。
另设(x)是f(x)与g(x)的任一公因式,下证(x) |d(x) o由于d (x)是f (x)与g(x)的一个组合,这就是说存在多项式s(x)与t(x),使d(x) s(x) f(x) t(x)g(x),从而由(x) | f (x), (x) | g(x)可得(x) | d(x),得证。
9 •证明:(f (x)h(x), g(x)h(x)) (f (x), g(x))h(x), (h(x)的首系数为1)q(x)g(x)]2)仿上面方法,可得(f (x), g(x)) x 1,且u(x) %x) 2 x23 33)由(f(x), g(x)) 1 可得u(x) x 1,v(x) 3x7 .设f (x) x3(1 t)x22x 2u 与g(x) x3tx2u的最大公因式是一个二次多项解因为f (x)g(x) q(x)g(x)q2(x)n(xA(x) (x3D(x)tx2u) (x22x u)(x (t 2))( x22x u) (u 2t 4)x u(3 t),且由题设知最大公因式是二次多项式,所以余式h(x)为0,即证因为存在多项式u(x), v(x)使(f (x), g(x)) u(x)f (x) v(x)g(x),所以(f (x), g(x))h(x) u(x) f (x)h(x) v(x)g(x)h(x),上式说明(f (x), g(x))h(x)是 f (x)h(x)与 g(x)h(x)的一个组合。
另一方面,由(f (x), g(x)) | f (x)知(f (x),g(x))h(x)| f (x)h(x), 同理可得(f(x),g(x))h(x)|g(x)h(x),从而(f (x), g(x))h(x)是f (x)h(x)与g(x)h(x)的一个最大公因式,又因为(f (x), g(x))h(x)的首项系数为 1,所以(f (x)h(x), g(x)h(x))(f (x), g(x))h(x)。
10.如果f(x), g(x)不全为零,证明:f(x) g(x) 1-------------- , ---------------- I 。
(f(x),g(x)) (f(x),g(x))证 存在 u(x),v(x)使(f (x), g(x)) u(x) f (x) v(x)g(x), 又因为f(x),g(x)不全为0,所以(f(x),g(x)) 0 ,所以f (x), g (x)i 。
(f (x),g(x)) (f (x),g(x))11 .证明:如果 f (x), g(x)不全为零,且 u(x) f (x) v(x)g(x) (f (x),g(x)),那么(u(x), v(x)) 1。
证 由上题证明类似可得结论。
12.证明:如果(f(x),g(x))1,( f(x),h(x)) 1,那么(f(x), g(x)h(x)) 1。
证 由假设,存在 U |(x), v-i (x)及u 2(x), v 2(x)使U 1(x)f(x) v'x)g(x) 1 (1)U 2(x)f(x) v 2(x)h(x)1(2)将(1) (2)两式相乘,得[u (x)u 2(x) f(x) v (x)u 2(x)g(x) u (x)v ?(x)h(x)] f (x) [V 1(x)v 2(x)]g(x)h(x) 1'由消去律可得1 u(x)心 v(x)心所以(f (x),g(x)h(x)) 1。
13.设f i(x),..., f m(x), g i(x),..., g n(x)都是多项式,而且(f i(x), g j(x)) 1 (i 1,2,..., m; j 1,2,..., n)。
求证:(f/x) f2(x)…f m(x), gdx)g2(x)…g n(x)) 1。
证由于(f1(x),gdx)) 1(f,x),g2(x)) 1(f1(x),g n(x)) 1反复应用第12题结论,可得(f1(x), gdx)g2(x)...g n(x)) 1,同理可证(f2(x),gdx)g2(x)…g n(x)) 1................................................ ..(f m(x),g(x)g2(x)...g n(x)) 1从而可得(f1(x) f2(x)…f m(x), g1(x)g2(x)…g n(x)) 1。
14.证明:如果(f(x), g(x)) 1,那么(f(x)g(x), f (x) g(x)) 1。
证由题设知(f (x), g(x)) 1,所以存在u(x), v(x)使u(x) f (x) v(x)g(x) 1 , 从而u(x)f (x) v(x)f (x) v(x)f (x) v(x)g(x) 1 ,即[u(x) v(x)]f(x) v(x)[ f(x) g(x)] 1 ,所以(f(x), f(x) g(x)) 1。
同理(g(x), f(x) g(x)) 1。
再由12 题结论,即证(f (x)g(x), f(x) g(x)) 1。
15.求下列多项式的公共根f(x) x3 2x2 2x 1,g(x) x4 x3 2x2 x 1解由辗转相除法,可求得(f (x), g(x)) x2 x 1,所以它们的公共根为2) f (x) 4x 3 8x 4, (f (x), f (x)) 1,所以 f (x)无重因式。
17.求t 值,使f (x) x 3 3x 2 tx 1有重根。
解 易知f (x)有三重根x 1时,t 3。
若令3 2 2x 3x tx 1 (x a) (x b),比较两端系数,得3 2a b t a 2 2ab 1 a 2b1由(1), (3 )得2 a 3 3a 2 1 0,解得a 的三个根为a 1,a 2 1,a 3 —,将a 的三个根 25 分别代入(1),得0 1,b 2 1,b 3 4。
再将它们代入(2),得t 的三个根t 1 3,t 2 3,t 3451当t 1,2 3时f (x)有3重根x 1 ;当t 34时,f (x)有2重根x -。
318. 求多项式x px q 有重根的条件。
解 令 f (x) x 3 px q ,则 f (x) 3x 2 p ,显然当 p 0 时,只有当 q 0, f(x) x 3 才有三重根。
下设p 0,且a 为f (x)的重根,那么a 也为f (x)与f (x)的根,即3a pa q 0 23a p 0由(1)可得a(a 2 p) q ,再由(2)有a 2卫。
所以3a( 3 p) q a 色,2p1) f(x) 5x5x 4 2)f(x)4x 4x 2解f (x)5x 4 1)16.判别下列多项式有无重因式: (f (x), f (x))7x 3 2x 2 4x 8 ;4x 3;20x 3 21 x 2 4x 4(x 2)2所以f (x)有x 2的三重因式。