初中数学竞赛:有关方程组的问题
- 格式:doc
- 大小:293.50 KB
- 文档页数:9
第八章 二次方程与方程组第一节 一元二次方程【赛题精选】§1、一元一次方程的解法主要有:直接开平方法、因式分解法、配方法、公式法。
例1、利用直接开平方法解下列关于x 的方程。
(1)0)1(9)2(22=+--x x (2))0(0)22()(22>=+-+a a x a x(3))21(2142222nx n x n x x ++=++例2、利用因式分解法解下列关于x 的方程。
(1)(5x+2)(x-1)=(2x+11)(x-1) (2)0452=+-x x(3)02_23()12(2=++-+x x (4)0)()(22222=-++-q p pq x q p x(5)x m x m x x m )1()1()1(2222-=--+-例3、用配方法解下列关于x 的方程。
(1))0(02≠=++a c bx ax (2)03)12()1(2=-+-+-m x m x m(3)01333223=-+++x x x§2、根的判别式、根与系数的关系韦达定理:若)0(02≠=++a c bx ax 的两个根为1x 、2x ,那么1x 、2x 与a 、b 、c的关系为:两根之和a b x x -=+21;两根之积ac x x =21。
例4、若首项系数不相等的两个二次方程02)2()1(222=+++--a a x a x a (1)、02)2()1(222=+++--b b b x b (2)(其中a 、b 均为正整数)有一个公共根。
求ab ab b a b a --++的值。
例5、已知方程02=++c bx x 与02=++b cx x 各有两个根1x 、2x 及'1x 、'2x ,且1x 2x >0,'1x '2x >0。
求证:(1)1x <0,2x <0,'1x <0,'2x <0;(2)b-1≤c ≤b+1;(3)求b 、c 所有可能的值。
数学竞赛中方程整数解的实用求法(本讲适合初中)近年来,在各级各类数学竞赛中,方程整数解的问题备受关注,它将古老的整数理论与传统的初中数学知识相综合,涉及面宽、范围广,往往需要灵活地运用相关概念、性质、方法和技巧. 笔者根据自己的体会讲讲求解这类问题的方法和基本思考途径,供读者参考.1 不定方程的整数解一般地,不定方程有无数组解. 但是,若加上限制条件如整数解等,就可以求出确定的解. 由于含参数的方程的整数解多能转化为不定方程求解,所以先讲不定方程整数解的求法. 常用的有下述三种方法.1.1 因式分解法这是最常用的方法,它适用于一边可以分解因式,另一边为常数的方程. 根据是正整数的惟一分解定理:每一个大于1的正整数都可以惟一地分解成素数的乘积. 方法是分解常数后构造方程组求解.例1 求方程xy +x +y =6的整数解.(1996,湖北省黄冈市初中数学竞赛)解:方程两边加上1,得xy +x +y +1=7.左边=(x +1)(y +1),右边=1×7=(-1)×(-7).故原方程的整数解由下列方程组确定:⎩⎨⎧++;=,=7111y x ⎩⎨⎧++;=,=1171y x ⎩⎨⎧++;=-,=-7111y x ⎩⎨⎧++.1171=-,=-y x 解得⎩⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧.2882066044332211=-,=-;=-,=-;=,=;=,=y x y x y x y x 1.2 选取主元法有些含有二次项的不定方程,可以选取其中的某一变量为主元,得到关于主元的二次方程,再用根的判别式△≥0定出另一变量的取值范围,在范围内选出整数值回代得解.例2 求方程7322=yxy x y x +-+的所有整数解. (第十二届全俄数学竞赛)解:以x 为主元,将方程整理为3x 2-(3y +7)x +(3y 2-7y)=0因x 是整数,则△=[-(3y +7) ]2-4×3(3y 2-7y )≥0 ⇒931421-≤y ≤931421+ ⇒整数y =0,1,2,3,4,5.将y 的值分别代入原方程中计算知:只有y =4或5时,方程才有整数解,即x 1=5,y 1=4;x 2=4,y 2=5. 1.3 整式分离法当分式中分子的次数不小于分母的次数时,可将分子除以分母,把整式(即所得商式)分离出来.若所得余式为常数,则用倍数约数分析法求解较容易;若余式不是常数,则可以根据实际情况构造二次方程,选取原先变量为主元求解. 例3 题目同例1.解:用含y 的式子表示x ,得x =16+-y y . 分离整式得x =-1+17+y . 因x 为整数,则17+y 为整数.故y +1为7的约数,y +1=±1,±7.(笔者注:这种思考方法就是倍数约数分析法)得y =0,-2,6,-8.进而x =6,-8,0,-2.2 含参数的二次方程的整数解这类整数根问题,近年考查最频繁.实用思考途径有下列四种.2.1 途径一:从判别式入手因为一元二次方程ax 2+bx +c =0在△=b 2-4ac ≥0时有根x =ab 2∆±-,所以要使方程有整数根,必须△=b 2-4ac 为完全平方数,并且-b ±∆为2a 的整数倍.这是基本思想.常用方法如下.1. 当△=b 2-4ac 为完全平方式时,直接求方程的解,然后解不定方程.例4 已知方程a 2x 2-(3a 2-8a )x +2a 2-13a +15=0(其中a 为非负整数)至少有一个整数根.那么,a =_________.(1998,全国初中数学竞赛)解:显然a ≠0.故原方程为关于x 的二次方程.△=[-(3a 2-8a )]2-4a 2(2a 2-13a +15)=[a (a +2)]2是完全平方式.故x =222)2()83(aa a a a +±- 即 x 1=a a 32-=2-a 3,x 2=a a 5-=1-a5. 从而,由倍数约数分析法知a =1,3或5.2. 当△=b 2-4ac ≥0且不是完全平方式时,一般有下列三种思考途径.(1)利用题设参数的范围,直接求解.例5 设m ∈Z ,且4<m <40,方程x 2-2(2m -3)x +4m 2-14m +8=0有两个整数根.求m 的值及方程的根.解:因方程有整数根,则△=[-2(2m -3)]2-4(4m 2-14m +8)=4(2m +1)为完全平方数.从而,2m +1为完全平方数.又因m ∈Z 且4<m <40,故当m =12或24时,2m +1才为完全平方数.因为x =(2m -3)±12+m ,所以,当m =12时,x 1=16,x 2=26;当m =24时,x 3=38,x 4=52.(2)先用△≥0求出参数的范围.例6 已知方程x 2-(k +3)x +k 2=0的根都是整数.求整数k 的值及方程的根.解:△=[-(k +3)]2-4k 2=-3k 2+6k +9≥0⇒ k 2-2 k -3≤0⇒-1≤k ≤3⇒整数k =-1,0,1,2,3.由求根公式知x =2)3(∆±+k ,故 当k =-1时,△=0,x =1;当k =0时,△=9,x =0或3;当k =1时,△=12不是完全平方数,整根x 不存在;当k =2时,△=9,x =1或4;当k =3时,△=0,x =3.因此,k =-1,0,2,3,x =1,0,3,4.(3)设参数法,即设△=k 2.当△=k 2为关于原参数的一次式时,用代入法;当△=k 2为关于原参数的二次式时,用分解因式法.例7 当x 为何有理数时-代数式9x 2+23x -2的值恰为两个连续正偶数的乘积?(1998,山东省初中数学竞赛)解:设两个连续正偶数为k ﹑k +2.则9x 2+23-2=k (k +2),即 9x 2+23-( k 2+2k +2)=0.由于x 是有理数,所以判别式为完全平方数,即△=232+4×9(k 2+2 k +2)=565+[6(k +1)]2令△=p 2(p ≥0),有p 2-[6(k +1)]2=565=113×5=565×1.左边=[p +6(k +1)][ p -6(k +1)],p ≥0,k >0,得)(==1,5)1(6,113)1(6⎩⎨⎧+-++k p k p或 )2(,1)1(6,565)1(6⎩⎨⎧+-++==k p k p解(1)得k =8,于是,x =2或-941; 解(2)得k =46,于是,x =-17或9130. 总之,当x =2,-941或x =-17,9130时. 9x 2+23x -2恰为两正偶数8和10,或者46和48的乘积. 2.2 途径二:从韦达定理入手1. 从根与系数的关系式中消去参数,得到关于两根的不定方程.例8 a 是大于零的实数,已知存在惟一的实数k ,使得关于x 的二次方程x 2+(k 2+ak )x +1999+ k 2+ ak =0的两个根均为质数. 求a 的值.(1999,全国初中数学联赛)解:设方程的两个质数根为p ﹑q . 由根与系数的关系,有 p +q =-(k 2+ak ), ①pq =1 999+k 2+ak . ②①+②,得 p +q +pq =1 999则(p +1)(q +1)=24×53. ③由③知,p 、q 显然均不为2,所以必为奇数.故21+p 和21+q 均为整数,且2121+⋅+q p =22×53. 若21+p 为奇数,则必21+p =5r (r =1,2,3),从而,p =2×5r -1为合数,矛盾. 因此,21+p 必为偶数.同理,21+q 也为偶数.所以,21+p 和21+q 均为整数,且4141+⋅+q p =53.不妨设p ≤q ,则41+p =1或5. 当41+p =1时,41+q =53,得p =3,q =499,均为质数.当41+p =5时,41+q =52,得p =19,q =99,q 为合数,不合题意.综上可知,p =3,q =499.代入①得k 2+ak +502=0. ④依题意,方程④有惟一的实数解.故△=a 2-4×502=0.有a =25022.利用“两根为整数时,其和、积必为整数”.例9 求满足如下条件的整数k ,使关于x 的二次方程(k -1) x 2+( k -5) x +k =0的根都是整数.解:设方程的两根为x 1﹑x 2.则x 1+ x 2=-15--k k =-1+14-k , x 1 x 2=1-k k =1+11-k , 且 x 1+x 2和x 1 x 2都是整数.从而,14-k 和11-k 都是整数. 于是,k -1为4和1的约数.故k -1=±1⇒ k =0或2.检验知,k =0或2时,方程的两根均为整数.所以,k =0或2. 2.3 途径三:联想二次函数因为一元二次方程与二次函数联系密切,所以适时地借助二次函数知识解决方程问题,往往十分奏效.例10 已知b ,c 为整数,方程5x 2+bx +c =0的两根都大于-1且小于0.求b 和c 的值.(1999,全国初中数学联赛)解:根据二次函数y =5x 2+bx +c 的图像和题设条件知: 当x =0时,5x 2+bx +c >0,有c >0; ① 当x =-1时,5 x 2+bx +c >0,有b >5+c . ②因抛物线顶点的横坐标-52⨯b 满足1-<-52⨯b <0, 则0<b <10. ③ 又因△≥0,即b 2-20c ≥0,故b 2≥20c. ④ 由①、③、④得100>b 2≥20c ,c <5.若c =1,则由②、④得0<b <6且b 2≥20,得b =5; 若c =2,则0<b <7且b 2≥40,无整数解;若c =3,则0<b <8且b 2≥60,无整数解;若c =4,则0<b <9且b 2≥80,无整数解.故所求b 、c 的值为b =5,c =1.2.4 途径四:变更主元法当方程中参数的次数相同时,可考虑以参数为主元求解. 例11 试求所有这样的正整数a ,使方程ax 2+2(2a -1)x +4(a-3)=0至少有一个整数解.(第三届祖冲之杯数学竞赛)解: 因为方程中参数a 是一次,所以可将a 用x 表示,即a =2)2()6(2++x x . ① 又a 是正整数,则2)2()6(2++x x ≥1. 解得-4≤x ≤2且x ≠-2.故x =-4,-3,-1,0,1,2.分别人入①得a =1,3,6,10.3 其他类型3.1 分类讨论型当方程中最高次项的系数含有变参数时,应先分系数为0或不为0讨论.例12 求使关于x 的方程kx 2+(k +1)x +(k -1)=0的根都是整数的k 值.(第十三届江苏省初中数学竞赛)解:分k =0和k ≠0两种情况讨论.当k =0时,所给方程为x -1=0,有整数根x =1.当k ≠0时,所给方程为二次方程.设两个整数根为x 1和x 2,则有 ⎪⎪⎩⎪⎪⎨⎧-=-=--=+-=+②① .111,1112121k k k x x k k k x x由①-②得x 1+x 2-x 1x 2=-2⇒(x 1-1)(x 2-1)=3.=1×3=(-1)×(-3).有⎩⎨⎧=-=-;31,1121x x ⎩⎨⎧-=--=-;31,1121x x ⎩⎨⎧=-=-;11,3121x x ⎩⎨⎧-=--=-.11,3121x x 故x 1+x 2=6或x 1+x 2=-2,即 -1-k 1=6或-1-k1=-2. 解得k =-71或k =1. 又△=(k +1)2-4k (k -1)=-3k 2+6k +1,当k =-71或k =1时,都有△>0.所以,满足要求的k 值为k =0,k =-71,k =1. 3.2 数形结合型当问题是以几何形式出现,或容易联想到几何模型的时候,可考虑用数形结合法.这是一种极为重要的解题方法,它具有形 象直观的特点,可使许多问题获得巧解.例13 以关于m 的方程m 2+(k -4)m +k =0数根为直径作⊙O.P 为⊙O 外一点,过P 切线PA 和割线PBC ,如图1,A 为切点.这时发现PA 、PB 、PC 都是整数,且PB 、BC 都不是合数,求PA 、PB 、PC 的长. 解: 设方程两根为m 1、m 2则⎩⎨⎧=-=+②① .,42121k m m k m m 又设PA =x ,PB =y ,BC =z ,则x ﹑y ﹑z 都是正整数. 由切割线定知PA 2=PB •PC =PB (PC +BC ),即 x 2=y 2+yz ⇒(x +y )(x -y )=yz . ③消去①和②中的k ,得m 1m 2=4-m 1-m 2.整理分解,得(m 1+1)(m 2+1)=5.图1因为⊙O 的直径是方程的最大整数根,不难求得最大整根m =4.进而,z =BC ≤4.又正整数z 不是合数,故z =3,2,1.当z =3时,(x +y )(x -y )=3y ,有⎩⎨⎧=-=+;,3y y x y x ⎩⎨⎧=-=+;3,y x y y x ⎩⎨⎧=-=+.1,3y x y y x 可得适合题意的解为x =2,y =1.当z =1和z =2时,没有适合题意的解,所以,PA =x =2,PB =y =1,PC =y +z =4.3.3 综合探索型当已知方程不止一个或结论不明确时,常用综合分析、假设探索法求解.例14 已知关于x 的方程4x 2-8nx -3n =2和x 2-(n +3)x -2n 2+2=0.问是否存在这样的n 的值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,求出这样的n 值;若不存在,请说明理由.(2000,湖北省初中数学选拔赛)解: 由△1=(-8n )2-4×4×(-3n -2)=(8n +3)2+23>0,知n 为任意实数时,方程(1)都有实数根.设第一个方程的两根为βα、.则α+β=2n ,αβ=42n 3--. 于是,(βα-)2=(βα+)2-4αβ=4n 2+3n 2+2.由第二个方程得[x -(2n +2)][x +(n -1)]=0解得两根为x 1=2n +2,x 2=-n +1.若x 1为整数,则4n 2+3n +2=2n +2.于是n 1=0,n 2=-41. 当n =0时,x 1=2是整数;n =-41时,x =23不是整数,舍去.若x 2为整数,则4n 2+3n +2=1-n .有n 3=n 4=-21.此时x 2=23不是整数,舍去. 综合上述知,当n =0时,第一个方程的两个实数根的差的平方等于第二个方程的一个整数根.练 习 题1. 设a 为整数. 若存在整数b 和c ,使(x +a)(x -15)-25=(x +b )(x +c ),则a 可取的值为_________(1998,上海市鹏欣杯数学竞赛)(提示:变形后用因式分解法. a =9,-15,-39)2. 设关于x 的二次方程(k 2-6k +8)x 2+(2k 2-6k -4)x +k 2=4的两根都是整数. 求满足条件的所有实数k 的值.(2000,全国初中数学联赛)(提示:求出二根x 1=-1-42-k ,x 2=-1-24-k ,从中消去k 得x 1x 2+3x 1+2=0,分解得x 1(x 2+3)=-2.借助方程组得k =6,3,310) 3. 求所有的正整数a 、b 、c ,使得关于x 的方程x 2-3ax +2b =0,x 2-3bx +2c =0,x 2-3cx +2a =0的所有的根都是正整数. (2000,全国初中数学联赛)(提示:从根与系数的关系入手,结合奇偶性分析,得a =b =c =1.)4. 已知方程:x 2+bx +c =0及x 2+cx +b =0分别各有二整数根x 1、x 2及x ’1、x ’2,且x 1x 2>0,x ’1x ’2>0.(1)求证:x 1<0,x 2<0,x ’1<0,x ’2<0.(2)求证:b -1≤c ≤b +1.(3)求b 、c 的值.(1993,全国初中数学竞赛)(答案:b =5,c =6或b =6,c =5.)5.x 、y 为正整数,100111=-y x .则y 的最大值为_________. (1998,重庆市初中数学竞赛)(提示:用因式分解法,结果为9 900.)6.k 为什么整数时,方程(6-k )(9-k )x 2-(117-15k )x +54=0的解都是整数?(1995,山东省初中数学竞赛)(提示:对系数(6-k)(9-k)分为0与不为0讨论,得k值为3,6,7,9,15.)一元二次方程的整数根问题(本讲适合初中)迄今为止,尚未找到使得整系数一元二次方程有整数根的充分条件,通常的方法都是通过讨论其判别式,利用根与系数的关系进行分析和归纳,即使用必要条件解题,然后通过检验确定答案.下面举例说明常用的几种方法,并指出每种方法适合的范围.整系数一元二次方程有整数根的必要条件:(1)两个根都是整数;(2)判别式是整数;(3)判别式是整数的完全平方;(4)两根和是整数,两根积是整数.例1 设方程mx2-(m-2)x+m-3=0有整数解,试确定整数m的值,并求出这时方程的所有整数解.分析:若m=0,则2x-3=0,此时方程无整数解;当m≠0时,考察△=-3m2+8m+4,注意到二次项系数为负,方程有解,则-3m2+8m+4≥0.解得3724-≤m≤3724+.+因为m是整数,故只能取1,2,3.当m=1时,方程有解:-2和1;当m=2时,方程无整数解:当m=3时,方程有整数解:0.注:当判别式二次系数为负时,解不等式得关于参数的一个有限长区间,又因为参数为整数,可以讨论得解.例2 当x为何有理数时,代数式9x2+23x-2的值恰好为两个连续的偶数积.(1998,山东省初中数学竞赛)分析:设两个连续的偶数为n,n+2,问题转化为:当n为何值时,方程9x2+23x-2=n(n+2)有有理数根.有理根问题本质上也是整数根的问题,要求方程的根的判别式必须为一个整数或有理数的完全平方.考察判别式△=232+36(n2+2n+2)=36(n +1)2+565.由于n 是整数,所以判别式应为整数的完全平方.设 36(n +1)2+565=m 2(m 为大于565的自然数).移项因式分解,得(m +6n +6)(m -6n -6)=1×5×113.只有⎩⎨⎧=--=++566,11366n m n m 或 ⎩⎨⎧=--=++.166,56566n m n m 解得n =8,或n =46.分别代入原方程得方程有理数解为-941,2或9130,-17. 注:当判别式为关于某一参数的二次式,且二次项系数为正时,可采用配方法变形为:ƒ2(α) +常数(α是整数).然后采用例1的方法,通过分析得解.例3 求一实数p ,使用三次方程5x 3-5(p +1)x 2+(71p -1)x+1=66p 的三个根均为自然数.(1995,全国高中数学联赛)分析:观察可知,1是方程的解,方程可转化为(x -1)(5x 2-5px +66p -1)=0问题转化为:求一切实数p 使方程5x 2-5px +66p -1=0的解为自然数.由韦达定理知,p 为方程两根之和,即p 是自然数.仿例2得△=(5p -132)2-17 404.设(5p -132)2-17 404=n 2(n >0,n 为自然数).移项分解可得(5p -132+n)(5p -132-n)=22×19×229.又(5p -132+n),(5p -132-n)同奇偶,所以,⎩⎨⎧⨯=--⨯=+-.1921325,22921325n p n p 解得p =76.注:从表面上看,此题中的p 是一切实数,但由韦达定理判断它实际上是自然数,故可采用前法求得.例4设m 为整数,且4<m <40,又方程x 2-2(2m -3)x +4m 2-14m +8=0有两个整数根.求m 的值及方程的根.(1993,天津市初中数学竞赛)分析:考察判别式△=4(2m +1),因是关于m 的一次式,故例1,例2的方法均不可用.由已知4<m <40,可知9<2m +1<81.为使判别式为完全平方数,只有2m +1=25或2m +1=49.当2m +1=25时,m =12,方程两根分别为16,26; 当2m +1=49时,m =24,方程两根分别为38,52.注:当判别式不是二次式时,可结合已知条件通过讨论得出参数的范围,进而求解;当判别式较复杂时,则应改用其他办法,参见例5.例5 α是大于零的实数,已知存在惟一的实数k ,使得关于x的方程x 2+(k 2+αk )x +1 999+k 2+αk =0的两根为质数.求α的值.(1999,全国初中数学联赛)分析:因为α、k 均为实数,判别式法不能解决.设方程两根为x 1、x 2,且x 1≤x 2,x 1、x 2均为质数,则⎪⎩⎪⎨⎧++=--=+.9991,221221k k x x k k x x αα 消掉参数得x 1+x 2+x 1x 2=1 999,即 (x 1+1)(x 2+1)=2 000=24×53.显然,x 1≠2. 于是,x 1+1,x 2+1都是偶数且x 1+1≤x 2+1.故只有如下可能:⎪⎩⎪⎨⎧⨯=+=+;521,2132221x x ⎪⎩⎪⎨⎧⨯=+=+;521,213231x x ⎩⎨⎧⨯=+⨯=+;521,5212321x x ⎪⎩⎪⎨⎧⨯=+⨯=+;521,52122221x x ⎪⎩⎪⎨⎧⨯=+⨯=+22221521,521x x ⎪⎩⎪⎨⎧⨯=+⨯=+.521,5212231x x符合题意的只有⎩⎨⎧==.499,321x x 于是,3+499=-k 2-αk .因为存在惟一的k ,故方程k 2+αk +502=0有两等根. 判别式△=α2-4×502=0,解得α=2502.注:应用韦达定理的关键在于消去参数,首先求得方程的解,在消去参数之后,要注意因式分解的使用.例6 设关于x 的二次方程(k 2-6k +8)﹒x 2+(2k 2-6k -4)x +k 2=4的两根都是整数.求满足条件的所有实数k 的值.(2000,全国初中数学联赛)分析:方程的表达式比较复杂,判别式法和韦达定理均不可用.将原方程变形得(k -2)(k -4)x 2+(2k 2-6k -4)x +(k -2)(k +2)=0. 分解因式得[(k -2)x +k +2][(k -4)x +k -2]=0.显然,k ≠2,k ≠4.解得x 1=-42--k k , x 2=-22-+k k . 消去k 得x 1x 2+3x 2+2=0∴ x 2(x 1+3)=-2.讨论得⎩⎨⎧=+-=;13,212x x 或⎩⎨⎧-=+=;13,221x x 或⎩⎨⎧-=+=.23,121x x 解x 1、x 2,代入原式得k 值为6,3,310. 注:当判别式与韦达定理均难解决时,这时反而意味着可用因式分解法求出方程的根,然后再整理转化.例7 设α为整数,若存在整数b 和c ,使得(x +α)(x -15)-25=(x +b )(x +c )成立,求α可取的值.(1998,上海市初中数学竞赛)分析:此题可转化为:当α为何值时,方程(x +α)(x -15)-25=0有两个整数根.方程可化为x 2-(15-α)x -15α-25=0视其为关于α的一次方程,整理得α(x -15)=-x 2+15x +25.易知x ≠15,∴α=1525152-++-x x x =-x +1525-x .注:此解法为分离参数法,它适合于参数与方程的根均是整数,且参数较易于分离的情况.如此题变形为α=ƒ(x ),然后利用函数的性质求解,这是一种应用较广泛的方法.上面只介绍了处理整数根问题的常用解法,这些解法的基本依据是:方程有整数根的必要条件. 基本方法是:(1)判别式讨论法(主要讨论由判别式决定的参数范围,由判别式为完全平方数求参数);(2)韦达定理法;(3)判别式与韦达定理结合法;(4)分离参数法(通过分离参数,利用根为整数的条件讨论).需说明的是,每个题的解法都不是惟一的,本文所给的只是较简洁的一种.同学们在解题时,应因题而定方法,不断求新,才能领悟数学的美感.练习题1. 求满足如下条件的所有k 值,使关于x 的方程kx +(k +1)x +(k -1)=0的根都是整数.(第十三届江苏省初中数学竞赛)(k =0,k =-71,k =1) 2. 关于x 的方程(m 3-2m 2)x 2-(m 3-3m 2-4m +8)x +12-4m =0的根均为整数,求实数m 的值.(提示:应用求根消参法,得m =1,或m =2.)3. 求所有正实数α,使方程x 2-αx +4α=0仅有整数根. (1998,全国初中数学联赛)(提示:分离参数法. α=42-x x =x +4+416-x ,讨论得α=25,或18,或16).4. 已知方程x 2+bx +c =0及x 2+cx +b =0分别各有两个整数根x 1、x 2及x ’1、x ’2,且x 1x 2>0,x ’1x ’2>0.①求证:x 1<0,x 2<0,x ’1<0,x ’2<0;②求证:b -1≤c ≤b +1;③求b 、c 所有可能的值.(1993,全国初中数学联赛)(提示:应用韦达定理,得⎩⎨⎧==65c b ⎩⎨⎧==56c b ⎩⎨⎧==44c b )5.某顾客有钱10元,第一次在商店买x 件小商品花去y 元,第二次再去买该小商品时,发现每打(12件)降价0.8元,他比第一次多买了10件,花去2元.问他第一次买的小商品是多少件?(x 、y 为正整数)(提示:列方程128.0102=+-x x y 问题转化为:y 为何值时,方程x 2+(40-15y )x -150y =0有正整数解,利用判别式可求得x =5,或x =50.)。
初中数学竞赛题中方程解的讨论问题解题策略(一)方程是一种重要的数学模型,也是重要的数学思想之一。
有关方程的解的讨论问题一直是初中数学竞赛试题的热点与难点。
解决有关方程的解的讨论问题往往涉及到分类讨论、数形结合等数学思想。
一、知识要点1.形如方程的解的讨论:⑴若=0,①当=0时,方程有无数个解;②当≠0时,方程无解;⑵若≠0,方程的解为=。
2.关于一元二次方程(≠0)根的讨论,一般需应用到根的判别式、根与系数的关系等相关知识。
⑴若,则它有一个实数根=1;若,则它有一个实数根=-1。
⑵运用数形结合思想将方程(≠0)根的讨论与二次函数(≠0)的图象结合起来考虑是常用方法。
3.涉及分式方程根的讨论,一般考虑使公分母为零的整式方程的根(即原分式方程的增根)。
4.关于含绝对值的方程解的讨论,一般使用分类讨论的方法去掉绝对值符号,有时也应用到数形结合思想与绝对值的几何意义。
5.解决有关方程整数根的问题时,一般要应用到整数的知识,要理解整除、质数等相关概念。
二、例题选讲1.方程整数根的讨论例 1.已知,且方程的两个实数根都是整数,则其最大的根是。
解:设方程的两个实数根为、,则,所以。
因为、都是整数,且97是质数,若设<,则,,或,,因此最大的根是98。
评注:此题解答应用了一元二次方程根与系数的关系,分解质因数的知识等方法与技能。
这种方法在有关一元二次方程整数根的讨论问题中经常用到,如:类题.(2004年四川)已知,为整数,关于的方程有两个相同的实数根,则-等于( )A.1;B.2;C.±1;D.±2.分析:依题意得⊿=,所以,由,为整数得,或,或,或,所以-=±1。
例2.(2000年全国竞赛)已知关于的方程的根都是整数,那么符合条件的整数有______个。
解:上述方程没有说明是一次方程还是二次方程,因此需要分类讨论。
①当时,,符合题意;②当时,原方程是一元二次方程,易知是方程的一个整数根。
数学竞赛培训第27讲:不定方程与方程组新课标七年级数学竞赛培训第27讲:不定方程与方程组一、填空题(共13小题,每小题4分,满分52分)1.(4分)正整数m、n满足8m+9n=mn+6,则m的最大值为_________.2.(4分)不定方程4x+7y=2001有_________组正整数解.3.(4分)已知实数z、y、z满足x+y=5及z2=xy+y﹣9,则x+2y+3z=_________.4.(4分)已知(x、y、z≠0),那么的值为_________.5.(4分)用一元钱买面值4分、8分、1角的3种邮票共18张,每种邮票至少买一张,共有_________种不同的买法.6.(4分)购买五种教学用具A1,A2,A3,A4,A5的件数和用钱总数列成下表:品名A1A2A3A4A5总钱数次数第一次购件数1 3 4 5 6 1992元第二次购件数1 5 7 9 11 2984元那么,购买每种教具各一件共需_________元.7.(4分)(2003•温州)希望中学收到了王老师捐赠的足球,篮球,排球共20个,其总价值为330元.这三种球的价格分别是足球每个60元,篮球每个30元,排球每个10元,那么其中排球有_________个.8.(4分)满足19982+m2=19972+n2(0<m<n<1998)的整数对(m、n)共有_________个.9.(4分)实数x、y、z满足,则x2y+z的值为_________.10.(4分)1998年某人的年龄恰等于他出生的公元年数的数字之和,那么他的年龄是_________岁.11.(4分)江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用2台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完.如果要在10分钟内抽完水,那么,至少需要抽水机_________台.12.(4分)现有甲、乙、丙三种东西,若购买甲3件、乙5件、丙1件共需32元;若购买甲4件、乙7件、丙1件共需40元,则要购买甲、乙、丙各1件共需_________元.13.(4分)一个布袋中装有红、黄、蓝、三种颜色的大小相同的木球,红球上标有数字1,黄球上标有数字2,蓝球上标有数字3,小明从布袋中摸出10个球,它们上面所标数字和等于21,则小明摸出的球中红球的个数最多不超过_________.二、选择题(共4小题,每小题3分,满分12分)14.(3分)如图,在高速公路上从3千米处开始,每隔4千米设一个速度限制标志,而且从10千米处开始,每隔9千米设一个测速照相标志,则刚好在19千米处同时设置这两种标志.问下一个同时设置这两种标志的地点的千米数是()A.32千米B.37千米C.55千米D.90千米15.(3分)方程(x+1)2+(y﹣2)2=1的整数解有()A.1组B.2组C.4组D.无数组16.(3分)三元一次方程x+y+z=1999的非负整数解的个数有()A.20001999个B.19992000个C.2001000个D.2001999个17.(3分)以下是一个六位数乘上一个﹣位数的竖式,各代表一个数(不一定相同),则a+b+c+d+e+f=()A.27 B.24 C.0D.无法确定三、解答题(共12小题,满分86分)18.(7分)(1)求方程15x+52y=6的所有整数解.(2)求方程x+y=x2﹣xy+y2的整数解.(3)求方程的正整数解.19.(7分)一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,如果每次11颗地取出,那么正好取完,求盒子里共有多少颗糖?20.(7分)中国百鸡问题:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁、鸡母、鸡雏各几何?21.(7分)甲组同学每人有28个核桃,乙组同学每人有30个核桃,丙组同学每人有31个核桃,三组的核桃总数是365个,问三个小组共有多少名同学?22.(7分)求下列方程的整数解:(1)11x+5y=7;(2)4x+y=3xy.23.(7分)(2001•广州)在车站开始检票时,有a(a>0)各旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队等候检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30min才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10min便可将排队等候检票的旅客全部检票完毕;现在要求在5min内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,问至少要同时开放几个检票口?24.(7分)(2003•淮安)下面是同学们玩过的“锤子、剪子、布”的游戏规则:游戏在两位同学之间进行,用伸出拳头表示“锤子”,伸出食指和中指表示“剪子”,伸出手掌表示“布”,两人同时口念“锤子、剪子、布”,一念到“布”时,同时出手,“布”赢“锤子”,“锤子”赢“剪子”,“剪子”赢“布”.现在我们约定:“布”赢“锤子”得9分,“锤子”赢“剪子”得5分,“剪子”赢“布”得2分.(1)小明和某同学玩此游戏过程中,小明赢了21次,得108分,其中“剪子”赢“布”7次.聪明的同学,请你用所学的数学知识求出小明“布”赢“锤子”、“锤子”赢“剪子”各多少次?(2)如果小明与某同学玩了若干次,得了30分,请你探究一下小明各种可能的赢法,并选择其中的三种赢法填入下表.赢法一:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”赢的次数赢法二:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”赢的次数赢法三:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”赢的次数25.(7分)(1)求满足y4+2x4+1=4x2y的所有整数对(x,y);(2)求出所有满足5(xy+yz+zx)=4xyz的正整数解.26.(7分)兄弟二人养了一群羊,当每只羊的价钱(以元为单位)的数值恰等于这群羊的只数时,将这群羊全部卖出,兄弟二人平分卖羊得来的钱:哥哥先取10元,弟弟再取10元;这样依次反复进行,最后,哥哥先取10元,弟弟再取不足10元,这时哥哥将自己的一顶草帽给了弟弟,兄弟二人所得的钱数相等.问这顶草帽值多少钱?27.(7分)某人家的电话号码是八位数,将前四位数组成的数与后四位数组成的数相加得14405,将前三位数组成的数与后五位数组成的数相加得16970,求此人家的电话号码.28.(8分)某布店的一页账簿上沾了墨水,如下表所示:月日摘要数量(米)单价(元/米)金额(元)1 13 全毛花呢X X 49.36 XXX7.28所卖呢料米数看不清楚了,但记得是卖了整数米;金额项目只看到后面3个数码7.28,但前面的3个数码看不清楚了,请你帮助查清这笔账.29.(8分)一支科学考察队前往某条河流的上游去考察一个生态区,他们以每天17km的速度出发,沿河岸向上游行进若干天后到达目的地,然后在生态区考察了若干天,完成任务后以每天25km的速度返回,在出发后的第60天,考察队行进了24km后回到出发点,试问:科学考察队的生态区考察了多少天?新课标七年级数学竞赛培训第27讲:不定方程与方程组参考答案与试题解析一、填空题(共13小题,每小题4分,满分52分)1.(4分)正整数m、n满足8m+9n=mn+6,则m的最大值为75.考点:数的整除性.专题:探究型.分析:把m用含n的代数式表示,并分离其整数部分(简称分离整系数法).再结合整除的知识,求出m的最大值.解答:解:∵8m+9n=mn+6,∴m==9+,∴当n=9时,m的最大值为75.故答案为:75.点评:本题考查的是数的整除性问题,解答此题的关键是熟知以下知识,求整系数不定方程ax+by=c的整数解.通常有以下几个步骤:(1)判断有无整数解;(2)求一个特解;(3)写出通解;(4)由整数t同时要满足的条件(不等式组),代入(2)中的表达式,写出不定方程的正整数解.分离整系数法解题的关键是把其中一个未知数用另一个未知数的代数敷式表示,结合整除的知识讨论.2.(4分)不定方程4x+7y=2001有71组正整数解.考点:解二元一次方程.专题:计算题.分析:由不定方程4x+7y=2001=3×667,可知是其一组特解,然后求出通解,再列出不等式组即可求出答案.解答:解:由4x十7y=3×667易知是其一组特解,∴其通解为,t∈z,∵,解之得96≤t≤166∴t可取整数值共71个.∴4x+7y=2001有71组正整数解.故答案为:71.点评:本题考查了解二元一次方程,难度适中,关键是根据特解求出通解再列出不等式组即可.3.(4分)已知实数z、y、z满足x+y=5及z2=xy+y﹣9,则x+2y+3z=8.考点:代数式求值;非负数的性质:偶次方;解一元二次方程-因式分解法;根的判别式;根与系数的关系.专题:代数综合题.分析:得出x=5﹣y,代入第二个式子后整理得出z2+(y﹣3)2=0,推出z=0,y﹣3=0,求出x,y,z的值,最后将x,y,z的值代入计算,即可求出x+2y+3z的值.解答:解:∵x+y=5,z2=xy+y﹣9,∴x=5﹣y,代入z2=xy+y﹣9得:z2=(5﹣y)y+y﹣9,z2+(y﹣3)2=0,z=0,y﹣3=0,∴y=3,x=5﹣3=2,x+2y+3z=2+2×3+3×0=8,故答案为8.点评:本题主要考查了一元二次方程的解法,平方的非负性及代数式求值的方法,综合性较强,有一定难度.4.(4分)已知(x、y、z≠0),那么的值为1.考点:分式的化简求值;解二元一次方程组.专题:计算题.分析:根据(x、y、z≠0),可求出x=3z,y=2z,然后代入所求分式即可得出答案.解答:解:由(x、y、z≠0),可解得:x=3z,y=2z,代入,=,=,=1.故答案为:1.点评:本题考查了分式的化简求值和解二元一次方程组,难度适中,关键是先用z把x与y表示出来再进行代入求解.5.(4分)用一元钱买面值4分、8分、1角的3种邮票共18张,每种邮票至少买一张,共有2种不同的买法.考点:三元一次方程组的应用.专题:经济问题.分析:两个等量关系为:4分的张数+8分的张数+1角的张数=18;4分的总钱数+8分的总钱数+1角的总钱数=1元,把相关数值代入求得正整数解即可.解答:解:设买4分,8分,1角的邮票分别为x,y,z张.由①得x=18﹣y﹣z③,把③代入②得2y+3z=14,y=7﹣z,∴z需为大于1的偶数,∵x,y,z是正整数,∴x=12,y=4,z=2;x=13,y=1,z=4.∴有2种方案.故答案为:2.点评:考查三元一次方程组的应用;根据数量和总价得到两个等量关系是解决本题的关键;把所给方程整理为只含2个未知数的等式求正整数解是解决本题的主要方法.6.(4分)购买五种教学用具A1,A2,A3,A4,A5的件数和用钱总数列成下表:品名A1A2A3A4A5总钱数次数第一次购件数1 3 4 5 6 1992元第二次购件数1 5 7 9 11 2984元那么,购买每种教具各一件共需1000元.考点:二元一次方程组的应用.分析:可以设A1,A2,A3,A4,A5的单价分别为x1,x2,x3,x4,x5元,根据第一次和第二次购物时的件数和付的钱总数可以得到方程组,求解即可.解答:解:设A1,A2,A3,A4,A5的单价分别为x1,x2,x3,x4,x5元.则依题意列得关系式如下:即①×2﹣②式得:x1+x2+x3+x4+x5=2×1992﹣2984=1000.所以购买每种教具各一件共需1000元.点评:本题考查了二元一次方程的应用及解法.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,求解时要根据方程的特点巧解方程.7.(4分)(2003•温州)希望中学收到了王老师捐赠的足球,篮球,排球共20个,其总价值为330元.这三种球的价格分别是足球每个60元,篮球每个30元,排球每个10元,那么其中排球有15个.考点:有理数的混合运算.专题:应用题;压轴题.分析:设足球有x个,篮球有y个,排球有z个,根据题意得,x+y+z=20,60x+30y+10z=330.利用方程知识求得排球的个数.解答:解:设有足球x个,篮球y个,排球z个x+y+z=20 ①;60x+30y+10z=330→6x+3y+z=33 ②②﹣①得出,5x+2y=13又∵x,y,z∈正整数,∴x=1,那么y=4,由此可推出z=15所以,排球有15个.点评:此题是有理数运算的实际应用,列式子容易,解答难,考虑到x、y都取正整数是解题的关键.8.(4分)满足19982+m2=19972+n2(0<m<n<1998)的整数对(m、n)共有3个.考点:一元二次方程的整数根与有理根.专题:计算题.分析:把含字母的式子整理到等式的左边,常数项整理到等式的右边,把等式的左边进行因式分解,判断相应的整数解即可.解答:解:整理得n2﹣m2=3995=5×17×47,(n﹣m)(n+m)=5×17×47,∵对3995的任意整数分拆均可得到(m,n),0<m<n<1998,∴或或,∴满足条件的整数对(m,n)共3个.故答案为3.点评:本题考查了二次方程的整数解问题;把所给等式整理为两个因式的积为常数的形式是解决本题的关键.9.(4分)实数x、y、z满足,则x2y+z的值为9.考点:高次方程.专题:计算题.分析:首先把x=6﹣3y代入x+3y﹣2xy+2z2,可以化简得到6(y﹣1)2+2z2=0,进而解得x、y、z的值,最后求得x2y+z的值.解答:解:,把①代入②中,可得:6(y﹣1)2+2z2=0,即y=1,z=0,故x=3,所以x2y+z=32=9,故答案为9.点评:本题主要考查高次方程求解的问题,解决此类问题的关键是把x、y、z化成非负数的形式,进而求得x、y、z,此类题具有一定的难度,同学们解决时需要细心.10.(4分)1998年某人的年龄恰等于他出生的公元年数的数字之和,那么他的年龄是18岁.考点:二元一次方程的应用.专题:计算题;应用题.分析:设某人出生于(1900+10x+y)年,所以有1998﹣(1900+10x+y)=10+x+y,可求解.解答:解:设某人出生于(1900+10x+y)年1998﹣(1900+10x+y)=10+x+y11x+2y=88故答案为:18点评:本题考查理解题意能力,关键是能正确设出年份的表示方法,然后根据题意列式求解.11.(4分)江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用2台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完.如果要在10分钟内抽完水,那么,至少需要抽水机6台.考点:二元一次方程组的应用.分析:可以设抽水前已涌出水为x,每分钟涌出水为a,每台抽水机每分钟抽水为b,根据题意可列出两个方程,可以得到x与b、a与b之间的关系,最后即可得时间为10分钟时需要的抽水机台数.解答:解:设抽水前已涌出水为x,每分钟涌出水为a,每台抽水机每分钟抽水为b,根据题意得:,解得:x=,a=.如果要在10分钟内抽完水,至少需要抽水机n台,即x+10a≤10×n×b,代入a、x的值解得:n≥6.故答案填:6.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.12.(4分)现有甲、乙、丙三种东西,若购买甲3件、乙5件、丙1件共需32元;若购买甲4件、乙7件、丙1件共需40元,则要购买甲、乙、丙各1件共需16元.考点:三元一次方程组的应用.分析:设甲、乙、丙每件单价为x、y、z元,建立方程组,整体求得x+y+z的值.解答:解:设甲、乙、丙每件单价为x、y、z元,根据题意列方程组得,②﹣①得:x+2y=8③,②+①得:7x+12y+2z=72④,④﹣③×5得:2x+2y+2z=32,∴x+y+z=16.故本题答案为:16.点评:未知数共有三个,方程只有两个,无法直接解答,通过加减,将x+y+z看做一个整体来解.13.(4分)一个布袋中装有红、黄、蓝、三种颜色的大小相同的木球,红球上标有数字1,黄球上标有数字2,蓝球上标有数字3,小明从布袋中摸出10个球,它们上面所标数字和等于21,则小明摸出的球中红球的个数最多不超过4.考点:三元一次方程组的应用.专题:应用题.分析:首先假设小明摸出的10个球中有x个红球,y个黄球,z个蓝球.根据题意列出方程组,利用加减消元法消去z得y=9﹣2x.再根据非负整数的特点,易知x的最大值.解答:解:设小明摸出的10个球中有x个红球,y个黄球,z个蓝球.依题意列得方程组:①×3﹣②得2x+y=9,即y=9﹣2x.由于y是非负整数,x也是非负整数.易知x的最大值是4.即小明摸出的10个球中至多有4个红球.故答案为:4.点评:解决本题的关键是利用非负整数的特点,考虑不定方程y=9﹣2x的解.二、选择题(共4小题,每小题3分,满分12分)14.(3分)如图,在高速公路上从3千米处开始,每隔4千米设一个速度限制标志,而且从10千米处开始,每隔9千米设一个测速照相标志,则刚好在19千米处同时设置这两种标志.问下一个同时设置这两种标志的地点的千米数是()A.32千米B.37千米C.55千米D.90千米考点:二元一次方程的应用.分析:要求二次同时经过这两种设施是在几千米处,就要明确4和9的最小公倍数为36,19+36=55千米,所以二次同时经过这两种设施是在55千米处.解答:解:同时经过两种设施时的里程数减3后,应是4的倍数,减10以后应是9的倍数.在19km处第一次同时经过这两种设施,所以从这里开始以后再次经过这两种设施时,行驶的路一定是4和9的公倍数,所以第二次同时经过这两种设施时的里程数为19+4×9=55km.故选C.点评:本题考查学生分析数据,总结、归纳数据规律的能力,关键是找出规律,要求学生要有一定的解题技巧.15.(3分)方程(x+1)2+(y﹣2)2=1的整数解有()A.1组B.2组C.4组D.无数组考点:解一元二次方程-直接开平方法;非负数的性质:偶次方.专题:计算题.分析:根据(x+1)2+(y﹣2)2=1,x,y都是整数,则x+1=0且y﹣2=1或﹣1,x+1=1或﹣1且y﹣2=0;从而解出x,y的四组值.解答:解:∵(x+1)2+(y﹣2)2=1,∴或或或,∴或或或,故选C.点评:本题考查了非负数的性质和一元二次方程的解法﹣直接开平方法.16.(3分)三元一次方程x+y+z=1999的非负整数解的个数有()A.20001999个B.19992000个C.2001000个D.2001999个考点:二元一次方程的解;三元一次不定方程.专题:计算题.分析:先设x=0,y+z=1999,y分别取0,1,2…,1999时,z取1999,1998,…,0,有2000个整数解;当x=1时,y+z=1998,有1999个整数解;…当x=1999时,y+z=0,只有1组整数解,依此类推,然后把个数加起来即可.解答:解:当x=0时,y+z=1999,y分别取0,1,2…,1999时,z取1999,1998,…,0,有2000个整数解;当x=1时,y+z=1998,有1999个整数解;当x=2时,y+z=1997,有1998个整数解;…当x=1999时,y+z=0,只有1组整数解,故非负整数解的个数有2000+1999+1998+…+3+2+1=2001000(个),故选C.点评:本题考查了三元一次不定方程的解,解题的关键是确定x、y、z的值,分类讨论.17.(3分)以下是一个六位数乘上一个﹣位数的竖式,各代表一个数(不一定相同),则a+b+c+d+e+f=()A.27 B.24 C.0D.无法确定考点:整数问题的综合运用.专题:数字问题.分析:此题我们可设=x,=y,根据题意得到关于xy的等式,得出xy的关系,再设x=476k,y=19k,由于x是4位数,y是2位数,k的取值范围只能是3,4,5,代入求值即可解得.解答:解:设=x,=y,可得4(100x+y)=10000y+x整理的19x=476y,设x=476k,y=19k,可求得k=3,4,5,则=142857,190476,238095.a+b+c+d+e+f=27.故选A.点评:本题主要考查数的特征,正确将数分段,求出它们之间的关系是解题的关键.三、解答题(共12小题,满分86分)18.(7分)(1)求方程15x+52y=6的所有整数解.(2)求方程x+y=x2﹣xy+y2的整数解.(3)求方程的正整数解.考点:非一次不定方程(组);二元一次不定方程的整数解.专题:计算题.分析:对于(1)通过观察或辗转相除法,先求出特解.对于(2)易想到完全平方公式,从配方人手,对于(3)易知x、y、z都大于1,不妨设l<x≤y≤z,则,将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计,逐步缩小其取值范围,求出其结果.解答:解:(1)观察易得一个特解x=42,y=﹣12,原方程所有整数解为(t为整数).(2)原方程化为(x﹣y)2+(x﹣1)2+(y﹣1)2=2,由此得方程的解为(0,0),(2,2),(1,0),(0,1),(2,1),(1,2).(3)∵,即,由此得x=2或x=3,当x=2时,,即,由此得y=4,或5或6,同理当x=3时,y=3或4,由此可得1≤x≤y≤z时,(x,y,z)共有(2,4,12),(2,6,6),(3,3,6),(3,4,4)4组,由于x,y,z在方程中地位平等,可得原方程的解共有15组:(2,4,12),(2,12,4),(4,2,12),(4,12,2),(12,2,4),(12,4,2),(2,6,6),(6,2,6),(6,6,2),(3,3,6),(3,6,3),(6,3,3),(3,4,4),(4,4,3),(4,3,4).点评:此题主要考查了方程和不等式的相关性质,寻求并缩小某个字母的取值范围,通过验算获得全部解答.19.(7分)一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,如果每次11颗地取出,那么正好取完,求盒子里共有多少颗糖?考点:数的整除性.分析:根据题意可知盒内糖的颗数是11的倍数,因为如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,所以盒内糖的颗数是奇数,分情况讨论是,只讨论11的奇数倍即可,确定最后结果是还要注意要不能被2、3、4、6整除.解答:解:因为每次取11颗正好取完,所以盒内的糖果数必是11的倍数,而11的偶数倍,都能被2整除,所以不合题意,倍数列表如下:5倍7倍9倍11倍13倍15倍17倍19倍原数11 55 77 99 121 143 165 187 209因为121﹣1=120,而120都能被2、3、4、6整除,所以盒子里共有121颗糖.点评:此题主要考查了数的整除性在实际生活中的应用,体现了数学与生活的密切联系,应用了分类讨论思想.20.(7分)中国百鸡问题:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁、鸡母、鸡雏各几何?考点:二元一次不定方程的应用.专题:应用题.分析:设鸡翁、鸡母、鸡雏分别为x、y、z,则有,通过消元,将问题转化为求二元一次不定方程的非负整数解.解答:解:设买公鸡x只,买母鸡y只,买小鸡z只,那么根据已知条件列方程,有:x+y+z=100 (1)5x+3y+z/3=100 (2)(2)×3﹣(1),得14x+8y=200即,7x+4y=100 (3)显然x=0,y=25符合题意,得,所以,x=0,y=25,z=75;在(3)式中4y和100都是4的倍数:7x=100﹣4y=4(25﹣y),因此7x也是4的倍数,7和4是互质的,也就是说x必须是4的倍数;设x=4t,代入(3)得,y=25﹣7t再将x=4t与y=25﹣7t 代入(1),有:z=75+3t,取t=1,t=2,t=3就有:x=4,y=18,z=78或x=8,y=11,z=81或x=12,y=4,z=84;因为x、y、z都必须小于100且都是正整数,所以只有以上三组解符合题意:①买公鸡12只,母鸡4只,小鸡84只;②或买公鸡8只,母鸡11只,小鸡81只;③或买公鸡4只,母鸡18只,小鸡78只.点评:本题主要考查了二元一次不定方程的应用,注意:方程变形后的隐含条件,互质数的应用,以及正整数的取值范围必须使本题由意义.21.(7分)甲组同学每人有28个核桃,乙组同学每人有30个核桃,丙组同学每人有31个核桃,三组的核桃总数是365个,问三个小组共有多少名同学?考点:三元一次方程组的应用.专题:调配问题.分析:设甲组学生a人,乙组学生b人,丙组学生c人,由题意得28a+30b+31c=365,运用放缩法,从求出a+b+c 的取值范围入手.解答:解:设甲组学生a人,乙组学生b人,丙组学生c人.则由题意得28a+30b+31c=365∵28(a+b+c)<28a+30b+31c=365,得a+b+c<<13.04∴a+b+c≤1331(a+b+c)>28a+30b+31c=365,得a+b+c>>11.7∴a+b+c≥12∴a+b+c=12或13当a+b+c=12时,则28a+30b+31c=28(a+b+c)+2b+3c=28×12+2b+3c=365,即2b+3c=29;当a+b+c=13时,则28a+30b+31c=28(a+b+c)+2b+3c=28×13+2b+3c=365,即2b+3c=1,此方程无解;答:三个小组共有12名同学.点评:解不定方程组基本方法有:(1)视某个未知数为常数,将其他未知数用这个未知数的代数式表示;(2)通过消元,将问题转化为不定方程求解;(3)运用整体思想方法求解.本题采用采用方法(1)求解.22.(7分)求下列方程的整数解:(1)11x+5y=7;(2)4x+y=3xy.考点:非一次不定方程(组);二元一次不定方程的整数解.分析:(1)先用换元法确定一个未知数的取值,再求解.(2)先用y表示x,再根据解为整数判断解的取值即可.解答:解:(1)由已知,得y==1+=1+2x+①,∵x,y都是整数,∴1+2x是整数,①式只要满足2﹣x=5t(t为整数)即可,∴x=2﹣5t,代入①式得y=﹣3+11t,故原方程的整数解为(t为整数).(2)由方程得:=①,方程两边同除y得:3x=1+②,由①②得:3x=1+,∵方程的解为整数,∴3y﹣4只能取±1,±2,±4,∵x的值也为整数,∴y的取值为0,1,2,x对应的值为0,﹣1,1.故原方程的解为:、、.点评:本题是求不定方程的整数解,先将方程做适当变形,然后列举出其中一个未知数的适合条件的所有整数值,再求出另一个未知数的值.23.(7分)(2001•广州)在车站开始检票时,有a(a>0)各旅客在候车室排队等候检票进站,检票开始后,仍有旅客继续前来排队等候检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30min才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10min便可将排队等候检票的旅客全部检票完毕;现在要求在5min内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,问至少要同时开放几个检票口?考点:一元一次不等式的应用.专题:压轴题.分析:先设一个窗口每分检出的人是c,每分来的人是b,至少要开放x个窗口;根据开放窗口与通过时间等列方程和不等式解答.解答:解:设一个窗口每分检出的人是c,每分来的人是b,至少要开放x个窗口;a+30b=30c ①,a+10b=2×10c ②,a+5b≤5×x×c,由①﹣②得:c=2b,a=30c﹣30b=30b,30b+5b≤5×x×2b,即35b≤10bx,∵b>0,∴在不等式两边都除以10b得:x≥3.5,答:至少要同时开放4个检票口.点评:解决本题的关键是读懂题意,找到符合题意的等量关系和不等关系式:30分的工作量=a+30分增加的人数;2×10分的工作量=a+10分增加的人数;开放窗口数×检票速度≥a+5分增加的人数.要设出未知数,难点是消去无关量.24.(7分)(2003•淮安)下面是同学们玩过的“锤子、剪子、布”的游戏规则:游戏在两位同学之间进行,用伸出拳头表示“锤子”,伸出食指和中指表示“剪子”,伸出手掌表示“布”,两人同时口念“锤子、剪子、布”,一念到“布”时,同时出手,“布”赢“锤子”,“锤子”赢“剪子”,“剪子”赢“布”.现在我们约定:“布”赢“锤子”得9分,“锤子”赢“剪子”得5分,“剪子”赢“布”得2分.(1)小明和某同学玩此游戏过程中,小明赢了21次,得108分,其中“剪子”赢“布”7次.聪明的同学,请你用所学的数学知识求出小明“布”赢“锤子”、“锤子”赢“剪子”各多少次?(2)如果小明与某同学玩了若干次,得了30分,请你探究一下小明各种可能的赢法,并选择其中的三种赢法填入下表.赢法一:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”赢的次数赢法二:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”赢的次数赢法三:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”赢的次数考点:推理与论证.专题:阅读型.分析:(1)设小明“布”赢“锤子”、“锤子”赢“剪子”各x次和y次.根据总次数和总得分列方程组求解;(2)设小明“布”赢“锤子”、“锤子”赢“剪子”、“剪子”赢“布”各x次、y次、z次.根据得分列一个三元一次方程,再根据未知数是非负整数进行分析.解答:解:(1)设小明“布”赢“锤子”、“锤子”赢“剪子”各x次和y次.根据题意,得:,解得,答:小明“布”赢“锤子”6次,“锤子”赢“剪子”8次;(2)设小明“布”赢“锤子”、“锤子”赢“剪子”、“剪子”赢“布”各x次、y次、z次,根据题意,得9x+5y+2z=30,则有x=1,y=1,z=8;x=1,y=3,z=3;x=2,y=2,z=1.赢法一:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”赢的次数 1 1 8 赢法二:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”赢的次数 1 3 3 赢法三:“布”赢“锤子”“锤子”赢“剪子”“剪子”赢“布”。
初中数学二元一次方程提高题与常考题和培优题(含解析)一.选择题〔共13小题〕1.关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,那么m,n的值为〔〕A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.2.x=﹣3,y=1为以下哪一个二元一次方程式的解?〔〕A.x+2y=﹣1 B.x﹣2y=1 C.2x+3y=6 D.2x﹣3y=﹣63.x,y满足方程组,那么x+y的值为〔〕A.9 B.7 C.5 D.34.假设二元一次联立方程式的解为x=a,y=b,那么a+b之值为何?〔〕A.B.C.7 D.135.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的选项是〔〕A.B.C.D.6.如果是方程x﹣3y=﹣3的一组解,那么代数式5﹣a+3b的值是〔〕A.8 B.5 C.2 D.07.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.假设设爸爸的身高为x米,儿子的身高为y米,那么可列方程组为〔〕A.B.C .D .8.小明在某商店购置商品A、B共两次,这两次购置商品A、B的数量和费用如表:购置商品A的数量〔个〕购置商品B的数量〔个〕购置总费用〔元〕第一次购物4393第二次购物66162假设小明需要购置3个商品A和2个商品B,那么她要花费〔〕A.64元B.65元C.66元D.67元9.足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进展了6场比赛,得了12分,该队获胜的场数可能是〔〕A.1或2 B.2或3 C.3或4 D.4或510.电影"刘三姐"中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?〞刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.〞假设用数学方法解决罗秀才提出的问题,设“一少〞的狗有x条,“三多〞的狗有y条,那么解此问题所列关系式正确的选项是〔〕A .B .C.D.11.假设方程组的解是,那么方程组的解是〔〕A. B.C. D.12."九章算术"是中国传统数学最重要的著作,奠定了中国传统数学的根本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是"九章算术"最高的数学成就."九章算术"中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?〞译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?〞设每头牛值金x两,每只羊值金y两,可列方程组为〔〕A.B.C.D.13.如图,用12块一样的小长方形瓷砖拼成一个大的长方形,那么每个小长方形瓷砖的面积是〔〕A.175cm2B.300cm2C.375cm2D.336cm2二.填空题〔共13小题〕14.方程组的解是.15.a、b满足方程组,那么=.16.假设方程组与的解一样,那么a=,b=.17.是方程组的解,那么代数式〔a+b〕〔a﹣b〕的值为.18.假设〔a﹣2b+1〕2与互为相反数,那么a=,b=.19.定义运算“﹡〞:规定x﹡y=ax+by〔其中a、b为常数〕,假设1﹡1=3,1﹡〔﹣1〕=1,那么1﹡2=.20.我国明代数学家程大位的名著"直指算法统宗"里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为.21.如图,图1和图2都是由8个一样大小的小长方形拼成的,且图2中的小正方形〔阴影局部〕的面积为1cm2,那么小长方形的周长等于.22.如果4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,那么a﹣b=.23.一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,假设设∠1=x°,∠2=y°,那么可得到方程组为.24.如图,三个全等的小矩形沿“横﹣竖﹣横〞排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于.25.一个大正方形和四个全等的小正方形按图①、图②两种方式摆放,根据图中数据,那么图②的大正方形中未被小正方形覆盖局部的面积大小为.26.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是.三.解答题〔共14小题〕27.解方程组:.28.解方程组:.29.关于x,y的二元一次方程组的解互为相反数,求k的值.30.观察以下方程组,解答问题:①;②;③;…〔1〕在以上3个方程组的解中,你发现x与y有什么数量关系?〔不必说理〕〔2〕请你构造第④个方程组,使其满足上述方程组的构造特征,并验证〔1〕中的结论.31.根据图中提供的信息,列方程或方程组求杯子和热水瓶的单价.32.某班学生集体去看演出,观看演出需购置甲种门票或乙种门票,甲种门票每张24元,乙种门票每张18元.该班35名学生每人购置一种门票共花费750元,求该班购置甲、乙两种门票的张数.33.某公园的门票价格规定如下表:购票人数50人以下51~100人100人以上票价13元/人11元/人9元/人某学校七年级1班和2班两个班共104人去游园,其中1班缺乏50人,2班超过50人.〔1〕假设以班为单位分别购票,一共应付1240元,求两班各有多少人?〔2〕假设两班联合购票可少付多少元?34.“最美女教师〞张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级10班40名同学参加了捐款活动,共捐款400元,捐款情况如下表:表格中捐款10元和15元的人数不小心被墨水污染已看不清楚.请你用你学过的知识算出捐款10元和15元的人数各是多少名?35.某天蔬菜经营户用120元批发了西兰花和胡萝卜共60kg到菜市场零售,西兰花和胡萝卜当天的批发价和零售价如表所示:品名西兰花胡萝卜批发价〔元/kg〕 2.8 1.6零售价〔元/kg〕 3.8 2.5如果他当天全部卖完这些西兰花和胡萝卜可获得利润多少元.36.4月23日“世界读书日〞期间,玲玲和小雨通过某图书微信群网购图书,请根据他们的微信聊天对话,试一试:求出每本"英汉词典"和"读者"杂志的单价.37.学生在素质教育基地进展社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植本钱共42元,还了解到如下信息:〔1〕请问采摘的黄瓜和茄子各多少千克?〔2〕这些采摘的黄瓜和茄子可赚多少元?38.某校住校生宿舍有大小两种寝室假设干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?39.某运发动在一场篮球比赛中的技术统计如表所示:技术上场时出手投篮投中〔次〕罚球得篮板〔个〕助攻〔次〕个人总间〔次〕分得分〔分钟〕数据46662210118 60注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运发动投中2分球和3分球各几个.40.在平面直角坐标系中,假设横坐标、纵坐标均为整数点称为格点,假设一个多边形的顶点都是格点,那么称为格点多边形.记格点多边形的面积为S,其内部的格点数记为n,边界上的格点数记为l,例如图中△ABC是格点三角形,对应的S=1,n=0,l=4.奥地利数学家皮克发现格点多边形的面积可表示为S=n+al+b,其中a,b为常数.〔1〕利用图中条件求a,b的值;〔2〕假设某格点多边形对应的n=20,l=15,求S的值;〔3〕在图中画出面积等于5的格点直角三角形PQR.初中数学二元一次方程提高题与常考题和培优题(含解析)参考答案与试题解析一.选择题〔共13小题〕1.〔2016•毕节市〕关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,那么m,n的值为〔〕A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.【分析】利用二元一次方程的定义判断即可.【解答】解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,应选A【点评】此题考察了二元一次方程的定义,熟练掌握二元一次方程的定义是解此题的关键.2.〔2016•〕x=﹣3,y=1为以下哪一个二元一次方程式的解?〔〕A.x+2y=﹣1 B.x﹣2y=1 C.2x+3y=6 D.2x﹣3y=﹣6【分析】直接利用二元一次方程的解的定义分别代入求出答案.【解答】解:将x=﹣3,y=1代入各式,A、〔﹣3〕+2×1=﹣1,正确;B、〔﹣3〕﹣2×1=﹣5≠1,故此选项错误;C、2×〔﹣3〕+3‧1=﹣3≠6,故此选项错误;D、2×〔﹣3〕﹣3‧1=﹣9≠﹣6,故此选项错误;应选:A.【点评】此题主要考察了二元一次方程的解,正确代入方程是解题关键.3.〔2016•〕x,y满足方程组,那么x+y的值为〔〕A.9 B.7 C.5 D.3【分析】方程组两方程相加求出x+y的值即可.【解答】解:,①+②得:4x+4y=20,那么x+y=5,应选C【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4.〔2016•〕假设二元一次联立方程式的解为x=a,y=b,那么a+b之值为何?〔〕A.B.C.7 D.13【分析】将其中一个方程两边乘以一个数,使其与另一方程中x的系数互为相反数,再将两方程相加,消去一个未知数,到达降元的目的,求出另一个未知数,再用代入法求另一个未知数.【解答】解:①×2﹣②得,7x=7,x=1,代入①中得,2+y=14,解得y=12,那么a+b=1+12=13,应选D.【点评】此题主要考察解二元一次方程组,熟练运用加减消元是解答此题的关键.5.〔2016•〕为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的选项是〔〕A.B.C.D.【分析】根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵树+女生种树的总棵树=78棵,根据等量关系列出方程组即可.【解答】解:该班男生有x人,女生有y人.根据题意得:,应选:D.【点评】此题主要考察了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.6.〔2016•吴中区一模〕如果是方程x﹣3y=﹣3的一组解,那么代数式5﹣a+3b 的值是〔〕A.8 B.5 C.2 D.0【分析】把x=a,y=b代入方程,再根据5﹣a+3b=5﹣〔a﹣3b〕,然后代入求值即可.【解答】解:把x=a,y=b代入方程,可得:a﹣3b=﹣3,所以5﹣a+3b=5﹣〔a﹣3b〕=5+3=8,应选A【点评】此题考察了代数式的求值,正确对代数式变形,利用添括号法那么是关键.7.〔2017•河北一模〕父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.假设设爸爸的身高为x米,儿子的身高为y米,那么可列方程组为〔〕A.B.C.D.【分析】根据题意可得两个等量关系:①爸爸的身高+儿子的身高=3.2米;②父亲在水中的身高〔1﹣〕x=儿子在水中的身高〔1﹣〕y,根据等量关系可列出方程组.【解答】解:设爸爸的身高为x米,儿子的身高为y米,由题意得:,应选:D.【点评】此题主要考察了由实际问题抽象出二元一次方程组,关键是弄清题意,找出题目中的等量关系,解决此题的关键是知道父亲和儿子没在水中的身高是相等的.8.〔2016•黔东南州〕小明在某商店购置商品A、B共两次,这两次购置商品A、B的数量和费用如表:购置商品A的数量〔个〕购置商品B的数量〔个〕购置总费用〔元〕第一次购物4393第二次购物66162假设小明需要购置3个商品A和2个商品B,那么她要花费〔〕A.64元B.65元C.66元D.67元【分析】设商品A的标价为x元,商品B的标价为y元,由题意得等量关系:①4个A的花费+3个B的花费=93元;②6个A的花费+6个B的花费=162元,根据等量关系列出方程组,再解即可.【解答】解:设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为12元,商品B的标价为15元;所以3×12+2×15=66元,应选C【点评】此题主要考察了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程组.9.〔2016•〕足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进展了6场比赛,得了12分,该队获胜的场数可能是〔〕A.1或2 B.2或3 C.3或4 D.4或5【分析】设该队胜x场,平y场,那么负〔6﹣x﹣y〕场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.【解答】解:设该队胜x场,平y场,那么负〔6﹣x﹣y〕场,根据题意,得:3x+y=12,即:x=,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,应选:C.【点评】此题主要考察二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解.10.〔2016•泰安模拟〕电影"刘三姐"中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?〞刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.〞假设用数学方法解决罗秀才提出的问题,设“一少〞的狗有x条,“三多〞的狗有y条,那么解此问题所列关系式正确的选项是〔〕A.B.C.D.【分析】根据一少三多四下分,不要双数要单数,列出不等式组解答即可.【解答】解:设“一少〞的狗有x条,“三多〞的狗有y条,可得:,应选:B.【点评】此题考察二元一次方程的应用,关键是根据一少三多四下分,不要双数要单数列出不等式组.11.〔2016•高阳县一模〕假设方程组的解是,那么方程组的解是〔〕A. B.C. D.【分析】根据加减法,可得〔x+2〕、〔y﹣1〕的解,再根据解方程,可得答案.【解答】解:∵方程组的解是,∴方程组中∴应选:C.【点评】此题考察了二元一次方程组的解,解决此题的关键是先求〔x+2〕、〔y ﹣1〕的解,再求x、y的值.12.〔2016•乐山模拟〕"九章算术"是中国传统数学最重要的著作,奠定了中国传统数学的根本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是"九章算术"最高的数学成就."九章算术"中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?〞译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?〞设每头牛值金x两,每只羊值金y两,可列方程组为〔〕A.B.C.D.【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两〞,得到等量关系,即可列出方程组.【解答】解:根据题意得:,应选A【点评】此题考察了由实际问题抽象出二元一次方程组,解决此题的关键是找到题目中所存在的等量关系.13.〔2016•富顺县校级模拟〕如图,用12块一样的小长方形瓷砖拼成一个大的长方形,那么每个小长方形瓷砖的面积是〔〕A.175cm2B.300cm2C.375cm2D.336cm2【分析】设小长方形的长为xcm,宽为ycm,根据题意可知x+y=40,大矩形的长可表示3x或3y+2x,从而得到3x=3y+2x,然后列方程组求解即可.【解答】解:设小长方形的长为xcm,宽为ycm.根据题意得:解得:.故xy=30×10=300cm2.应选:B.【点评】此题主要考察的是二元一次方程组的应用,根据矩形的对边相等列出方程组是解题的关键.二.填空题〔共13小题〕14.〔2016•永州〕方程组的解是.【分析】代入消元法求解即可.【解答】解:解方程组,由①得:x=2﹣2y ③,将③代入②,得:2〔2﹣2y〕+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.【点评】此题考察的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.15.〔2016•〕a、b满足方程组,那么= 3 .【分析】方程组利用加减消元法求出解得到a与b的值,代入原式计算即可得到结果.【解答】解:,①×3+②得:7a=28,即a=4,把a=4代入②得:b=5,那么原式=3.故答案为:3【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.16.〔2016•富顺县校级模拟〕假设方程组与的解一样,那么a= 33 ,b=.【分析】先求出x,y的值,再组成一个含a,b的新方程组.解这个方程组即可.【解答】解:解方程组得,代入方程组得,解得,故答案为:33,.【点评】此题主要考察了二元一次方程组的解,解题的关键是正确求出x,y的值,组成一个新的方程组.17.〔2016•〕是方程组的解,那么代数式〔a+b〕〔a﹣b〕的值为﹣8 .【分析】把x与y的值代入方程组求出a与b的值,代入原式计算即可得到结果.【解答】解:把代入方程组得:,①×3+②×2得:5a=﹣5,即a=﹣1,把a=﹣1代入①得:b=﹣3,那么原式=a2﹣b2=1﹣9=﹣8,故答案为:﹣8【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.〔2016•富顺县校级模拟〕假设〔a﹣2b+1〕2与互为相反数,那么a= 3 ,b= 2 .【分析】根据得出〔a﹣2b+1〕2+=0,得出方程组,求出方程组的解即可.【解答】解:∵〔a﹣2b+1〕2与互为相反数,∴〔a﹣2b+1〕2+=0,〔a﹣2b+1〕2=0且=0,即,解得:a=3,b=2故答案为:3,2.【点评】此题考察了相反数,二元一次方程组,偶次方,算术平方根的应用,解此题的关键是得出关于x、y的方程组.19.〔2016•浦东新区二模〕定义运算“﹡〞:规定x﹡y=ax+by〔其中a、b为常数〕,假设1﹡1=3,1﹡〔﹣1〕=1,那么1﹡2= 4 .【分析】等式利用题中的新定义化简为二元一次方程组,求出方程组的解得到a 与b的值,即可确定出所求式子的值.【解答】解:根据题中的新定义得:,解得:,那么1﹡2=1×2+2×1=2+2=4,故答案为:4【点评】此题考察了解二元一次方程组,以及有理数的混合运算,熟练掌握运算法那么是解此题的关键.20.〔2016•丰台区二模〕我国明代数学家程大位的名著"直指算法统宗"里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为.【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.【解答】解:设大和尚x人,小和尚y人,由题意可得.故答案为.【点评】此题考察了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组.21.〔2016•龙岩模拟〕如图,图1和图2都是由8个一样大小的小长方形拼成的,且图2中的小正方形〔阴影局部〕的面积为1cm2,那么小长方形的周长等于16cm .【分析】仔细观察图形,发现此题中2个等量关系为:小长方形的长×3=小长方形的宽×5,〔小长方形的长+小长方形的宽×2〕2=小长方形的长×小长方形的宽×8+1.根据这两个等量关系可列出方程组,即可求出小长方形的周长.【解答】解:设这8个大小一样的小长方形的长为xcm,宽为ycm.由题意,得,解得.小长方形的周长为2×〔3+5〕=16,故答案为16cm.【点评】此题主要考察了二元二次方程组的应用,解题关键是弄清题意,找到适宜的等量关系,列出方程组.解决此题需仔细观察图形,发现大长方形的对边相等及正方形的面积=8个小长方形的面积+小正方形的面积是关键.22.〔2016春•单县期末〕如果4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,那么a﹣b= ﹣2 .【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:因为4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,可得:,解得:,所以a﹣b=﹣2,故答案为:﹣2【点评】主要考察二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.23.〔2016春•镇赉县期末〕一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,假设设∠1=x°,∠2=y°,那么可得到方程组为.【分析】根据∠1的度数比∠2的度数大50°,还有平角为180°列出方程,联立两个方程即可.【解答】解:根据∠1的度数比∠2的度数大50°可得方程x﹣y=50,再根据平角定义可得x+y+90=180,故x+y=90,那么可得方程组:,故答案为:.【点评】此题主要考察了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.24.〔2016•广陵区二模〕如图,三个全等的小矩形沿“横﹣竖﹣横〞排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于 6.8 .【分析】由图形可看出:小矩形的2个长+一个宽=5.7,小矩形的2个宽+一个长=4.5,设出长和宽,列出方程组即可得答案.【解答】解:设小矩形的长为xm,宽为ym,由题意得:,解得:x+y=3.4.一个小矩形的周长为:3.4×2=6.8,故答案为:6.8.【点评】此题主要考察了二元一次方程组的应用,做题的关键是:弄懂题意,找出等量关系,列出方程组.25.〔2016•河南模拟〕一个大正方形和四个全等的小正方形按图①、图②两种方式摆放,根据图中数据,那么图②的大正方形中未被小正方形覆盖局部的面积大小为24 .【分析】设大正方形的边长为x,小正方形的边长为y,根据图①、图②给出的数据即可得出关于x、y的二元一次方程,解之即可求出x、y的值,再用大正方形的面积减去4个小正方形的面积即可得出结论.【解答】解:设大正方形的边长为x,小正方形的边长为y,根据题意得:,解得:,∴图②的大正方形中未被小正方形覆盖局部的面积为52﹣4×=24.故答案为:24.【点评】此题考察了二元一次方程组的应用,根据数量关系列出关于x、y的二元一次方程组是解题的关键.26.〔2016•楚雄州模拟〕如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是292 .【分析】设连续搭建正三角形的个数为x个,连续搭建正六边形的根数为y个,根据“所用火柴棍数=三角形个数×2+1+正六边形个数×5+1〞联立正三角形的个数比正六边形的个数多6个得出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:设连续搭建正三角形的个数为x个,连续搭建正六边形的根数为y 个,由题意得,解得:.故答案为:292.【点评】此题考察了二元一次方程组的应用,解题的关键是列出关于x、y的二元一次方程.此题属于根底题,难度不大,解决该题型题目时,结合数量关系得出关于两种图形个数的方程〔或方程组〕是关键.三.解答题〔共14小题〕27.〔2016•〕解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×8+②得:33x=33,即x=1,把x=1代入①得:y=1,那么方程组的解为.【点评】此题考察了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.28.〔2016•威海一模〕解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:原方程组可化为,①×3+②,得11x=22,即x=2,将x=2代入①,得6﹣y=3,即y=3,那么方程组的解为.【点评】此题考察了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.29.〔2016•莆田模拟〕关于x,y的二元一次方程组的解互为相反数,求k的值.【分析】方程组两方程相加表示出x+y,根据x与y互为相反数得到x+y=0,求出k的值即可.【解答】解:,①+②得:3〔x+y〕=k﹣1,即x+y=,由题意得:x+y=0,即=0,解得:k=1.【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.30.〔2016•漳州模拟〕观察以下方程组,解答问题:①;②;③;…〔1〕在以上3个方程组的解中,你发现x与y有什么数量关系?〔不必说理〕〔2〕请你构造第④个方程组,使其满足上述方程组的构造特征,并验证〔1〕中的结论.【分析】〔1〕观察方程组,得到x与y的数量关系即可;〔2〕归纳总结得到第④个方程组,求出方程组的解,验证即可.【解答】解:〔1〕在以上3个方程组的解中,发现x+y=0;〔2〕第④个方程组为,①+②得:6x=24,即x=4,把x=4代入①得:y=﹣4,那么x+y=4﹣4=0.【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.31.〔2016•龙岩模拟〕根据图中提供的信息,列方程或方程组求杯子和热水瓶的单价.【分析】根据图知道,一个保温瓶和一个杯子的价钱是43元,2个保温瓶和3个杯子的价钱是94元;先用43×2求出2个保温瓶和2个杯子的价钱,再用2个保温瓶和3个杯子的价钱减去2个保温瓶和2个杯子的价钱就是一个杯子的价钱,进而求出一个保温瓶的价钱.【解答】解:设杯子的单价为x元,那么热水瓶单价为y元,那么解得,答:杯子的单价为8元,那么热水瓶单价为35元.【点评】此题考察方程组的应用,关键是根据图,得出保温瓶与杯子的价钱之间的数量关系,再根据数量关系的特点,选择适宜的方法进展计算.32.〔2016•长春模拟〕某班学生集体去看演出,观看演出需购置甲种门票或乙种门票,甲种门票每张24元,乙种门票每张18元.该班35名学生每人购置一种门票共花费750元,求该班购置甲、乙两种门票的张数.【分析】设该班购置甲种门票x张,乙种门票y张,根据“该班一共35人,甲种门票每张24元,乙种门票每张18元,每人购置一种门票共花费750元〞列方。
初中数学竞赛:列方程解应用题在小学数学中介绍了应用题的算术解法及常见的典型应用题。
然而算术解法往往局限于从已知条件出发推出结论,不允许未知数参加计算,这样,对于较复杂的应用题,使用算术方法常常比较困难。
而用列方程的方法,未知数与已知数同样都是运算的对象,通过找出“未知”与“已知”之间的相等关系,即列出方程(或方程组),使问题得以解决。
所以对于应用题,列方程的方法往往比算术解法易于思考,易于求解。
列方程解应用题的一般步骤是:审题,设未知数,找出相等关系,列方程,解方程,检验作答。
其中列方程是关键的一步,其实质是将同一个量或等量用两种方式表达出来,而要建立这种相等关系必须对题目作细致分析,有些相等关系比较隐蔽,必要时要应用图表或图形进行直观分析。
一、列简易方程解应用题分析:欲求这个六位数,只要求出五位数x abcde =就可以了。
按题意,这个六位数的3倍等于1abcde 。
解:设五位数x abcde =,则六位数abcde 1x +=510,六位数1101+=x abcde , 从而有3(105+x )=10x+1,x =42857。
答:这个六位数为142857。
说明:这一解法的关键有两点: ⑴抓住相等关系:六位数abcde 1的3倍等于六位数1abcde ;⑵设未知数x :将六位数abcde 1与六位数1abcde 用含x 的数学式子表示出来,这里根据题目的特点,采用“整体”设元的方法很有特色。
(1)是善于分析问题中的已知数与未知数之间的数量关系;(2)是一般语言与数学的形式语言之间的相互关系转化。
因此,要提高列方程解应用题的能力,就应在这两方面下功夫。
例2有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒。
问:队伍有多长?分析:这是一道“追及又相遇”的问题,通讯员从末尾到排头是追及问题,他与排头所行路程差为队伍长;通讯员从排头返回排尾是相遇问题,他与排尾所行路程和为队伍长。
七年级培优讲义十(二元一次方程组的讨论)姓名——1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种: ① 当212121c c b b a a ==时,方程组有无数多解。
(∵两个方程等效) ② 当212121c c b b a a ≠=时,方程组无解。
(∵两个方程是矛盾的) ③ 当2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得) 2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。
3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。
(见例2、3)二、例题 例1. 选择一组a,c 值使方程组⎩⎨⎧=+=+c y ax y x 275 ① 有无数多解, ②无解, ③有唯一的解例2. a 取什么值时,方程组⎩⎨⎧=+=+3135y x a y x 的解是正数?例3. m 取何整数值时,方程组⎩⎨⎧=+=+1442y x my x 的解x 和y 都是整数?例4(古代问题)用100枚铜板买桃,李,榄橄共100粒,己知桃,李每粒分别是3,4枚铜板,而榄橄7粒1枚铜板。
问桃,李,榄橄各买几粒?三、练习111. 不解方程组,判定下列方程组解的情况:① ⎩⎨⎧=-=-96332y x y x ②⎩⎨⎧=-=-32432y x y x ③⎩⎨⎧=-=+153153y x y x 2. a 取什么值时方程组⎪⎩⎪⎨⎧+-=--+=+229691322a a y x a a y x 的解是正数?3. a 取哪些正整数值,方程组⎩⎨⎧=--=+ay x a y x 24352的解x 和y 都是正整数? 4. 要使方程组⎩⎨⎧=-=+12y x k ky x 的解都是整数, k 应取哪些整数值?5. (古代问题)今有鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,鸡翁,鸡母,鸡雏都买,可各买多少?。
七年级数学竞赛(二)——列方程组解应用题(只列不解)1.某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加工厂1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口.2.小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时间?3.某区中学生足球联赛共8轮(即每个队均需要赛8场),胜一场得3分,平一场得1分,负一场得0分.在这次足球联赛中,雄师队踢平的场数是所负场数的2倍,共得17分.你知道雄师队胜了几场球吗?4.10年前,母亲的年龄是儿子的6倍;10年后,母亲的年龄是儿子的2倍.求母子现在的年龄.5.某国际医疗救援队用甲、乙两种原料为手术后的病人配置营养品.每克甲原料含0.5单位的蛋白质和1单位的铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质.若病人每餐需要35单位蛋白质和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?6.某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。
如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?8.某幼儿园分苹果,若每人3个,则剩2个,若每人4个,则有一个少1个,问幼儿园有几个小朋友?9.七年级学生去饭堂开会,如果每4人共坐一张长凳,则有28人没有位置坐,如果6人共坐一张长凳,求七年级学生人数及长凳数.10.一张桌子由桌面和四条腿组成,1立方米的木材可制成桌面50张或制作桌腿300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌腿配套?11.某儿童三轮厂共有95名工人,每个工人每天可生产车身9个或30个车轮。
初中数学竞赛:有关方程组的问题
在教科书上,我们已经知道了二元一次方程组、三元一次方程组以及简单的二元二次方程组的解法.利用这些知识,可以研究一次函数的图像、二次函数的图像以及与此有关的问题.本讲再介绍一些解方程组的方法与技巧.
1.二元二次方程组
解二元二次方程组的基本途径是“消元”和“降次”.
由一个二次和一个一次方程组成的二元二次方程组的一般解法是代入法,由两个二次方程组成的二次方程组在中学阶段只研究它的几种特殊解法.
如果两个方程的二次项的对应系数成比例,可用加减消元法消去二次项.
例1 解方程组
解②×2-①×3得
4x+9y-6=0.
方程组中含有某一未知数的对应项的系数的比相等,可用加减消元法消去这个未知数.例2 解方程组
解②×(-2)+①得
3y2+3y-6=0,
所以 y1=1,y2=-2.
解方程组
与
得原方程组的解
方程组中至少有一个方程可以分解为一次方程的方程组,可用因式分解法解.
例3 解方程组
解由②得
(2x+y)(x-2y)=0,
所以2x+y=0或x-2y=0.
因此,原方程组可化为两个方程组
与
解这两个方程组得原方程组的解为
如果两个方程都没有一次项,可用加减消元法消去常数项,再用因式分解法求解.例4 解方程组
解由①-②×2得
x2-2xy-3y2=0,
即 (x+y)(x-3y)=0,
所以 x+y=0或x-3y=0.
分别解下列两个方程组
得原方程组的解为
2.二元对称方程组
方程中的未知数x,y互换后方程保持不变的二元方程叫作二元对称方程.例如x2-5xy+y2-3x-3y=7,
等都是二元对称方程.
由二元对称方程组成的方程组叫作二元对称方程组.例如
等都是二元对称方程组.
我们把
叫作基本对称方程组.基本对称方程组通常用代入法或韦达定理求解.
例5 解方程组
解方程组中的x,y分别是新方程
m2-5m+4=0
的两个解.解关于m的一元二次方程得m1=1,m2=4,所以原方程组的解是
这个方程组亦可用代入法求解(略).
由于一般的二元对称式总可以用基本对称式x+y和xy表示,因此在解二元对称方程组时,一定可以用x+y和xy作为新的未知数,通过换元转化为基本对称方程组.例6 解方程组
解原方程组可变形为
①×2+②得
令u=x+y,则
即
而方程组
无实数解.
综上所述,方程组的解为
例7 解方程组
分析本题是一个对称方程组的形式,观察知它可转化为基本对称方程组的形式.
解由①得
xy=16.④
由②,④可得基本对称方程组
于是可得方程组的解为
例8 解方程组
分析本题属于二元轮换对称方程组类型,通常可以把两个方程相减,因为这样总能得到一个方程x-y=0,从而使方程降次化简.
解①-②,再因式分解得(x-y)(x+y-10)=0,
所以 x-y-0或x+x-10=0.解下列两个方程组
得原方程组的四组解为
例9 解方程组
解法1用换元法.设
4x+5=A,4y+5=B,
则有
即
③-④并平方得
整理得
所以
因此A-B=0或
分别解下列两个方程组
与
经检验,A=B=9适合方程③,④,由此得原方程组的解是
解法2①-②得
即
所以x-1与y-1同号或同为零.由方程①得
所以x-1与y-1不能同正,也不能同负.从而
x-1=0,y-1=0.
由此解得
经检验,x=1,y=1是方程组的解.
【练习】
1.填空:
(1)方程组
的解有_____组.
(2)若x,y是方程组
(3)已知3a+b+2c=3,且a+3b+2c=1,则2a+c=_____.
(4)已知实数x,y,z满足方程组
则xyz=________.
2.解方程组:
3.设a,b,c,x,y,z都是实数.若
4.已知一元二次方程
a(x+1)(x+2)+b(x+2)(x+3)+c(x+3)(x+1)=0 有两根0,1,求a∶b∶c.
5.(1)解方程组。