MLCC失效分析全面案例课件
- 格式:docx
- 大小:268.19 KB
- 文档页数:10
MLCC质量控制与失效分析无源元件(passive component)在电子产品中占有十分重要的地位。
虽然很多无源元件在整个电子产品中所占的物料价值并不高,但任何一个微不足道的元器件的失效都可能导致整个系统的失效。
一般电子产品中有源元器件(IC)和无源元件的比例约为1:10-20。
从该数据可以看出无源元件质量控制的重要性。
无源元件的类型很多,多层陶瓷电容器(MLCC)是其中最重要,也是用量最大的产品之一。
MLCC的典型结构中导体一般为Ag或AgPd,陶瓷介质一般为(SrBa)TiO3,多层陶瓷结构通过高温烧结而成。
器件端头镀层一般为烧结Ag/AgPd,然后制备一层Ni阻挡层(以阻挡内部Ag/AgPd材料,防止其和外部Sn发生反应),再在Ni层上制备Sn或SnPb层用以焊接。
近年来,也出现了端头使用Cu的MLCC产品。
根据MLCC的电容数值及稳定性,MLCC划分出NP1、COG、X7R、Z5U等。
根据MLCC的尺寸大小,可以分为1206,0805,0603,0402,0201等。
MLCC的常见失效模式多层陶瓷电容器本身的内在可靠性十分优良,可以长时间稳定使用。
但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对其可靠性产生严重影响。
陶瓷多层电容器失效的原因分为外部因素和内在因素内在因素主要有以下几种:1.陶瓷介质内空洞(Voids)导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染,烧结过程控制不当等。
空洞的产生极易导致漏电,而漏电又导致器件内部局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加。
该过程循环发生,不断恶化,严重时导致多层陶瓷电容器开裂、爆炸,甚至燃烧等严重后果。
2.烧结裂纹(firing crack)烧结裂纹常起源于一端电极,沿垂直方向扩展。
主要原因与烧结过程中的冷却速度有关,裂纹和危害与空洞相仿。
3.分层(delamination)多层陶瓷电容器的烧结为多层材料堆叠共烧。
烧结温度可以高达1000℃以上。
M L C C漏电失效分析美信检测失效分析实验室摘要:本文通过X射线透视检查、MLCC外观、MLCC内部结构分析及SEM/EDS检查,认为造成MLCC漏电失效的原因为:电容本身质量问题,MLCC内部存在镍瘤,镍瘤的存在使热应力裂纹的萌生产生了可能。
关键词:MLCC, 镍瘤,片式多层陶瓷电容器,失效分析,MLCC漏电失效分析1. 案例背景客户端在老化实验测试阶段发现MLCC出现漏电失效,其不良比率不详,该MLCC焊接工艺为回流焊接工艺。
2. 分析方法简述通过外观检查OK样品与NG样品表面未见明显异常。
NG样品OK样品通过X射线透视检查,OK样品和NG样品内部均未发现裂纹孔洞等异常。
MLCC X射线透视内部结构图将OK样品和NG样品分别切片,然后在金相显微镜下放大拍照观察MLCC内部结构,NG样品电容内部存在镍瘤及热应力裂纹,而OK样品未见异常。
MTT(美信检测)是一家从事材料及零部件品质检验、鉴定、认证及失效分析服务的第三方实验室,网址:联系电话:、。
裂纹镍瘤NG样品OK样品通过对样品剖面SEM/EDS分析,NG样品电容内部电极层不连续,存在明显镍瘤;其镍瘤周围多条向外延伸裂纹并在裂缝通道内发现明显碳化痕迹(EDS结果中C含量高达50%),此应为热应力裂纹,裂纹的存在直接导致电容性能异常;而OK样品电容内部电极层连续,陶瓷介质层致密未发现孔洞及镍瘤,电容性能良好。
镍瘤位置碳化痕迹位置NG样品电容内部局部形貌EDS能谱图(镍瘤位置)OK样品电容内部结构空白样品电容内部形貌和EDS能谱图(镍瘤位置)➢失效模式分析:多层陶瓷电容器(MLCC)本身的内在可靠性十分优良,可长时间稳定使用。
但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对可靠性产生严重的影响。
陶瓷多层电容器(MLCC)失效的原因一般分为外部因素和内在因素。
内在因素包括: 陶瓷介质内空洞、介质层分层;外部因素包括:热应力裂纹及机械应力裂纹。
MLCC电容环境失效案例解析
王彬宇;陈华文;冯皓;王维思;陈文辉
【期刊名称】《日用电器》
【年(卷),期】2024()4
【摘要】MLCC电容的全称为多层片式陶瓷电容器(Multi-layer Ceramic Capacitor,英文缩写MLCC),是由陶瓷介质薄膜与内电极以层层错位的方法交替叠合,经过高温一次性烧结制成陶瓷芯片,最后在陶瓷芯片的两端涂覆外电极浆料而制成的电容器。
因此,MLCC的内应力复杂,耐环境应力的能力有限。
在实际的复杂使用环境中,MLCC往往会由于经受机械应力、电应力以及温度应力的综合作用导致MLCC出现裂纹或金属电极错位而失效。
本文通过对MLCC电容典型失效案例的解析,总结了常见MLCC的失效原因,对复杂工况下PCBA的可靠性设计有一定参考意义。
【总页数】5页(P108-112)
【作者】王彬宇;陈华文;冯皓;王维思;陈文辉
【作者单位】威凯检测技术有限公司
【正文语种】中文
【中图分类】TM5
【相关文献】
1.AP14可调电容器瞬间短路的典型失效案例分析
2.铅系多层陶瓷电容器(MLCCs)三层镀失效机理的研究
3.从铝电解电容典型失效案例分析看品质提升
4.MLCC电
容失效分析总结5.薄膜电容器在节能灯上的应用及失效案例分析
因版权原因,仅展示原文概要,查看原文内容请购买。
由于贴片电容的材质是高密度、硬质、易碎和研磨的MLCC,所以在使用过程中,需要十分谨慎。
经有关工程师分析,以下几种情况容易造成贴片电容的断裂及失效:1、贴片电容在贴装过程中,若贴片机吸嘴头压力过大发生弯曲,容易产生变形导致裂纹产生;2、如该颗料的位置在边缘部份或靠近边源部份,在分板时会受到分板的牵引力而导致电容产生裂纹最终而失效.建议在设计时尽可能将贴片电容与分割线平行排放.当我们处理线路板时,建议采用简单的分割器械处理,如我们在生产过程中,因生产条件的限制或习惯用手工分板时,建议其分割槽的深度控制在线路板本身厚度的1/3~1/2之间,当超过1/2时,强烈建议采用分割器械处理,否则,手工分板将会大大增加线路板的挠曲,从而会对相关器件产生较大的应力,损害其可靠性.3、焊盘布局上与金属框架焊接端部焊接过量的焊锡在焊接时受到热膨胀作用力,使其产生推力将电容举起,容易产生裂纹.4、在焊接过程中的热冲击以及焊接完后的基板变形容易导致裂纹产生:电容在进行波峰焊过程中,预热温度,时间不足或者焊接温度过高容易导致裂纹产生,5、在手工补焊过程中.烙铁头直接与电容器陶瓷体直接接触,容量导致裂纹产生。
焊接完成后的基板变型(如分板,安装等)也容易导致裂纹产生。
多层陶瓷电容(MLCC)应用注意事项一、储存为了保持MLCC的性能,防止对MLCC的不良影响储存时注意以下事项:1.室内温度5~40℃,温度20%~70%RH;2.无损害气体:含硫酸、氨、氢硫化合物或氢氯化合物的气体;3.如果MLCC不使用,请不要拆开包装。
如果包装已经打开,请尽可能地重新封上。
缩带装产品请避免太阳光直射,因为太阳光直射会使MLCC老化并造成其性能的下降。
请尽量在6个月内使用,使用之前请注意检查其可焊性。
二、物工操作MLCC是高密度、硬质、易碎和研磨的材质,使用过程中,它易被机械损伤,比如开裂和碎裂(内部开裂需要超声设备检测)。
MLCC在手持过程中,请注意避免污染和损伤。
多层贴片陶瓷电容(MLCC)失效机理分析一.MLCC的应用及发展方向MLCC,广泛用于消费、通讯、信息类电子整机设备中,主要起到滤波、隔直、耦合、振荡等作用。
随着电子信息产业不断的发展,电子设备向薄、小、轻、便携式发展,MLCC也逐步向小型化、大容量化、高频率方向发展,MLCC在我们的HID及高端平板电视里有着极为广阔的应用,片状电容是增长速度最快的无源电子元器件之一,具有广阔的发展前景。
二.MLCC的基本结构MLCC有三大部分组成:1. 陶瓷介质 2.内部电极 3.外部电极其中电极一般为Ag或AgPd(钯),陶瓷介质一般为(SrBa)TiO3,多层陶瓷结构通过高温烧结而成。
器件端头镀层一般为烧结Ag/AgPd,然后制备一层Ni阻挡层(以阻挡内部Ag/AgPd材料,防止其和外部Sn发生反应),再在Ni层上制备Sn或SnPb层用以焊接。
近年来,也出现了端头使用Cu的MLCC产品。
三.MLCC的失效模式多层陶瓷电容器本身的内在可靠性十分优良,可以长时间稳定使用。
但如果器件本身存在缺陷或在组装过程中引入缺陷,则会对其可靠性产生严重影响。
陶瓷多层电容器失效的原因分为外部因素和内在因素。
内在因素主要包括以下三个方面: 1.陶瓷介质内空洞导致空洞产生的主要因素为陶瓷粉料内的有机或无机污染,烧结过程控制不当等。
空洞的产生极易导致漏电,而漏电又导致器件内部局部发热,进一步降低陶瓷介质的绝缘性能从而导致漏电增加。
该过程循环发生,不断恶化,严重时导致多层陶瓷电容器开裂、爆炸,甚至燃烧等严重后果。
2. 烧结裂纹烧结裂纹常起源于一端电极,沿垂直方向扩展。
主要原因与烧结过程中的冷却速度有关,裂纹和危害与空洞相仿。
3.分层多层陶瓷电容器的烧结为多层材料堆叠共烧。
烧结温度可以高达1000℃以上。
层间结合力不强,烧结过程中内部污染物挥发,烧结工艺控制不当都可能导致分层的发生。
分层和空洞、裂纹的危害相仿,为重要的多层陶瓷电容器内在缺陷。
mlcc电容失效模式MLCC电容是陶瓷电容的一种,由于其体积小、容量大、频率响应快、效率高等优点,在现代电子产品中得到了广泛应用。
然而,由于其制造工艺特殊、使用环境复杂,MLCC电容也容易出现失效情况。
下面就对MLCC电容的失效模式进行详细介绍。
1.开路失效:MLCC电容的内部结构为电极与陶瓷介质构成的多层微型电容器,因此如果其中某一层电极与陶瓷介质之间存在杂质、裂纹等导致开路,则整个电容失效。
2.短路失效:MLCC电容的内部结构有可能存在偏差、缺陷等情况,如果这些情况影响到了两个电极之间的距离,则会导致短路失效。
3.激活失效:由于MLCC电容的制造使用工艺特殊,电容内部可能存在未结合的粒子或杂质,当电容在电路中获得电源之后,这些粒子会与电极结合,导致电容性能下降或失效。
4.湿度失效:MLCC电容在存放的环境中,如果遇到太高或太低的湿度,电容内部的陶瓷介质会吸收过多或过少的水分,从而影响了电容的性能。
严重时,电容会短路或开路失效。
5.温度失效:MLCC电容的性能参数与温度有关,如果在运行过程中遭受到过高或过低的温度,则会导致电容失效。
6.撞击失效:由于MLCC电容的体积小,容易受到外来的物理撞击,如机械振动、加速度等,这些撞击会影响电容内部结构,从而导致电容失效。
7.电压过大失效:MLCC电容具有一定的最大电压承受能力,若electric的电压超过其最大承受范围,则会导致电容失效。
总而言之,MLCC电容具有广泛的应用领域,但其失效情况可能多种多样。
为保证电容的使用寿命和性能,需要在质量控制和使用过程中加以注意和维护。
一.样品讯息如下:1、品名:1210F226M250NT2、样品数量:若干3、不良模式:产品短路失效二.分析如下:1、外观确认:对客户提供不良样品任取2pcs样品进行外观确认,具体现象如下:1#样品2#样品确认结果:2pcs样品外观存在裂纹。
2、电性能测试:对2pcs样品及5pcs其他品牌样品进行电性能测量,具体测量数据见下表:NO Cap(uF)DF(%)IR(MΩ)Spec 17.6~26.4 ≤5.0≥22.71#不良品--- ---- OVCURR2#不良品--- ---- OVCURRTest equipment: Cap/DF: HP4288A;IR: Agilent 4339BTest condition: Cap/DF: 0.5Vrms, 120Hz;IR: 25V, 60sec测量结果:2pcs样品电性能均不合格;客户提供5pcs其他品牌样品电性能均合格。
3、DPA分析:对2pcs不良样品、取1pcs其他品牌样品进行DPA研磨,具体研磨结果如下:1#样品1#样品DPA研磨结果:2pcs样品经过研磨发现样品内部均存在烧毁的痕迹(镍熔融形成的金属球),从研磨的DPA样式看,内部存在裂纹,1#样品的裂纹在该切片位置未跨越烧毁区域,2#样品跨越烧毁区域。
造成此类不良的原因可能为机械应力导致产品内部产生裂纹,进而通电烧毁失效。
4、机械应力裂纹产生原理MLCC的陶瓷体是一种脆性材料。
如果PCB板受到弯曲时,它会受到一定的机械应力冲击。
当应力超过MLCC的瓷体强度时,弯曲裂纹就会出现。
因此,这种弯曲造成的裂纹只出现在焊接之后。
在Bending测试中的典型失效模式:PCB板弯曲时在不同位置受到的应力大小不同:元件装配接近分板点:应力大小对比:1>2≈3>4>5PCB板弯曲导致的开裂(产品摆放方向):开裂产生于产品接近或者垂直于分板:分板线焊锡量过多引起PCB板弯曲导致开裂:过多的焊锡量5、结论:5.1、2pcs样品外观存在裂纹;5.2、2pcs样品电性能均不合格;5.3、2pcs样品经过研磨发现样品内部存在烧毁痕迹,造成此类不良的原因可能为机械应力导致产品内部产生裂纹,进而通电烧毁失效。
MLCC电容应力失效跟踪报告一、现象 (1)二、问题定义 (1)三、信息收集、跟踪与分析 (1)四、结论 (2)五、改善建议 (2)一、现象2012年5月24日首次接板卡调试段通知,GPS G03H V1.0主板在进行48V高压测试时,出现批量C27/C39电容烧毁的现象。
进一步跟踪发现,后续G03H系列产品各批次都存在这个问题,失效率时高时低,在2%~5%左右浮动。
最后一次生产1000台G03H-T V2.1主板,出现16块C27烧,不良率1.60%;13块C39烧,不良率1.30%。
根据操作员提供的现场描述,主板经过12V上电,工作正常,各测试点电压正常。
然后切换到48V供电,在上电时C27/C39出现电火花,立即下电后发现电容已烧毁。
48V上电时间一般在1秒左右。
二、问题定义涉及该问题的主板包括:G03H V1.0,G03H-T V1.0,G03H V2.0,G03H-T V2.0。
出现该问题的环境:板卡调试段,48V高压测试,在主板电源输入端提供48V电压。
出现失效的器件:电容C27与C39。
三、信息收集、跟踪与分析1.问题共性:G03H各系列主板差异很小,烧毁电容所属的电路环境完全相同。
同时,C27与C39使用同一种物料,并联在同一级电路上,在PCB板上也是并列排放;同一批次中,同时存在C27烧和C39烧的问题。
根据以上信息,基本可以认定属于同一种问题。
2.根据生产记录显示,自2011年10月G03H V1.0首量后,各月均有数百至数千的产量,C27与C37不良率之和一直保持较低水平,多个月份失效率为0%。
在2012年5月底之后,该问题的失效率突然提高至2%以上。
查看5月收到的设计变更通知中,没有G03H相关的项目。
从数据上看,经过了数个月的生产与测试检验,C27、C39的可靠性,以及工装3.C27与C39是104贴片陶瓷电容,耐压为50V,作为滤波电容使用。
48V上电时,实测电容两端波峰最高不超过46V,稳定在36V,下电时不会造成更高的电压冲击。
全面的M1CC失效分析案例课件
Q:M1CC电容是什么结构的呢?
A:多层陶瓷电容器是由印好电极(内电极)的陶瓷介质膜片以错位的方式叠合起来,经过一次性高温烧结形成陶瓷芯片,再在芯片的两端封上金属层(外电极)制成的电容。
Terminations
M1CC电容特点:
机械强度:硬而脆,这是陶瓷材料的机械强度特点。
热脆性:M1eC内部应力很复杂,所以耐温度冲击的能力很有限。
Q:M1CC电容常见失效模式有哪些?
A:
焊接锡量不当
r组装缺陷《
[墓碑效应
多层陶瓷J (陶瓷介质内空洞
电容器缺陷]f内在因素«电极内部分层
I本体缺陷1浆料堆积
(机械应力
【外在因素《热应力
I电应力
Q:怎么区分不同原因的缺陷呢?有什么预防措施呢?
当温度发生变化时,过量的焊锡在贴片电容上产生很高的张力,会使电容内部断裂或者电容器脱帽,裂纹一般发生在焊锡少的一侧;焊锡量过少会造成焊接强度不足,电容从PCB板上脱离,造成开路故障。
2、墓碑效应
(d)Norma1
图3墓碑效应示意图
在回流焊过程中,贴片元件两端电极受到焊锡融化后的表面张力不平衡会产生转动力矩,将元件一端拉偏形成虚焊,转动力矩较大时元件一端会被拉起,形成墓碑效应。
原因:本身两端电极尺寸差异较大;锡镀层不均匀;PCB板焊盘大小不等、有污物或水分、氧化以及焊盘有埋孔;锡膏粘度过高,锡粉氧化。
措施:
①焊接之前对PCB板进行清洗烘干,去除表面污物及水分;
②进行焊前检查,确认左右焊盘尺寸相同;
③锡膏放置时间不能过长,焊接前需进行充分的搅拌。
本体缺陷一内在因素
1、陶瓷介质内空洞
图4陶瓷介质空洞图
原因:
①介质膜片表面吸附有杂质;
②电极印刷过程中混入杂质;
③内电极浆料混有杂质或有机物的分散不均匀。
2、电极内部分层
图5电极内部分层
原因:多层陶瓷电容器的烧结为多层材料堆叠共烧。
瓷膜与内浆在排胶和烧结过程中的收缩率不同,在烧结成瓷过程中,芯片内部产生应力,使M1CC产生再分层。
预防措施:在M1CC的制作中,采用与瓷粉匹配更好的内浆,可以降低分层开裂的风
险。
3、浆料堆积
图6浆料堆积缺陷
原因:
①内浆中的金属颗粒分散不均匀;
②局部内电极印刷过厚;
③内电极浆料质量不佳。
本体缺陷一外在因素
1、机械应力裂纹
图7M1CC受机械应力开裂示意图
原因:多层陶瓷电容器的特点是能够承受较大的压应力,但抗弯曲能力比较差。
当PCB 板发生弯曲变形时,M1CC的陶瓷基体不会随板弯曲,其长边承受的应力大于短边,当应力超过M1CC的瓷体强度时,弯曲裂纹就会出现。
电容在受到过强机械应力冲击时,一般会形成45度裂纹和Y型裂纹。
常见应力源:工艺过程中电路板操作;流转过程中的人、设备、重力等因素;通孔元器件
插入;电路测试,单板分割;电路板安装;电路板点位钾接;螺丝安装等。
裂痕TK
图9流转过程受力开裂示意图
措施:
①选择合适的PCB厚度。
②设计PCBA弯曲量时考虑M1CC能承受的弯曲量。
比较重的元器件尽量均匀摆放,减少生产过程中由于重力造成的板弯曲。
③优化M1CC在PCB板的位置和方向,减小其在电路板上的承受的机械应力,M1CC应尽量与PCB上的分孔和切割线或切槽保持一定的距离,使得M1CC在贴装后分板弯曲时受到的拉伸应力最小。
D
/ ---- 切线孔
弯曲压力比较:A>B>C>D
④M1eC的贴装方向应与开孔、切割线或切槽平行,以确保M1eC在PCB分板弯曲时受到的拉伸应力均匀,防止切割时损坏。
⑤M1CC尽量不要放置在螺丝孔附近,防止锁螺丝时撞击开裂。
在必须放置电容的位置,可以考虑引线式封装的电容器。
图11合理使用支撑杆示意图
⑥测试时合理使用支撑架,避免板受力弯曲。
2、热应力裂纹
图12典型热应力开裂电容
电容在受到过强热应力冲击时,产生的裂纹无固定形态,可分布在不同的切面,严重时会导致在电容侧面形成水平裂纹。
原因:热应力裂纹产生和电容本身耐焊接热能力不合格与生产过程中引入热冲击有关。
可能的原因包括:烙铁返修不当、SMT炉温不稳定、炉温曲线变化速率过快等。
措施:①工艺方法应多考虑M1CC的温度特性和尺寸,1210以上的大尺寸M1CC容易造成受热不均匀,产生破坏性应力,不宜采用波峰焊接;
②注意焊接设备的温度曲线设置。
参数设置中温度跳跃不能大于150℃,温度变化不能大于2°C∕s,预热时间应大于2min,焊接完毕不能采取辅助降温设备,应自然随炉温冷却。
③手工焊接前,应增加焊接前的预热工序,手工焊接全过程中禁止烙铁头
直接接触电容电极或本体。
复焊应在焊点冷却后进行,次数不得超过2次
3、电应力裂纹
图13典型电应力开裂电容
过电应力导致产品发生不可逆变化,表现为耐压击穿,严重时导致多层陶瓷电容器开裂、爆炸,甚至燃烧等严重后果。
遭受过度电性应力伤害的M1CC,裂纹从内部开始呈爆炸状分散。
措施:①在器件选型时应注意实际工作电压不能高于器件的额定工作电压;
②避免浪涌、静电现象对器件的冲击。
Q:怎么进行M1CC失效分析呢?
A:整个过程分为5个大阶段:外观观察、电性测量分析、无损分析、破环性分析、成
分分析,过程中需要进行外观检查、电性测试、内部结构检查、失效点定位、失效原因分
析、失效点局部的成分分析,整个M1CC的失效分析的流程如图:
外观检查→电性能测试→X∙ray检杳—►切片分析→SEM/EDS
图15超景深数码显微镜立体外观观察
首先使用超景深数码显微镜进行外观立体观察,检查电容表面是否有开裂,多角度检查引脚侧面焊锡爬升情况。
电容外观完好,没有外部裂纹,焊锡爬升良好。
图16X-ray检查
对失效电容进行X射线检查,在电容右侧发现裂纹。
图17切片分析超景深数码显微镜观察截面
图18切片分析SEM观察截面裂纹形貌
对电容进行金相切片处理,可以清楚地看出,电容内部裂纹起源于焊端附近,呈Y字型,这是典型的机械应力裂纹形貌,对照可能的应力源排查,规范操作过程,最终解决电容开裂问题。