东南大学电子信息工程之信号与系统第9讲
- 格式:ppt
- 大小:842.50 KB
- 文档页数:21
电子信息工程专业公开课信号与系统分析电子信息工程专业公开课信号与系统分析是该专业的一门重要课程,主要讲解信号与系统的基本概念、理论和应用。
本文将从信号与系统的基本概念、信号与系统的数学表示以及信号与系统的应用等方面进行探讨。
一、信号与系统的基本概念在电子信息工程中,信号是指携带有用信息和数据的电波或电流,它可以是数字信号或模拟信号。
系统是指处理信号的一种装置或方法。
信号与系统的基本概念涉及信号的分类、信号的特性、系统的分类以及系统的特性等。
在信号的分类中,常见的包括连续时间信号和离散时间信号。
连续时间信号是指信号在时间上是连续的,而离散时间信号是指信号在时间上是离散的。
在信号的特性中,常见的包括能量信号和功率信号。
能量信号是指信号在有限时间内的总能量有界,而功率信号是指信号的功率在无限时间内是有限的。
系统的分类主要包括线性系统和非线性系统。
线性系统是指系统的输出与输入之间存在线性关系,而非线性系统则没有线性关系。
在系统的特性中,常见的包括时不变系统和时变系统。
时不变系统是指系统的输出与输入之间不随时间变化,而时变系统则随时间变化。
二、信号与系统的数学表示为了方便分析和处理信号与系统,我们需要利用数学方法对其进行表示。
连续时间信号可以用函数表示,离散时间信号可以用数列表示。
连续时间信号的数学表示主要包括信号的幅度、相位和频率等。
离散时间信号的数学表示主要包括信号的取样、量化和编码等。
在系统的数学表示中,常见的包括系统的冲激响应、传递函数和频率响应等。
系统的冲激响应是指系统在输入为冲激函数时的输出响应,传递函数是指系统的输出与输入之间的关系,频率响应是指系统对输入信号频率的响应情况。
三、信号与系统的应用信号与系统在电子信息工程中有着广泛的应用。
在通信系统中,信号与系统分析可以用于信号的调制和解调、信号的传输和接收等方面。
在控制系统中,信号与系统分析可以用于系统的建模与仿真、系统的控制和稳定性分析等方面。
精选全文完整版(可编辑修改)《信号与系统》课程教学大纲课程名称:信号与系统课程代码:TELE1006英文名称:Signal and Linear System课程性质:专业必修课程学分/学时:3.0开课学期:第3学期适用专业:通信工程、信息工程、电子信息工程、电子科学与技术等专业先修课程:高等数学,线性代数,电路分析后续课程:数字信号处理,通信原理,通信系统设计与实践等开课单位:电子信息学院课程负责人:王家俊大纲执笔人:侯嘉大纲审核人:一、课程性质和教学目标课程性质:本课程是通信工程、信息工程、电子信息工程等电子信息类专业的一门重要专业基础课,是通信工程专业的必修主干课。
教学目标:本课程主要讲授信号与线性系统的分析和处理方法的基本原理。
通过理论教学,使学生能建立系统分析的总体概念,掌握信号处理、信号特征分析、线性系统分析等基本概念和基本方法以及若干典型的电路系统分析应用,该课程是从电路分析的知识领域引入信号处理与传输领域的关键性课程,在教学环节中起着承上启下的作用。
能培养学生的电路设计与特征分析能力,思维推理和分析运算的能力,为进一步学习数字信号处理、通信原理等后续课程打下理论和技术基础。
本课程的具体教学目标如下:1、掌握信号与线性系统理论和知识体系所需的基本数理知识,并能用于专业知识与实际系统分析的能力学习中。
【1.1】2、具备信号与线性系统分析与理解的基础知识,能使用数学、自然科学、工程基础和专业知识分析实际工程中结构、电路、信号等相关具体问题。
【1.3】3、具备对常用信号、线性系统的特性、功能及应用进行分析和理解的基础能力,能够理解典型线性电路系统、滤波器、调制解调系统以及信号的时频特性和基本构成原理,能够针对实际工程问题和应用对象进行方案分析。
【1.4】4、具备对线性系统与信号的基本设计与分析能力,能运用基本原理、数理工具和工程方法,完成电子通信领域相关的复杂工程问题与系统设计中单元与环节的正确表达。
电子工程优质课信号与系统分析信号与系统是电子工程专业中非常重要的一门课程,它涉及到信号的产生、传输、处理和分析等方面内容,是电子工程师必须掌握的基础知识之一。
本文将对电子工程中的信号与系统分析进行详细介绍和阐述。
一、信号与系统的概念及基本特性信号是一种事物的特征或变化规律在一定时间内的表现,比如声音、图像等。
系统是指将输入信号转换为输出信号的过程,它可以是物理系统、电子系统或者其他形式的系统。
信号与系统分析就是研究信号在系统中传递、处理和改变的过程。
信号与系统分析的基本特性有时域特性和频域特性两个方面。
时域特性是指信号与系统在时间上的表现,包括信号的幅度、相位、波形等;频域特性是指信号与系统在频率上的表现,包括频谱分析、频率响应等。
二、信号与系统的数学表示信号与系统可以用数学模型进行描述和表示。
常见的信号有连续时间信号和离散时间信号两种形式。
连续时间信号是在连续时间域上变化的信号,可以用函数表示;离散时间信号是在离散时间点上变化的信号,可以用数列表示。
系统也可以用数学模型进行描述,常见的有线性时不变系统(LTI系统)。
LTI系统具有线性性质和时不变性质,可以用差分方程或者传递函数表示。
通过对信号与系统的数学表示,可以进行信号与系统的分析和理论推导。
三、信号的频谱分析频谱分析是信号与系统分析中非常重要的一个环节。
信号的频谱分析可以得到信号在频率上的分布情况,从而了解信号中包含的不同频率成分。
常见的频谱分析方法有傅里叶变换、快速傅里叶变换、功率谱密度分析等。
傅里叶变换可以将信号从时域转换到频域,得到信号的频谱图。
功率谱密度分析可以得到信号的能量在不同频率上的分布情况,用于描述信号的频率特性。
四、系统的频率响应系统的频率响应描述了系统对不同频率信号的传递特性。
常见的系统频率响应有幅频响应和相频响应两种形式。
幅频响应是指系统对输入信号幅度的变化情况,描述了系统对不同频率信号的衰减或放大程度。
相频响应是指系统对输入信号相位的变化情况,描述了系统对不同频率信号的相位差异。