二轮专题八 解析几何
- 格式:doc
- 大小:213.50 KB
- 文档页数:3
理科数学高考解答题基本题型---解析几何一、考试大纲 (1)直线与方程① 在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。
② 理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。
③ 能根据两条直线的斜率判定这两条直线互相平行或垂直。
④ 掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。
⑤ 能用解方程组的方法求两条相交直线的交点坐标。
⑥ 掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
(2)圆与方程① 掌握确定圆的几何要素,掌握圆的标准方程与一般方程。
② 能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系。
③ 能用直线和圆的方程解决一些简单的问题。
④ 初步了解代数方法处理几何问题的思想。
(3)圆锥曲线① 了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用。
② 掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质。
③ 了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质。
④ 了解圆锥曲线的简单应用。
⑤ 理解数形结合的思想。
(4)曲线与方程了解方程的曲线与曲线的方程的对应关系 二、考情分析近4年高考中,解析几何解答题有3年都是在第20题的位置(2011年是第19题),这4年考查的一个共同特点是第1问都是求轨迹方程,2010年是求两条动直线交点的轨迹方程(交轨法),2011年是由两圆相切得出动点P 的几何表达式,再用定义法求轨迹方程,2012年是结合离心率与最值求轨迹方程(待定系数法),2013年的最简单,考查点到直线的距离公式再用待定系数法求轨迹,估计2014年的高考解析几何第1问也是求轨迹方程的问题(代入法或直接法求轨迹可能性最大),在2011年到2013年连续3年中,都考到了最值问题,2011年是距离差的最大值,2012年是三角形面积的最大值,2013年是距离积的最小值。
专题八平面解析几何——2025届高考数学考点剖析精创专题卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.已知点(3)1,A -,(3,1)B ,若直线:20l mx y ++=与线段AB 有公共点,则实数m 的取值范围为()A.(,5][1,)-∞-+∞ B.[5,1]-C.(,1][5,)-∞-+∞ D.[1,5]-1.答案:C解析:由题意知直线l 过定点(0,2)P -,易求直线PA 的斜率3(2)510PA k --==---,直线PB 的斜率1(2)130PB k --==-,直线l 的斜率l k m =-,作出线段AB 及直线PA ,PB ,如图,由图知,1m -≥或5m -≤-,即1m ≤-或5m ≥,故选C.2.若直线10x my ++=是2221:(1)(2)(0)C x y r r -++=> 与222:(2)(2)4C x y -+-= 的公切线,则实数r 的值为()A.3413B.1712C.127D.922.答案:A解析:已知1C 的圆心1(1,2)C -,半径是r ;2C 的圆心是2(2,2)C ,半径是2.由题知直线10x my ++=是1C 和2C 的公切线,当0m =时,直线为1x =-,此时直线1x =-与圆2C 不相切,所以0m ≠,由2=,解得512m =-,则有3413r ==.故选A.3.已知双曲线22:22C x y -=,过点(1,2)P 的直线l 与双曲线C 交于M ,N 两点,若P 为线段MN 的中点,则弦长MN 等于()A.3B.4C.D.3.答案:D解析:由题设,直线l 的斜率必存在,设过(1,2)P 的直线MN 的方程为2(1)y k x -=-,联立直线与双曲线的方程并化简得()()22222(2)460k xk k x k k -+---+=,设()11,M x y ,()22,N x y ,0∆>,则1222(2)22P k k x x x k -+=-=-,所以22(2)22k k k--=-,解得1k =,则122x x +=,123x x =-.弦长MN ===.故选D.4.[2023届·全国·模拟考试联考]阿基米德在他的著作《关于圆锥体和球体》中计算了一个椭圆的面积.当我们垂直地缩小一个圆时,我们得到一个椭圆.椭圆的面积等于圆周率π与椭圆的长半轴长与短半轴长的乘积.已知椭圆2222:1(0)x y C a b a b+=>>的面积为21π,点P 在椭圆C 上,且点P 与椭圆C 左、右顶点连线的斜率之积为949-,记椭圆C 的两个焦点分别为1F ,2F ,则1PF 的值不可能为()A.4 B.7 C.10 D.144.答案:D解析:因为椭圆C 的面积为21π,所以π21πab =,即21ab =.①设()()000,P x y x a ≠±,则2200221x y a b +=,则()2220202b x a y a-=-,所以点P 与椭圆C 左、右顶点连线的斜率之积为22000222000949y y y b x a x a x a a ⋅==-=--+-.②联立①②可得7a =,3b =,则c ==177a c PF c a -=-<<+=,故选D.5.已知双曲线2222:1x y C a b -=(0a >,0b >)的左、右焦点分别为1F ,2F ,点M 在C上,且12MF MF ⊥,1OMF △的面积为218a (O 为坐标原点),则双曲线C 的离心率为() A.103B.52C.102D.3835.答案:A解析:不妨设点M 在双曲线的右支上,如图所示.设1MF m =,2MF n =,则22222,4,1,418m n a m n c a mn ⎧⎪-=⎪⎪+=⎨⎪⎪=⎪⎩①②③由①得22224m n mn a +-=.将②③代入即可得2224449c a a -=,故224049c a =,所以22109c a =,所以离心率103c e a ==.故选A.6.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的交点,若4FP FQ =,则||FQ =()A.4B.52C.2D.326.答案:D 解析:依题意得12p=,(1,0)F ,准线l 的方程为1x =-.因为点P 是l 上一点,所以设点(1,)P t -,()00,Q x y ,则(2),FP t =-,()001,FQ x y =-,因为4FP FQ = ,所以()0241x -=-,解得012x =.又Q 是直线PF 与C 的交点,所以由抛物线的定义可得03||12FQ x =+=.故选D.7.已知抛物线22(0)y px p =>的焦点为F ,抛物线上一点A 在F 的正上方,过点A 的直线l 与抛物线交于另一点B ,满足||2||BF AF =,则钝角AFB ∠=()A.7π12B.2π3C.3π4D.5π67.答案:D解析:由题知,抛物线的焦点为,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-.因为点A 在F 的正上方,所以点A 的坐标为,2p p ⎛⎫⎪⎝⎭.因为AFB ∠为钝角,则点B 在x 轴下方,所以||2||22B p x BF AF p +===,解得32B x p =,即点B 的坐标为332p ⎛⎫ ⎪⎝⎭(舍去)或3,32p ⎛⎫⎪⎝⎭.因为直线BF 的斜率33322BF k p p ==-,所以直线BF 的倾斜角为2π3,故钝角π2π5ππ236AFB ∠=+-=.故选D.8.[2024春·高二·四川眉山·开学考试校考]已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,左顶点是A ,左、右焦点分别是1F ,2F ,M 是C 在第一象限上的一点,直线1MF 与C 的另一个交点为N .若2//MF AN ,则直线MN 的斜率为()A.52B.311C.12D.1578.答案:A解析:因为椭圆C 的离心率为12,故可设2a k =,(0)c k k =>,故3b k =,因此椭圆C 的方程为22243x y k +=,而1AF a c k =-=,122F F k =,故11212AF F F =,因为2//MF AN ,所以1112NF MF =.因为直线MN 与x 轴不垂直也不重合,故可设:(0)MN x my k m =->,()11,M x y ,()22,N x y ,则122y y =-,由222,3412x my k x y k=-⎧⎨+=⎩可得()22243690m y mky k +--=,因为1F 在椭圆C 的内部,所以0∆>恒成立,且1222122126,439,432,km y y mk y y m y y ⎧+=⎪+⎪-⎪=⎨+⎪=-⎪⎪⎩故22226129434343km km k m m m --⨯=+++,因为0k ≠,所以255m =,此时112355012445k y k ⨯==>+,1452k x k k =⨯-=>故M 在第一象限,符合条件,因此直线MN 的斜率为152m =.故选A.二、多项选择题9.已知双曲线22:2(0)C mx y m -=>的左、右焦点分别为1F ,2F ,若圆22(4)8x y -+=与双曲线C 的渐近线相切,则下列说法正确的是()A.双曲线C的离心率e =B.若双曲线C 上一点P 满足1PF x ⊥轴,则1PF =C.若双曲线C 上一点P 满足122PF PF =,则12PF F △的周长为4+D.双曲线C 上存在一点P ,使得点P 到C9.答案:BC解析:对于A 项,由220mx y -=,可得双曲线的渐近线方程为y =.圆22(4)8x y -+=的圆心为(4,0),半径r =因为双曲线的渐近线与圆相切,所以圆心(4,0)0y -=的距离=1m =,所以双曲线的方程为22122x y -=,a b ==,24c =,2c =,所以离心率ce a==A 项错误.对于B 项,由A 知,1(2,0)F -,所以直线1PF 的方程为2x =-.代入双曲线方程可得22y =,则y =,所以1PF =B 项正确.对于C 项,由已知1222PF PF PF =>,根据双曲线的定义可知,1222PF PF PF a -===,所以1PF =又1224F F c ==,所以12PF F △的周长为12124PF PF F F ++=+,故C 项正确.对于D 项,设()00,P x y ,双曲线的渐近线方程为y x =±,则点()00,P x y 到直线0x y -=的距离1d =,到直线0x y +=的距离2d =2200122x y d d -=.又点()00,P x y 在双曲线222x y -=上,所以22002x y -=,所以121d d =,故D 项错误.故选BC.10.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.已知抛物线24y x =的焦点为F ,一束平行于x 轴的光线1l 从点(3,1)M 射入,经过抛物线上的点()11,P x y 反射后,再经抛物线上另一点()22,Q x y 反射后,沿直线2l 射出,则下列结论中正确的是()A.34PQ k =- B.121x x =C.25||4PQ =D.1l 与2l 之间的距离为410.答案:BC解析:由抛物线的光学性质可知,直线PQ 过焦点(1,0)F ,设直线:1PQ x my =+,代入24y x =中得2440y my --=,则124y y =-,所以()212121616y y x x ==,所以121x x =,故B 正确;点P 与M 均在直线1l 上,则点P 的坐标为1,14⎛⎫⎪⎝⎭,由124y y =-得24y =-,则点Q 的坐标为(4,4)-,则4141344PQ k --==--,故A 错误;由抛物线的定义可知,12125||4244PQ x x p =++=++=,故C 正确;因为1l 与2l 平行,所以1l 与2l 之间的距离125d y y =-=,故D 错误.故选BC.11.[2024春·高二·山西·月考联考]已知椭圆2222:1(0)x y C a b a b +=>>过点32⎫⎪⎪⎭,直线1:2l y x m =-+与椭圆C 交于M ,N 两点,且线段MN 的中点为P ,O 为坐标原点,直线OP 的斜率为32,则下列结论正确的是()A.椭圆C 的离心率为12B.椭圆C 的方程为22112x y += C.若1m =,则35||2MN =D.若12m =,则椭圆C 上存在E ,F 两点,使得E ,F 关于直线l 对称11.答案:AC解析:设()11,M x y ,()22,N x y ,则1212,22x x y y P ++⎛⎫⎪⎝⎭,即121232OP y y k x x +==+因为点M ,N 在椭圆C 上,所以2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减,得()()()()12121212220x x x x y y y y a b +-+-+=,即()()()()121222121210y y y y a b x x x x +-+=+-,由题得121212MN y y k x x -==--,所以221304a b -=,即2234b a =,又222a b c =+,所以2214c a =,则离心率12c e a ==,故A 正确.因为椭圆C过点32⎫⎪⎪⎭,所以223314a b +=,又由A 选项知,2234b a =,联立解得24a =,23b =,所以椭圆C 的标准方程为22143x y +=,故B 错误.若1m =,则直线l 的方程为112y x =-+,由2211,21,43y x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得220x x --=,所以11x =-,22x =,则|||21|2MN =+=,故C 正确.若12m =,则直线l 的方程为1122y x =-+.假设椭圆C 上存在E ,F 两点,使得E ,F 关于直线l 对称,则设()33,E x y ,()44,F x y ,线段EF 的中点为()00,Q x y ,则3402x x x +=,3402y y y +=.因为E ,F 关于直线l 对称,所以2EF k =,且点Q 在直线l上,即001122y x =-+.又E ,F 两点在椭圆C 上,所以223322441,431,43x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减,得()()()()34343434043x x x x y y y y +-+-+=,即()()()34343434043y y y y x x x x +-++=-,所以()343438x x y y ++=-,即0038y x =-.联立000011,223,8y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩解得004,3,2x y =⎧⎪⎨=-⎪⎩即34,2Q ⎛⎫- ⎪⎝⎭.因为22342143⎛⎫- ⎪⎝⎭+>,所以点Q 在椭圆C 外,这与Q 是弦EF 的中点矛盾,所以椭圆C 上不存在E ,F 两点,使得E ,F 关于直线l 对称,故D 错误.故选AC.三、填空题12.已知椭圆22122:1(0)x y C a b a b +=>>和双曲线22222:1x y C m n-=(0m >,0n >)的焦点相同,1F ,2F 分别为左、右焦点,P 是椭圆和双曲线在第一象限的交点.若2PF x ⊥轴,则椭圆和双曲线的离心率之积为___________.12.答案:1解析:设122F F c =,由题可知122PF PF a +=,122PF PF m -=.因为2PF x ⊥轴,所以21PF -22212PF F F =,所以椭圆和双曲线的离心率之积为2121212221212121F F F F F F c ca m PF PF PF PF PF PF ⋅=⋅==+--.13.[2023年全国高考真题]已知双曲线2222:1x y C a b-=(0a >,0b >)的左、右焦点分别为1F ,2F .点A 在C 上,点B 在y 轴上,11F A F B ⊥ ,2223F A F B =-,则C 的离心率为__________.13.答案:355解析:法一:建立如图所示的坐标系,依题意设1(,0)F c -,2(,0)F c ,(0,)B n .由2223F A F B =- ,得52,33A c n ⎛⎫- ⎪⎝⎭.又11F A F B ⊥ ,且182,33F A c n ⎛⎫=- ⎪⎝⎭ ,1(,)F B c n = ,则22118282,(,)03333F A F B c n c n c n ⎛⎫⋅=-⋅=-= ⎪⎝⎭ ,所以224n c =.又点A 在双曲线C 上,则2222254991c n a b -=,整理得22222549c na b-=,将224n c =,222b c a =-代入,得2222225169c c a c a -=-,即222162591e e e -=-,解得295e =或215e =(舍去),故355e =.法二:由2223F A F B =-得2223F A F B =,设22F A x =,则23F B x =,||5AB x =.由双曲线的对称性可得13F B x =,由双曲线的定义可得122AF x a =+.设12F AF θ∠=,则33sin 55x x θ==,所以422cos 55x axθ+==,解得x a =,所以14AF a =,22AF a =.在12AF F △中,由余弦定理可得222216444cos 165a a c a θ+-==,即2259c a =,可得355e =.14.已知F 为抛物线22y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,8OA OB ⋅=(其中O 为坐标原点),则ABO △与AFO △面积之和的最小值是__________.14.答案:12解析:由题意可知)1(,02F ,设直线AB 的方程为x ty m =+,点211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,直线AB 与x 轴的交点为(,0)C m ,联立方程2,2,x ty m y x =+⎧⎨=⎩消去x 得2220y ty m --=,则2480t m ∆=+>,122y y m =-.因为8OA OB ⋅= ,所以()21212804y y y y +-=,解得124y y =或128y y =-,由点A ,B 在该抛物线上且位于x 轴的两侧,可知120y y <,所以1228y y m =-=-,故4m =,此时0∆>,即218y y =-.不妨设点A 在x 轴上方,则10y >,120y y ->,且1,02F ⎛⎫⎪⎝⎭,(4,0)C ,则12111||||22ABO AFO S S OC y y OF y +=⨯⨯-+⨯⨯△△12112111119916421222244y y y y y y y =⨯⨯-+⨯⨯=-=+≥=,当且仅当119164y y =,即183y =时,等号成立.所以ABO △与AFO △面积之和的最小值是12.四、解答题15.[2023年全国高考真题]已知双曲线C的中心为坐标原点,左焦点为(-,离(1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点(4,0)-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P ,证明:点P 在定直线上.15.答案:(1)221416x y -=(2)证明见解析解析:(1)因为双曲线C的左焦点为(-,所以c =.由离心率25c e a a===2a =,所以4b ==,所以C 的方程为221416x y -=.(2)证明:设()11,M x y (10x <,10y >),()22,N x y ,显然直线MN 的斜率不为0,故设直线MN 的方程为4x my =-.因为1(2,0)A -,2(2,0)A ,所以直线1MA 的方程为1122)(y y x x =++,直线2NA 的方程为22(2)2y y x x =--,联立1122(2),2(2),2y y x x y y x x ⎧=+⎪+⎪⎨⎪=-⎪-⎩消去y 得12122222y x x x y x --⋅=++.联立224,1,416x my x y =-⎧⎪⎨-=⎪⎩消去x 整理得()224132480m y my --+=,则2410m -≠,22561920m ∆=+>,则1223241m y y m +=-,1224841y y m =-,所以()121232my y y y =+,所以211212112122123926223312222y y y x my y y x y my y y y y---⋅===-+--,所以232x x -=-+,解得1x =-,所以点P 在定直线1x =-上.16.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是1F ,2F ,上顶点为B ,其长轴长是短轴长的2倍,P 是C 上任意一点,12F PF S △.(1)求椭圆C 的方程;(2)过(,)E a b 作一直线与C 交于M ,N 两点,直线BM ,BN 与x 轴分别交于点R ,S ,求证:RS 的中点是定点.16.答案:(1)2214x y +=(2)证明见解析解析:(1)由题意知2a b =,12F PF S △,而()122max122F PF S b c bc =⋅⋅====△,则21b =,即1b =,2a =,则椭圆C 的方程为2214x y +=.(2)证明:根据(1)知(2,1)E ,(0,1)B ,设()11,M x y ,()22,N x y ,由题意知直线EM 斜率存在,且不为0,设直线EM 的方程为(2)1y k x =-+.则由22(2)1,14y k x x y =-+⎧⎪⎨+=⎪⎩得()222148(21)16160k x k k x k k +--+-=.则有1228(21)14k k x x k -+=+,12216(1)14k k x x k-=+.直线BM 的方程为1111y y x x --=,则111R xx y =-;直线BN 的方程为2211y y x x --=,则221s xx y =-.取RS 的中点为()0,0x ,则有120121211xx x y y ⎛⎫=+ ⎪--⎝⎭12121222x x k x x ⎛⎫=-+ ⎪--⎝⎭()121212411224x x k x x x x ⎡⎤-=-+⎢⎥-++⎣⎦22216(1)4114116(1)16(21)241414k k k k k k k k k k -⎡⎤-⎢⎥+=-+⎢⎥--⎢⎥-+++⎣⎦2=.即RS的中点是定点(2,0).17.已知抛物线C的顶点为坐标原点O,焦点F在坐标轴上,且过(2,A,1,2B⎛⎝两点.(1)求C的方程;(2)设过点F的直线l与C交于M,N两点,P,Q两点分别是直线AM,BN与x轴的交点,证明:||||OP OQ⋅为定值.17.答案:(1)24y x=(2)证明见解析解析:(1)由题意可知抛物线C过第一、四象限,故可设抛物线C的方程为22(0)y px p=>,代入(2,A得84p=,则2p=,故抛物线C的方程为24y x=.(2)证明:由(1)可得(1,0)F,易得直线l的斜率不为0,则可设直线:1l x my=+,211,4yM y⎛⎫⎪⎝⎭,222,4yN y⎛⎫⎪⎝⎭.联立方程得21,4,x myy x=+⎧⎨=⎩消去x得2440y my--=,则216160m∆=+>,124y y m+=,124y y=-.当直线AM的斜率不存在时,(2,M-,此时直线:14l x y=-+,则12N⎛⎝,(2,0)P∴,1,02Q⎛⎫⎪⎝⎭,则1||||212OP OQ⋅=⨯=;当直线AM的斜率存在时,12124AMyky-==-,则直线AM的方程为2)y x-=-,令0y=,则2)x-=-,解得122x=-,12,02P⎛⎫∴- ⎪⎪⎝⎭,同理可得22,04Q ⎛⎫ ⎪ ⎪⎝⎭,故121||||14OP OQ y y ⋅===(定值).综上,||||OP OQ ⋅为定值1.18.已知椭圆2222:1(0)x y C a b a b+=>>的左顶点为(2,0)A -,焦距为动圆D 的圆心坐标是(0,2),过点A 作圆D 的两条切线,分别交椭圆于M ,N 两点,记直线AM ,AN 的斜率分别为1k ,2k .(1)求证:121k k =.(2)若O 为坐标原点,作OP MN ⊥,垂足为P .问:是否存在定点Q ,使得PQ 为定值?18.答案:(1)证明见解析(2)存在点5,03Q ⎛⎫- ⎪⎝⎭,使得PQ 为定值解析:(1)证明:由题意知,椭圆C 的左顶点为(2,0)A -,焦距为,可得2222,2,a c abc =⎧⎪=⎨⎪=+⎩解得224,1,a b ⎧=⎨=⎩所以椭圆C 的方程为2214x y +=.若过点A 作圆D 的一条切线的斜率不存在,则其方程为2x =-,其与椭圆只有点A 一个交点,此时圆D 半径为2,与题干矛盾,所以设过点A 且与圆D 相切的直线方程为(2)y k x =+,动圆D 的半径为(2)r r ≠,则r =,化简得()2224840r k k r --+-=,()2264440r ∆=-->,即208r <<,所以1k 和2k 是方程()2224840r k k r --+-=的两个实数根,由一元二次方程根与系数的关系知,121k k =.(2)存在点5,03Q ⎛⎫- ⎪⎝⎭,使得PQ 为定值,理由如下:设点()11,M x y ,()22,N x y ,联立方程得22(2),1,4y k x x y =+⎧⎪⎨+=⎪⎩整理得2222(14161640)k x k x k +++-=,0'∆>,则212164241k x k --=+,得2122841k x k -=+,12441ky k =+,所以222284,4141k k M k k ⎛⎫- ⎪++⎝⎭.因为121k k =,所以将k 换成1k ,可得222284,44k k N k k ⎛⎫- ⎪++⎝⎭.易知直线MN 的斜率存在,则直线MN 的斜率为()2222222443414282841414k kk k k k k k k k -++=--+-++,所以直线MN 的方程为()22224328414141k k k y x k k k ⎛⎫--=- ⎪+++⎝⎭.直线MN 的方程可化为()22224328414141k k k y x k k k ⎛⎫-=+- ⎪+++⎝⎭,即()()222224134284134141k k kk y x k k k k ⎡⎤+-⎢⎥=⋅+⨯-+++⎢⎥⎣⎦,即()2310341k y x k ⎛⎫=+ ⎪+⎝⎭,所以直线MN 过定点10,03E ⎛⎫- ⎪⎝⎭.因为OP MN ⊥,所以点P 的轨迹是以OE 为直径的圆上的一段弧,故存在点5,03Q ⎛⎫- ⎪⎝⎭,使得PQ 为定值.19.已知抛物线2:2(0)C x py p =>,C 的焦点是F .(1)若过原点O 作两条直线交曲线C 于A ,B 两点,且OA OB ⊥,求证:直线AB 过定点;(2)若过曲线C 上一点(2,1)P 作两条直线交曲线C 于A ,B 两点,且0FA FB ⋅=,求AFB △的面积的取值范围.19.答案:(1)证明见解析(2)[12)-+∞解析:(1)证明:因为A ,B 是两直线与抛物线C 的交点,所以OA ,OB 的斜率均存在,且不为零,故可设直线:(0)OA y kx k =≠,则直线1:OB y x k =-.由12,02y kx x x py =⎧⇒=⎨=⎩,22x pk =,所以()22,2A pk pk .同理得222,p p B k k ⎛⎫- ⎪⎝⎭.则2222122ABppk k k k p k pk k -==-+,则直线AB 的方程为2112(2)2y pk k x pk y k x p k k ⎛⎫⎛⎫-=--⇒=-+ ⎪ ⎪⎝⎭⎝⎭,所以直线AB 过定点(0,2)p .(2)因为点(2,1)P 在曲线C 上,所以将点P 的坐标代入曲线C 的方程可得2p =,即24x y =,则(0,1)F .设()11,A x y ,()22,B x y ,由题意可知直线AB 的斜率存在,则可设直线AB 的方程为y kx t =+.则由24,x y y kx t ⎧=⎨=+⎩得2440x kx t --=,则124x x k +=,124x x t =-,()2160k t ∆=+>.所以()()1122,1,1FA FB x y x y ⋅=-⋅-,()()()222212121(1)(1)41(1)4(1)0k x x t k x x t t k k t k t =++-++-=-++-+-=,得()22161034k t t t =-+≥⇒≥+3t ≤-0∆>.而点F 到AB 的距离d =,||AB ==则211||2|1|(1)22AFB S d AB t t =⋅==-=-△.所以12AFB S ≥-△.所以AFB △的面积的取值范围为[12)-+∞.。
解析几何1.直线的倾斜角与斜率 (1)倾斜角的范围为[0,π). (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;②斜率公式:经过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率为k =y 1-y 2x 1-x 2(x 1≠x 2);③直线的方向向量a =(1,k );④应用:证明三点共线:k AB =k BC . [问题1] (1)直线的倾斜角θ越大,斜率k 就越大,这种说法正确吗? (2)直线x cos θ+3y -2=0的倾斜角的范围是________. 答案 (1)错 (2)[0,π6]∪[5π6,π)2.直线的方程(1)点斜式:已知直线过点(x 0,y 0),其斜率为k ,则直线方程为y -y 0=k (x -x 0),它不包括垂直于x 轴的直线.(2)斜截式:已知直线在y 轴上的截距为b ,斜率为k ,则直线方程为y =kx +b ,它不包括垂直于x 轴的直线.(3)两点式:已知直线经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,则直线方程为y -y 1y 2-y 1=x -x 1x 2-x 1,它不包括垂直于坐标轴的直线.(4)截距式:已知直线在x 轴和y 轴上的截距为a ,b ,则直线方程为x a +yb =1,它不包括垂直于坐标轴的直线和过原点的直线.(5)一般式:任何直线均可写成Ax +By +C =0(A ,B 不同时为0)的形式.[问题2] 已知直线过点P (1,5),且在两坐标轴上的截距相等,则此直线的方程为________. 答案 5x -y =0或x +y -6=03.点到直线的距离及两平行直线间的距离(1)点P (x 0,y 0)到直线Ax +By +C =0的距离为d =|Ax 0+By 0+C |A 2+B 2;(2)两平行线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2. [问题3] 两平行直线3x +2y -5=0与6x +4y +5=0间的距离为________.答案152613 4.两直线的平行与垂直①l 1:y =k 1x +b 1,l 2:y =k 2x +b 2(两直线斜率存在,且不重合),则有l 1∥l 2⇔k 1=k 2;l 1⊥l 2⇔k 1·k 2=-1.②l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则有l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0;l 1⊥l 2⇔A 1A 2+B 1B 2=0.特别提醒:(1)A 1A 2=B 1B 2≠C 1C 2、A 1A 2≠B 1B 2、A 1A 2=B 1B 2=C 1C 2仅是两直线平行、相交、重合的充分不必要条件;(2)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线.[问题4] 设直线l 1:x +my +6=0和l 2:(m -2)x +3y +2m =0,当m =________时,l 1∥l 2;当m =________时,l 1⊥l 2;当________时l 1与l 2相交;当m =________时,l 1与l 2重合. 答案 -1 12 m ≠3且m ≠-1 35.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2.(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),只有当D 2+E 2-4F >0时,方程x 2+y 2+Dx +Ey +F =0才表示圆心为(-D 2,-E 2),半径为12D 2+E 2-4F 的圆.[问题5] 若方程a 2x 2+(a +2)y 2+2ax +a =0表示圆,则a =________. 答案 -16.直线、圆的位置关系 (1)直线与圆的位置关系直线l :Ax +By +C =0和圆C :(x -a )2+(y -b )2=r 2(r >0)有相交、相离、相切.可从代数和几何两个方面来判断:①代数方法(判断直线与圆方程联立所得方程组的解的情况):Δ>0⇔相交;Δ<0⇔相离;Δ=0⇔相切;②几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d ,则d <r ⇔相交;d >r ⇔相离;d =r ⇔相切. (2)圆与圆的位置关系已知两圆的圆心分别为O 1,O 2,半径分别为r 1,r 2,则①当|O 1O 2|>r 1+r 2时,两圆外离;②当|O 1O 2|=r 1+r 2时,两圆外切;③当|r 1-r 2|<|O 1O 2|<r 1+r 2时,两圆相交;④当|O 1O 2|=|r 1-r 2|时,两圆内切;⑤当0≤|O 1O 2|<|r 1-r 2|时,两圆内含.[问题6] 双曲线x 2a 2-y 2b 2=1的左焦点为F 1,顶点为A 1、A 2,P 是双曲线右支上任意一点,则分别以线段PF 1、A 1A 2为直径的两圆的位置关系为________.答案 内切7.对圆锥曲线的定义要做到“咬文嚼字”,抓住关键词,例如椭圆中定长大于定点之间的距离,双曲线定义中是到两定点距离之差的“绝对值”,否则只是双曲线的其中一支.在抛物线的定义中必须注意条件:Fl ,否则定点的轨迹可能是过点F 且垂直于直线l 的一条直线.[问题7] 已知平面内两定点A (0,1),B (0,-1),动点M 到两定点A 、B 的距离之和为4,则动点M 的轨迹方程是________. 答案 x 23+y 24=18.求椭圆、双曲线及抛物线的标准方程,一般遵循先定位,再定型,后定量的步骤,即先确定焦点的位置,再设出其方程,求出待定系数.(1)椭圆标准方程:焦点在x 轴上,x 2a 2+y 2b 2=1(a >b >0);焦点在y 轴上,y 2a 2+x 2b 2=1(a >b >0).(2)双曲线标准方程:焦点在x 轴上,x 2a 2-y 2b 2=1(a >0,b >0);焦点在y 轴上,y 2a 2-x 2b 2=1(a >0,b >0).(3)与双曲线x 2a 2-y 2b 2=1具有共同渐近线的双曲线系为x 2a 2-y 2b 2=λ(λ≠0).(4)抛物线标准方程焦点在x 轴上:y 2=±2px (p >0); 焦点在y 轴上:x 2=±2py (p >0).[问题8] 与双曲线x 29-y 216=1有相同的渐近线,且过点(-3,23)的双曲线方程为________.答案 4x 29-y 24=19.(1)在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意二次项的系数是否为零,利用解的情况可判断位置关系:有两解时相交;无解时相离;有唯一解时,在椭圆中相切.在双曲线中需注意直线与渐近线的关系,在抛物线中需注意直线与对称轴的关系,而后判断是否相切.(2)直线与圆锥曲线相交时的弦长问题斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长 |P 1P 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]或|P 1P 2|=(1+1k2)[(y 1+y 2)2-4y 1y 2].(3)过抛物线y 2=2px (p >0)焦点F 的直线l 交抛物线于C (x 1,y 1)、D (x 2,y 2),则(1)焦半径|CF |=x 1+p 2;(2)弦长|CD |=x 1+x 2+p ;(3)x 1x 2=p 24,y 1y 2=-p 2.[问题9] 已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为________.答案 54解析 ∵|AF |+|BF |=x A +x B +12=3,∴x A +x B =52.∴线段AB 的中点到y 轴的距离为x A +x B 2=54.易错点1 直线倾斜角与斜率关系不清致误例1 已知直线x sin α+y =0,则该直线的倾斜角的变化范围是__________. 错解 由题意得,直线x sin α+y =0的斜率k =-sin α,∵-1≤sin α≤1,∴-1≤k ≤1,直线的倾斜角的变化范围是⎣⎡⎦⎤π4,34π.找准失分点 直线斜率k =tan β(β为直线的倾斜角)在[0,π)上是不单调的且不连续. 正解 由题意得,直线x sin α+y =0的斜率k =-sin α,∵-1≤sin α≤1,∴-1≤k ≤1,当-1≤k <0时,倾斜角的变化范围是⎣⎡⎭⎫34π,π;当0≤k ≤1时,倾斜角的变化范围是⎣⎡⎦⎤0,π4. 故直线的倾斜角的变化范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫34π,π. 答案 ⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫34π,π 易错点2 忽视斜率不存在情形致误例2 已知直线l 1:(t +2)x +(1-t )y =1与l 2:(t -1)x +(2t +3)y +2=0互相垂直,则t 的值为________.错解 直线l 1的斜率k 1=-t +21-t, 直线l 2的斜率k 2=-t -12t +3,∵l 1⊥l 2,∴k 1·k 2=-1,即⎝ ⎛⎭⎪⎫-t +21-t ·⎝ ⎛⎭⎪⎫-t -12t +3=-1, 解得t =-1.找准失分点 (1)盲目认为两直线的斜率存在,忽视对参数的讨论.(2)忽视两直线有一条直线斜率为0,另一条直线斜率不存在时,两直线垂直这一情形. 正解 方法一 (1)当l 1,l 2的斜率都存在时,由k 1·k 2=-1得,t =-1. (2)若l 1的斜率不存在,此时t =1,l 1的方程为x =13,l 2的方程为y =-25,显然l 1⊥l 2,符合条件;若l 2的斜率不存在,此时t =-32,易知l 1与l 2不垂直,综上t =-1或t =1.方法二 l 1⊥l 2⇔(t +2)(t -1)+(1-t )(2t +3)=0⇔t =1或t =-1. 答案 -1或1易错点3 忽视“判别式”致误例3 已知双曲线x 2-y 22=1,过点A (1,1)能否作直线l ,使l 与双曲线交于P 、Q 两点,并且A为线段PQ 的中点?若存在,求出直线l 的方程;若不存在,说明理由. 错解1 设被A (1,1)所平分的弦所在直线方程为 y =k (x -1)+1.代入双曲线方程x 2-y 22=1,整理得(2-k 2)x 2+2k (k -1)x -3+2k -k 2=0, 设直线与双曲线交点为M (x 1,y 1),N (x 2,y 2), 由根与系数的关系,得x 1+x 2=2k (k -1)k 2-2,点A (1,1)是弦中点,则x 1+x 22=1.∴k (k -1)k 2-2=1,解得k =2, 故所求直线方程为2x -y -1=0.错解2 设符合题意的直线l 存在,并设P (x 1,y 1),Q (x 2,y 2),则⎩⎨⎧x 21-y 212=1①x 22-y222=1 ②式①-②得(x 1-x 2)(x 1+x 2)=12(y 1-y 2)(y 1+y 2)③因为A (1,1)为线段PQ 的中点,所以⎩⎪⎨⎪⎧x 1+x 2=2 ④y 1+y 2=2 ⑤将式④、⑤代入式③,得x 1-x 2=12(y 1-y 2).若x 1≠x 2,则直线l 的斜率k =y 1-y 2x 1-x 2=2.所以符合题设条件的直线的方程为2x -y -1=0.找准失分点 没有判断直线2x -y -1=0与双曲线是否相交. 正解1 设被A (1,1)所平分的弦所在直线方程为 y =k (x -1)+1.代入双曲线方程x 2-y 22=1,整理得,(2-k 2)x 2+2k (k -1)x -3+2k -k 2=0, 由Δ=4k 2(k -1)2-4(2-k 2)(2k -3-k 2)>0, 解得k <32.设直线与双曲线交点为M (x 1,y 1),N (x 2,y 2), 由根与系数的关系,得x 1+x 2=2k (k -1)k 2-2,点A (1,1)是弦中点,则x 1+x 22=1.∴k (k -1)k 2-2=1,解得k =2>32, 故不存在被点A (1,1)平分的弦.正解2 设符合题意的直线l 存在,并设P (x 1,y 1)、Q (x 2,y 2), 则⎩⎨⎧x 21-y 212=1①x 22-y222=1 ②式①-②得(x 1-x 2)(x 1+x 2)=12(y 1-y 2)(y 1+y 2)③因为A (1,1)为线段PQ 的中点,所以⎩⎪⎨⎪⎧x 1+x 2=2 ④y 1+y 2=2 ⑤将式④、⑤代入式③,得x 1-x 2=12(y 1-y 2).若x 1≠x 2,则直线l 的斜率k =y 1-y 2x 1-x 2=2.所以直线l 的方程为2x -y -1=0, 再由⎩⎪⎨⎪⎧y =2x -1x 2-y 22=1,得2x 2-4x +3=0.根据Δ=-8<0,所以所求直线不存在.1.(2014·安徽)过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( ) A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π3 C.⎣⎡⎦⎤0,π6 D.⎣⎡⎦⎤0,π3 答案 D解析 方法一 如图,过点P 作圆的切线P A ,PB ,切点为A ,B . 由题意知|OP |=2,OA =1, 则sin α=12,所以α=30°,∠BP A =60°.故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3.故D. 方法二 设过点P 的直线方程为y =k (x +3)-1,则由直线和圆有公共点知|3k -1|1+k 2≤1.解得0≤k ≤ 3.故直线l 的倾斜角的取值范围是[0,π3].2.(2014·广东)若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等答案 A解析 因为0<k <9,所以两条曲线都表示双曲线.双曲线x 225-y 29-k =1的实半轴长为5,虚半轴长为9-k ,焦距为225+(9-k )=234-k ,离心率为34-k 5.双曲线x 225-k -y 29=1的实半轴长为25-k ,虚半轴长为3,焦距为2(25-k )+9=234-k ,离心率为34-k25-k,故两曲线只有焦距相等.故选A.3.若椭圆x 2m +y 2n =1(m >0,n >0)与曲线x 2+y 2=|m -n |无交点,则椭圆的离心率e 的取值范围是( ) A.⎝⎛⎭⎫32,1 B.⎝⎛⎭⎫0,32 C.⎝⎛⎭⎫22,1 D.⎝⎛⎭⎫0,22解析 由于m 、n 可互换而不影响,可令m >n ,则⎩⎪⎨⎪⎧x 2m +y 2n =1,x 2+y 2=m -n ,则x 2=2m ·n -m 2n -m ,若两曲线无交点,则x 2<0,即m <2n ,则e = m -nm< m -m 2m =22, 又∵0<e <1,∴0<e <22. 4.已知点F 1、F 2是椭圆x 2+2y 2=2的左、右两个焦点,点P 是该椭圆上的一个动点,那么|PF→1+PF →2|的最小值是()A .0B .1C .2D .2 2 答案 C解析 设P (x 0,y 0),则PF →1=(-1-x 0,-y 0), PF →2=(1-x 0,-y 0).∴PF →1+PF →2=(-2x 0,-2y 0),∴|PF →1+PF →2|=4x 20+4y 20=22-2y 20+y 20 =2-y 20+2,∵点P 在椭圆上,∴0≤y 20≤1.∴当y 20=1时,|PF →1+PF →2|取最小值为2.5.(2014·课标全国Ⅰ)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |等于( ) A.72 B.52 C .3 D .2 答案 C解析 ∵FP →=4FQ →,∴|FP →|=4|FQ →|, ∴|PQ ||PF |=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′, 设l 与x 轴的交点为A ,则|AF |=4, ∴|PQ ||PF |=|QQ ′||AF |=34, ∴|QQ ′|=3,根据抛物线定义可知|QQ ′|=|QF |=3,故选C.6.(2014·陕西)若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为答案 x 2+(y -1)2=1解析 圆C 的圆心为(0,1),半径为1,标准方程为x 2+(y -1)2=1.7.一直线过点P ⎝⎛⎭⎫-3,-32,且被圆x 2+y 2=25截得的弦长为8,则此弦所在的直线方程为________.答案 x +3=0或3x +4y +15=0解析 ①当斜率k 不存在时,过点P 的直线方程为x =-3, 代入x 2+y 2=25,得y 1=4,y 2=-4. 所以弦长为|y 1-y 2|=8,符合题意.②当斜率k 存在时,设所求直线方程为y +32=k (x +3),即kx -y +3k -32=0.由已知,弦心距|OM |=52-42=3, 所以|k ·0-0+3k -32|k 2+1=3,解得k =-34,所以此直线方程为y +32=-34(x +3),即3x +4y +15=0.所以所求直线方程为x +3=0或3x +4y +15=0.8.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2. 整理,得3k 2-4k ≤0.解得0≤k ≤43.故k 的最大值是43.9.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 向其一条渐近线作垂线,垂足为M ,已知∠MFO=30°(O 为坐标原点),则该双曲线的离心率为________. 答案 2解析 由已知得点F 的坐标为(c,0)(c =a 2+b 2), 其中一条渐近线方程为bx -ay =0,则|MF |=bca 2+b 2=b , 由∠MFO =30°可得|MF ||OF |=b c =cos 30°=32,所以c 2-a 2c =32,所以e =ca=2.10.(2014·浙江)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m,0)满足|P A |=|PB |,则该双曲线的离心率是________. 答案52解析 双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±ba x .由⎩⎪⎨⎪⎧ y =b a x ,x -3y +m =0得A (am 3b -a ,bm3b -a),由⎩⎪⎨⎪⎧y =-b a x ,x -3y +m =0得B (-am a +3b ,bm a +3b),所以AB 的中点C 坐标为(a 2m 9b 2-a 2,3b 2m 9b 2-a 2).设直线l :x -3y +m =0(m ≠0), 因为|P A |=|PB |,所以PC ⊥l , 所以k PC =-3,化简得a 2=4b 2. 在双曲线中,c 2=a 2+b 2=5b 2, 所以e =c a =52.。
专题八 理科数学解析几何一、选择题1.(重庆理8)在圆06222=--+y x y x 内,过点E (0,1)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为A .25B .210 C. D .220【答案】B2.(浙江理8)已知椭圆22122:1(0)x y C a b a b +=>>与双曲线221:14y C x -=有公共的焦点,1C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则A .2132a =B .213a =C .212b =D .22b =【答案】C3.(四川理10)在抛物线25(0)y x ax a ==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为A .(2,9)--B .(0,5)-C .(2,9)-D .(1,6)-【答案】C【解析】由已知的割线的坐标(4,114),(2,21),2a a K a ---=-,设直线方程为(2)y a x b =-+,则223651(2)b a =+-又2564(2,9)(2)y x ax b a y a x b ⎧=+-⇒=-⇒=⇒--⎨=-+⎩4.(陕西理2)设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是A .28y x =-B .28y x =C .24y x =- D .24y x = 【答案】B5.(山东理8)已知双曲线22221(0b 0)x y a a b -=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 A .22154x y -= B .22145x y -= C .22136x y -= D .22163x y -=【答案】A6.(全国新课标理7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||AB 为C 的实轴长的2倍,C 的离心率为 (A(B(C ) 2 (D ) 3 【答案】B7.(全国大纲理10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=A .45 B .35 C .35-D .45-【答案】D8.(江西理9)若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是A .(3-,3) B .(3-,0)∪(0,3)C .[,]D .(-∞,)∪(,+∞)【答案】B9.(湖南理5)设双曲线()222109x y a a -=>的渐近线方程为320x y ±=,则a 的值为A .4B .3C .2D .1【答案】C10.(湖北理4)将两个顶点在抛物线22(0)y px p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则A .n=0B .n=1C . n=2D .n ≥3【答案】C11.(福建理7)设圆锥曲线r 的两个焦点分别为F1,F2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A .1322或B .23或2C .12或2D .2332或 【答案】A 12.(北京理8)设()0,0A ,()4,0B ,()4,4C t +,()(),4D t t R ∈.记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的值域为A .{}9,10,11B .{}9,10,12C .{}9,11,12D .{}10,11,12【答案】C13.(安徽理2)双曲线8222=-y x 的实轴长是(A )2 (B ) 22 (C ) 4 (D )42【答案】C14.(辽宁理3)已知F 是抛物线y2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为(A )34 (B )1(C )54 (D )74【答案】C二、填空题15.(湖北理14)如图,直角坐标系xOy 所在的平面为α,直角坐标系''x Oy (其中'y 轴一与y 轴重合)所在的平面为β,'45xOx ∠=︒。
专题八 平面解析几何一、单选题1.(2021·辽宁高三二模)历史上第一个研究圆锥曲线的是梅纳库莫斯(公元前375年—325年),大约100年后,阿波罗尼奥更详尽、系统地研究了圆锥曲线,并且他还进一步研究了这些圆锥曲线的光学性质,比如:从抛物线的焦点发出的光线或声波在经过抛物线反射后,反射光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的光线,经抛物线反射后,反射光线经过抛物线的焦点.设抛物线C :2y x =,一束平行于抛物线对称轴的光线经过()5,2A ,被抛物线反射后,又射到抛物线C 上的Q 点,则Q 点的坐标为( )A .11,42⎛⎫-⎪⎝⎭ B .11,84⎛⎫-⎪⎝⎭C .11,164⎛⎫-⎪⎝⎭D .11,648⎛⎫-⎪⎝⎭【答案】D 【解析】求出入射光线与抛物线的交点坐标,再根据抛物线的光学性质,利用斜率相等列式可解得结果. 【详解】设从点()5,2A 沿平行于抛物线对称轴的方向射出的直线与抛物线交于点P ,易知2P y =,将(),P P x y 代入抛物线方程得4P x =,即()4,2P ,设焦点为F ,则1,04F ⎛⎫ ⎪⎝⎭,设()2,Q Q Q y y ,由P ,F ,Q 三点共线,有22011444Q Q y y --=--,化简得281520Q Q y y --=, 解得18Q y =-或2Q y =(舍),即11,648Q ⎛⎫-⎪⎝⎭. 故选:D2.(2020·全国高考真题(文))在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为( ) A .圆 B .椭圆 C .抛物线 D .直线【答案】A 【解析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可. 【详解】设()20AB a a =>,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则:()(),0,,0A a B a -,设(),C x y ,可得:()(),,,AC x a y BC x a y →→=+=-, 从而:()()2AC BC x a x a y →→⋅=+-+, 结合题意可得:()()21x a x a y +-+=,整理可得:2221x y a +=+,即点C 的轨迹是以AB 为半径的圆. 故选:A.3.(2020·全国高考真题(文))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E两点,若OD OE ⊥,则C 的焦点坐标为( ) A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫⎪⎝⎭C .(1,0)D .(2,0)【答案】B 【解析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果. 【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2,故选:B.4.(2020·北京高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ). A .经过点O B .经过点P C .平行于直线OP D .垂直于直线OP【答案】B 【解析】依据题意不妨作出焦点在x 轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ 的垂直平分线经过点P ,即求解.【详解】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P . 故选:B.5.(2020·全国高考真题(理))设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8C .16D .32【答案】B 【解析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2c =结合均值不等式,即可求得答案. 【详解】2222:1(0,0)x y C a b a b-=>> ∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b -∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△ 双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =≥==当且仅当a b ==∴C 的焦距的最小值:8故选:B.6.(2020·全国高考真题(理))已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A .210x y --= B .210x y +-=C .210x y -+=D .210x y ++=【答案】D 【解析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以 MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程. 【详解】圆的方程可化为()()22114x y -+-=,点 M 到直线l的距离为2d ==>,所以直线 l与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =当直线MP l ⊥时,min MP =, min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即 1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即 2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程. 故选:D.7.(2020·全国高考真题(文))设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为( ) A .72B .3C .52D .2【答案】B 【解析】由12F F P 是以P 为直角直角三角形得到2212||||16PF PF +=,再利用双曲线的定义得到12||||2PF PF -=,联立即可得到12||||PF PF ,代入12F F P S =△121||||2PF PF 中计算即可. 【详解】由已知,不妨设12(2,0),(2,0)F F -, 则1,2a c ==,因为12122OP F F ==, 所以点P 在以12F F 为直径的圆上,即12F F P 是以P 为直角顶点的直角三角形, 故2221212||||||PF PF F F +=,即2212||||16PF PF +=,又12||||22PF PF a -==,所以2124||||PF PF =-=2212||||2PF PF +-12||||162PF PF =-12||||PF PF , 解得12||||6PF PF =,所以12F F P S =△121||||32PF PF = 故选:B8.(2019·北京高考真题(理))数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( ) A .① B .②C .①②D .①②③【答案】C 【解析】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭, 所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++,解得222x y +≤,所以曲线C 上任意一点到原点的距离都不结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.9.(2020·浙江高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|P A |–|PB |=2,且P 为函数y =|OP |=( )A .2B C D【答案】D 【解析】根据题意可知,点P 既在双曲线的一支上,又在函数y =P 的坐标,得到OP 的值.【详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数y =由()22103y x x y ⎧⎪⎨->==⎪⎩,解得2x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP == 故选:D.10.(2020·天津高考真题)设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A .22144x y -=B .2214y x -=C .2214x y -=D .221x y -=【答案】D 【解析】由抛物线的焦点()1,0可求得直线l 的方程为1yx b+=,即得直线的斜率为b -,再根据双曲线的渐近线的方程为b y x a =±,可得b b a -=-,1bb a-⨯=-即可求出,a b ,得到双曲线的方程. 【详解】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -, 又双曲线的渐近线的方程为b y x a =±,所以b b a -=-,1bb a-⨯=-,因为0,0a b >>,解得1,1a b ==.故选:D .11.(2021·辽宁高三二模(文))第24届冬季奥林匹克运动会,将在2022年2月4日在中华人民共和国北京市和张家口市联合举行.这是中国历史上第一次举办冬季奥运会,北京成为奥运史上第一个举办夏季奥林匹克运动会和冬季奥林匹克运动会的城市.同时中国也成为第一个实现奥运“全满贯”(先后举办奥运会、残奥会、青奥会、冬奥会、冬残奥会)国家.根据规划,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD (如图),且两切线斜率之积等于916-,则椭圆的离心率为( )A .34B.4C .916D.2【答案】B 【解析】分别设内外层椭圆方程为22221(0)x y a b a b+=>>、22221(1)()()x y m ma mb +=>,进而设切线AC 、BD 分别为1()y k x ma =+、2y k x mb =+,联立方程组整理并结合0∆=求1k 、2k 关于a 、b 、m 的关系式,再结合已知得到a 、b 的齐次方程求离心率即可. 【详解】若内层椭圆方程为22221(0)x y a b a b+=>>,由离心率相同,可设外层椭圆方程为22221(1)()()x y m ma mb +=>, ∴(,0),(0,)A ma B mb -,设切线AC 为1()y k x ma =+,切线BD 为2y k x mb =+,∴12222()1y k x ma x y a b=+⎧⎪⎨+=⎪⎩,整理得22223224222111()20a k b x ma k x m a k a b +++-=,由0∆=知: 32222224222111(2)4()()0ma k a k b m a k a b -+-=,整理得2212211b k a m=⋅-, 同理,222221y k x mb x yab =+⎧⎪⎨+=⎪⎩,可得22222(1)b k m a =⋅-, ∴4221249()()16b k k a ==-,即22916b a =,故c e a ===故选:B. 二、多选题12.(2020·海南高考真题)已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则CC .若mn <0,则C是双曲线,其渐近线方程为y =D .若m =0,n >0,则C 是两条直线 【答案】ACD 【解析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确; 对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线CB 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=, 此时曲线C 表示双曲线, 由220mx ny +=可得y =,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=,y =C 表示平行于x 轴的两条直线,故D 正确; 故选:ACD. 三、填空题13.(2021·江苏盐城市·高三二模)已知椭圆22143x y +=的右顶点为,A 右焦点为,F 以A 为圆心,R 为半径的圆与椭圆相交于,B C 两点,若直线BC 过点,F 则R 的值为_____.【答案】2【解析】由对称性得弦BC 是椭圆的通径,由通径长可得关系式,从而求得R . 【详解】由已知(2,0)A ,(1,0)F ,因为BC 过焦点F ,所以由对称性知BC x ⊥轴,所以222332b BC a ⨯===,1FA =,所以R ==.故答案为:2. 14.(2018·浙江省高考真题)已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP =2PB ,则当m =___________时,点B 横坐标的绝对值最大.【答案】5 【解析】设1122(,),(,)A x y B x y ,由2AP PB =得1212122,12(1),23,x x y y y y -=-=-∴-=-因为A ,B 在椭圆上,所以22221212,,44x x y m y m +=+=2222222243(23),()4424x x m y m y ∴+-=∴+-=,与22224x y m +=对应相减得222231,(109)444m y x m m +==--+≤,当且仅当5m =时取最大值.15.(2020·C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 【答案】163【解析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果. 【详解】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=, 解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-= 解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:16316.(2020·天津高考真题)已知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________. 【答案】5 【解析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离d ,进而利用弦长公式||AB =r . 【详解】因为圆心()0,0到直线80x +=的距离4d ==,由||AB =6==5r . 故答案为:5.17.(2021·全国高三其他模拟(文))已知双曲线22143x y -=的左、右焦点分别为1F ,2F ,P 为双曲线上一点,且12PF F S =12F PF ∠=___________.【答案】23π【解析】利用双曲线的定义、余弦定理、三角形的面积公式列方程组,化简求得12F PF ∠. 【详解】依题意2,a b c ===设12,PF m PF n ==,不妨设m n >,122F F c == 设()120,FPF θπ=∈∠,根据双曲线的定义、余弦定理、三角形的面积公式得(22242cos 1sin 2m n m n mn mn θθ⎧-=⎪⎪⎪=+-⎨⎪⎪=⎪⎩,()22216282cos sin m n m n mn mn θθ⎧-=⎪=+-⎨⎪=⎩,2222216282cos sin m n mn m n mn mn θθ⎧+-=⎪=+-⎨⎪=⎩,282162cos mn mn mn θ=+-⎧⎪⎨=⎪⎩, ()1221cos mn mn θ⎧=-⎪⎨=⎪⎩,()1221cos sin θθ=⋅⋅-cos 1θθ+=,12sin 1,sin 662ππθθ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭,由于70,666πππθπθ<<<+<, 所以52,663πππθθ+==,所以1223F PF π∠=. 故答案为:23π18.(2019·全国高考真题(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120FB F B ⋅=,则C 的离心率为____________. 【答案】2. 【解析】 如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF∠=∠, 又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==2c e a ====. 四、双空题19.(2020·北京高考真题)已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】()3,0【解析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离. 【详解】在双曲线C 中,a =,b =3c =,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为y x =,即0x =,所以,双曲线C=.故答案为:()3,020.(2020·浙江高考真题)设直线:(0)l y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______;b =______.3- 【解析】由直线与两圆相切建立关于k ,b 的方程组,解方程组即可. 【详解】设221:1C x y +=,222:(4)1C x y -+=,由题意,12,C C 1=,1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.故答案为:33-五、解答题21.(2021·全国高三二模(理))已知抛物线C :()220y px p =>经过点()1,2.(1)求抛物线C 的方程及其准线方程;(2)设过点()2,0的直线l 与抛物线C 交于A ,B 两点,若2AB AM =,MN y ⊥轴.垂足为N ,求证:以MN 为直径的圆恒过定点.【答案】(1)抛物线C 的方程为24y x =,其准线方程为1x =-;(2)证明见解析. 【解析】(1)代入点的坐标可得2p =,可得抛物线的标准方程和准线方程;(2)设直线l 的方程并代入抛物线方程,根据韦达定理求出M 的坐标,进而得N 的坐标,设以MN 为直径的圆恒经过点()00,D x y ,利用0DM DN ⋅=恒成立可解得结果. 【详解】(1)由抛物线22y px =经过点()1,2,得42p =,即2p =. 所以抛物线C 的方程为24y x =,其准线方程为1x =-.(2)证明:由题意知,直线l 的斜率不为0,设直线l 的方程为2x my =+. 将2x my =+代入24y x =,消去x 得2480y my --=, 显然216320m ∆=+>,设()11,A x y ,()22,B x y , 则124y y m +=,128y y =-. ∵12AM AB =,∴M 是线段AB 的中点,设(),M M M x y , 则()1221242222M m y y x x x m +++===+,1222My y y m +==, ∴()222,2M m m +,又MN y ⊥轴,所以垂足N 的坐标为()0,2N m . 设以MN 为直径的圆恒经过点()00,D x y ,则()20022,2DM m x m y =+--,()00,2DN x m y =--,由0DM DN ⋅=,得()()220002220x m x m y -+-+-=,即()2220000042420x m y m x y x --++-=,①因为对任意的实数m ,①式要恒成立,所以0022000420,40,20x y x y x -=⎧⎪=⎨⎪+-=⎩,解得002,0,x y =⎧⎨=⎩ 所以以MN 为直径的圆恒过定点,该定点的坐标为()2,0.22.(2021·辽宁高三其他模拟)椭圆C :()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,过2F 且与x 轴垂直的直线交椭圆于M ,N 两点,其中点M 在第一象限,17cos 25MF N ∠=,122FF =. (1)求椭圆C 的标准方程;(2)A 为椭圆上顶点,过A 引两条直线1l ,2l ,斜率分别为1k ,2k ,若121k k =,1l ,2l 分别交椭圆另一点为P ,Q ,求证:直线PQ 恒过定点.【答案】(1)22143x y +=;(2)证明见解析. 【解析】(1)由已知求得,,a b c ,可得椭圆方程.(2)设()11P x y ⋅,()22,Q x y ,分PQ 斜率不存在时和斜率存在时两种情况,当直线斜率存在时设直线PQ 的方程为y kx t =+,与椭圆的方程联立,再由根与系数的关系表示直线PQ ,可得证. 【详解】(1)设()1,0F c -,()2,0F c ,由题意知:1c =,即221a b -=①,将x c =代入椭圆方程得:2M b y a=,由2112121274cos cos 22cos 1cos 255MF N MF F MF F MF F ∠=∠=∠-=⇒∠=, 得123tan 4MF F ∠=,即2324b a =②, 联立①②得223202a a a --=⇒=,23b =.∴椭圆方程为22143x y +=.(2)设()11P x y ⋅,()22,Q x y ,当PQ 斜率不存在时,21y y =-.则221112*********4413y y k k x y --⋅====⎛⎫- ⎪⎝⎭,不合题意,舍去,当斜率存在时,直线PQ 的方程为y kx t =+,∵(A,12121k k ==,化为(()(()(221212121210kx t kx t x x k x x k t x x t ++=⇒-+++=(*), 将y kx t =+代入椭圆方程并整理得()2223484120k x ktx t +++-=122834kt x x k +=-+,212241234t x x k-=+, 代入(*)式得:()((222224128103434t kt k k t t k k -⎛⎫-⋅+⋅-+= ⎪++⎝⎭,即(()22221(4803434k t k t t t k k ⎡-+⎢--+=++⎢⎣⎦.t ≠tt =-,即直线PQ恒过定点(0,-..23.(2021·全国高三其他模拟(理))已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1F ,2F ,过点1F 的直线l 与椭圆C 交于M ,N 两点(点M 位于x 轴上方),2MNF ,12MF F △的周长分别为8,6.(1)求椭圆C 的方程; (2)若1||MF m MN =,且2334m ≤<,设直线l 的倾斜角为θ,求sin θ的取值范围.【答案】(1)22143x y +=;(2)⎛ ⎝⎦. 【解析】(1)根据椭圆的定义可得2MNF ,12MF F △的周长分别为4,22a a c +,结合222a b c =+可得答案. (2)根据题意设出直线l 的方程与椭圆方程联立,写出韦达定理,由1||MF m MN =,得出11MF F N,得出,M N 的纵坐标12,y y 的关系,从而可求出答案. 【详解】(1)设椭圆C 的半焦距为c ,因为2MNF ,12MF F △的周长分别为8,6,所以根据椭圆的定义得22248226a a c a b c =⎧⎪+=⎨⎪=+⎩,解得21a c b ⎧=⎪=⎨⎪=⎩. 所以椭圆C 的方程为22143x y +=.(2)由条件1||MF m MN =,且2334m ≤<,则12MF MF >,所以直线l 的斜率存在. 根据题意,可设直线l 的方程为(1)(0).y k x k =+>.联立22(1)143y k x x y =+⎧⎪⎨+=⎪⎩,消去x ,得()22234690k y ky k +--=,则()2214410kk∆=+>,设()11,M x y ,()22,N x y ,则122634k y y k +=+①,2122934k y y k-=+②,又1||MF m MN =,且2334m ≤<,则11[2,3)1MF m F N m =∈-. 设1mmλ=-,[2,3)λ∈, 则11MF F N λ=,所以12y y λ③,把③代入①得()226(1)34k y k λ=-+,()126(1)34ky k λλ-=-+,并结合②可得()2212222236934(1)34k k y y k k λλ--==+-+, 则22(1)434kλλ-=+,即214234k λλ+-=+, 因为12λλ+-在[2,3)λ∈上单调递增,所以114223λλ≤+-<,即21442343k ≤<+,且0k >,解得0k <≤,即0tan θ<≤,所以0sin θ<≤故sin θ的取值范围是0,3⎛ ⎝⎦. 【点睛】关键点睛:本题考查求椭圆方程和直线与椭圆的位置关系,解答本题的关键是由122634ky y k+=+,2122934k y y k -=+,又1||MF m MN =,且2334m ≤<,则11[2,3)1MF m F N m =∈-,得出关系求解,属于中档题. 24.(2021·北京高三二模)已知椭圆2222:1(0)x y G a b a b +=>>.(1)求椭圆G 的方程;(2)过点(0,1)M 斜率为(0)k k ≠的直线l 交椭圆G 于A ,B 两点,在y 轴上是否存在点N 使得ANM BNM ∠=∠(点N 与点M 不重合),若存在,求出点N 的坐标,若不存在,请说明理由.【答案】(1)22184x y +=;(2)()0,4N ,证明详见解析. 【解析】(1)由条件列式,利用待定系数法求解椭圆方程;(2)首先直线方程():1,0l y kx k =+≠与椭圆方程联立,得根与系数的关系,将条件转化为0AN BN k k +=,代入坐标,利用根与系数的关系化简求定点. 【详解】(1)由条件可知22222421c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:28a =,224b c ==,所以椭圆G 的方程是22184x y +=;(2)设直线():1,0l y kx k =+≠,()11,A x y ,()22,B x y ,()00,N y ,联立221184y kx x y =+⎧⎪⎨+=⎪⎩ ,得()2212460k x kx ++-=, 122412kx x x k +=-+,122612x x k-=+, ANM BNM ∠=∠,0AN BN k k ∴+=,即1020212012101212y y y y x y x y x y x y x x x x ---+-+= ()()()211201212110x kx x kx y x x x x +++-+==,即()()12012210kx x y x x +-+=,()022*********k y k k k---=++,得04y =, 即存在定点()0,4N .25.(2021·北京东城区·高三一模)已知椭圆2222:1(0)x y C a b a b+=>>过点(2,0)D -,且焦距为(1)求椭圆C 的方程;(2)过点(4,0)A -的直线l (不与x 轴重合)与椭圆C 交于P ,Q 两点,点T 与点Q 关于x 轴对称,直线TP 与x 轴交于点H ,是否存在常数λ,使得||||(||||)AD DH AD DH λ⋅=-成立,若存在,求出λ的值;若不存在,说明理由.【答案】(1)2214x y +=(2)存在, 2λ=【解析】(1)根据椭圆的几何性质求出,a b 可得结果;(2)设11(,)P x y ,22(,)Q x y ,则22(,)T x y -,设直线:l (4)y k x =+,代入2214xy +=,得到12x x +和12x x ,利用直线PT 的方程求出H 的坐标,求出||AD 、||DH ,则可得λ的值. 【详解】(1)因为椭圆2222:1(0)x y C a b a b+=>>过点(2,0)D -,所以2a =,又2c =c =222431b a c =-=-=,所以椭圆C 的方程为:2214x y +=.(2)显然直线l 的斜率存在且不为0,设直线:l (4)y k x =+,联立22(4)14y k x x y =+⎧⎪⎨+=⎪⎩,消去y 并整理得2222(14)326440k x k x k +++-=, 2222(32)4(14)(644)k k k ∆=-+-0>,得21012k <<, 设11(,)P x y ,22(,)Q x y ,则22(,)T x y -,所以21223214k x x k +=-+,212264414k x x k-=+,直线PT :121112()y y y y x x x x +-=--,令0y =,得112112()y x x x x y y -=-+,所以112112()(,0)y x x H x y y --+,又||||(||||)AD DH AD DH λ⋅=-,所以1||||11||||||||AD DH AD DH DH AD λ-==-⋅,又因为(2,0),(4,0)D A --,112112()(,0)y x x H x y y --+,所以||2AD =,112112()||2y x x DH x y y -=-++112112(4)()2(4)(4)k x x x x k x k x +-=-++++112112(4)()2()8k x x x x k x x k+-=-+++112111212()8(4)()2()8kx x x kx k x x x k x x k++-+-=+++221121111212128442()8kx kx x k x kx kx x kx kx k x x k++-+-+=+++1212124()22()8k x x kx x k x x k++=+++22222232644421414232814k k k k k k k k k k --⋅+⋅++=+-⋅++ 12=-+1=,所以11112λ=-,解得λ=2. 所以存在常数2λ=,使得||||2(||||)AD DH AD DH ⋅=-成立.26.(2020·全国高考真题(理))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C +=,22:12C y x =.【解析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值; (2)由(1)可得出1C 的方程为2222143x y c c+=,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【详解】 (1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =,联立22222221x cx y a b a b c =⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22b AB a =,抛物线2C 的方程为24y cx =,联立24x cy cx =⎧⎨=⎩, 解得2x cy c =⎧⎨=±⎩,4CD c ∴=,43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=,01e <<,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2a c =,b =,椭圆1C 的方程为2222143x y c c +=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=, 解得23x c =或6x c =-(舍去), 由抛物线的定义可得25533cMF c c =+==,解得3c =. 因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =.27.(2020·天津高考真题)已知椭圆22221(0)x y a b a b +=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【解析】(Ⅰ)根据题意,并借助222a b c =+,即可求出椭圆的方程;(Ⅱ)利用直线与圆相切,得到CP AB ⊥,设出直线AB 的方程,并与椭圆方程联立,求出B 点坐标,进而求出P 点坐标,再根据CP AB ⊥,求出直线AB 的斜率,从而得解. 【详解】(Ⅰ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF=,得3c b ==,又由222a b c =+,得2228313a =+=,所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭, 因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121kk k -⎛⎫ ⎪++⎝⎭, 由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CP k kk k k k --+=-+-+=, 又因为CP AB ⊥,所以231261k k k ⋅=--+, 整理得22310k k -+=,解得12k =或1k =.所以,直线AB 的方程为132y x =-或3y x =-.28.(2020·海南高考真题)已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM的斜率为12, (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)2211612x y +=;(2)18. 【解析】(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)首先利用几何关系找到三角形面积最大时点N 的位置,然后联立直线方程与椭圆方程,结合判别式确定点N 到直线AM 的距离即可求得三角形面积的最大值. 【详解】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y . 当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=, 解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d ==由两点之间距离公式可得||AM ==.所以△AMN 的面积的最大值:1182⨯=. 29.(2021·全国高三其他模拟(文))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,A ,B 为其左、右顶点,M 为椭圆上任意一点(除去A ,B )且34MA MB k k ⋅=-. (1)求椭圆C 的方程;(2)过右焦点2F 的直线交曲线C 于P ,Q 两点,又以PQ 为边的平行四边形PQRS 交曲线C 于R ,S ,求PQRS的最大值,并求此时直线PQ 的方程.【答案】(1)22143x y +=;(2)3;1x =. 【解析】(1)表示出MA ,MB 的直线斜率,根据条件求出参数a ,b ,从而求得椭圆方程.(2)△PQR 的面积等价于△PQF 1,设方程,联立圆锥曲线,求得弦长,表达出△PQR 面积表达式,借助函数解决面积最值问题. 【详解】(1)令()00,M x y ,则2200221x y a b+=,20020034MA MBy y b k k x a x a a ⋅=⨯=-=-+-2b a ∴=,又12e =, 2a ∴=,b =故所求椭圆C 的方程为22143x y +=.(2)由椭圆方程的对称性知平行四边形PQRS 的另一边RS 过点1F , 如图,//RS PQ ,1F ∴到PQ 的距离等于R 到PQ 的距离,1F PQPQR SS∴=又1c =,1(1,0)F ∴-,2(1,0)F 令直线PQ 的方程为1x ny =+联立221143x ny x y =+⎧⎪⎨+=⎪⎩,223(1)412ny y ∴++=()2234690n y ny ∴++-=显然0∆>且122634ny y n +=-+,122934y y n =-+,120y y ∴< 112121211221122F PQPF F QF F SSSF Fy F F y ∴=+=+‖‖ 1212cy y y y=-=-===令21t n =+,n ∈R ,1t ∴≥()2222111(31)3496n t t n t t+∴==++++令1()96h t t t =++,则21()9h t t'=-, ()0h t '∴>,()h t ∴在[)1,+∞为单调递增函数,()16h t ∴≥,13F PQS∴≤= 当且仅当1t =,即0n =时,PQRS 的最大值为3,此时直线PQ 自方程为1x =.30.(2021·全国高三其他模拟)已知椭圆C :22221x y a b+=()0a b >>的焦距为2,点31,2G ⎛⎫ ⎪⎝⎭在椭圆C 上. (1)求椭圆C 的方程;(2)已知直线l 与椭圆C 相切于点M ,与抛物线216y x =-的准线相交于点N ,若点P 为平面内一点,且PM PN ⊥,求点P 的坐标.【答案】(1)22143x y +=;(2)()1,0. 【解析】(1)根据椭圆的方程及性质求得椭圆C 的方程;(2)设直线方程并与椭圆联解,求出M 的坐标,以及求出直线与抛物线的准线交点坐标,设点(),P s t ,根据PM PN ⊥求出点P 的坐标. 【详解】本题考查椭圆的方程与几何性质、直线与椭圆的位置关系、抛物线的性质的综合应用.(1)由题得2222222,191,4,c a b a b c =⎧⎪⎪+=⎨⎪-=⎪⎩解得2,1,a b c =⎧⎪=⎨⎪=⎩所以椭圆C 的方程为22143x y +=.(2)根据题意可知直线MN 的斜率存在,设直线MN 的方程为y kx m =+,联立22,1,43y kx m x y =+⎧⎪⎨+=⎪⎩ 消去y 并整理得()2223484120kxkmx m +++-=.由()()2222644344120k m k m∆=-+-=,得2234m k =+, 所以24434M km k x k m -==-+,23334M m y k m ==+,即43,k M m m ⎛⎫- ⎪⎝⎭. 因为抛物线216y x =-的准线方程为4x =,所以当4x =时,4N y k m =+,所以()4,4N k m +. 设点(),P s t ,因为PM PN ⊥,所以0PM PN ⋅=, 所以()43,4,40ks t s k m t mm ⎛⎫---⋅-+-= ⎪⎝⎭,即()()()()2143430s ms k m t m km tm -+--+-+=*,当10,0,s t -=⎧⎨=⎩即1s =,0t =时,方程(*)恒成立,所以点P 的坐标为()1,0.31.(2020·全国高考真题(理))已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析. 【解析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解.(2)设()06,P y ,可得直线AP 的方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,当203y ≠时,可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭即可知直线过定点3,02⎛⎫ ⎪⎝⎭,当203y =时,直线CD :32x =,直线过点3,02⎛⎫⎪⎝⎭,命题得证. 【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a +=>可得:(),0A a -, (),0B a ,()0,1G∴(),1AG a =,(),1GB a =- ∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)证明:设()06,P y , 则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭ 当203y ≠时,∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭. 当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭. 故直线CD 过定点3,02⎛⎫⎪⎝⎭.32.(2020·全国高考真题(文))已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案; (2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】 (1)222:1(05)25x y C m m+=<< ∴5a =,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍), ∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=; (2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥, 过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”, 可得:PMB BNQ ≅△△,221612525x y +=, ∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:5d ===,根据两点间距离公式可得:AQ ==,∴APQ面积为:15252⨯=;②当P 点为(3,1)-时, 故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ ==∴APQ面积为:1522=, 综上所述,APQ 面积为:52. 33.(2020·山东高考真题)已知椭圆C :22221(0)x y a b a b+=>>()2,1A .(1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【答案】(1)22163x y +=;(2)详见解析. 【解析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程.(2)设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置. 【详解】(1)由题意可得:222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2) 设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,代入椭圆方程消去y 并整理得:()22212k 4260x kmx m +++-=,可得122412km x x k +=-+,21222612m x x k-=+, 因为AM AN ⊥,所以·0AM AN =,即()()()()121222110x x y y --+--=, 根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x k m ++--++-+=,所以()()()22222264k 121401212m km km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,因为2,1A ()不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫-⎪⎝⎭. 当直线MN 的斜率不存在时,可得()11,N x y -,由·0AM AN =得:()()()()111122110x x y y --+---=, 得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=,解得:123x =或22x =(舍). 此时直线MN 过点21,33P ⎛⎫-⎪⎝⎭. 令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP 的斜边,故12DQ AP ==, 若D 与P 重合,则12DQ AP =, 故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值. 34.(2020·北京高考真题)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.【答案】(Ⅰ)22182x y +=;(Ⅱ)1. 【解析】(Ⅰ)由题意得到关于a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线MA ,NA 的方程确定点P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得0P Q y y +=,从而可得两线段长度的比值. 【详解】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112ab a b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩, 故椭圆方程为:22182x y +=.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,。
二轮专题八 解析几何(2)
一、基础练习
1.在圆
06222=--+y x y x 内,过点E (0,1)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为___________
2.已知双曲线22
221(0b 0)x y a a b -=>,>的两条渐近线均和圆C:
22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为___________
3.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=___________
4.若曲线1C :
2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是___________
5.设圆锥曲线r 的两个焦点分别为F1,F2,若曲线r 上存在点P 满足
1122::PF F F PF =4:3:2,则曲线r
的离心率等于___________ 6.设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若1
25F A F B = ;则点A 的坐标是___________
7.若椭圆22221x y a b +=的焦点在x 轴上,过点(1,12)作圆
22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是___________
8.曲线C 是平面内与两个定点1(1,0)F -和2(1,0)F 的距离的积等于常数2(1)a a >的点的轨迹,给出下列三个结论:①曲线C 过坐标原点;②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则12F PF 的面积不大于
212a .其中,所有正确结论的序号是____________ 二、例题
例1已知直线l 的方程为2x =-,且直线l 与x 轴交于点M ,圆22:1O x y +=与x 轴交于,A B 两点.
(1)过M 点的直线1l 交圆于P Q 、两点,且圆孤PQ 恰为圆周的14
,求直线1l 的方程; (2)求以l 为准线,中心在原点,且与圆O 恰有两个公共点的椭圆方程;
(3)过M 点作直线2l 与圆相切于点N ,设(2)中椭圆的两个焦点分别为12,F F ,求三角形21F NF ∆面积.
例 2. 在平面直角坐标系xoy 中,已知圆221:(3)(1)4C x y ++-=和圆
222:(4)(5)4C x y -+-=。
(1)若直线l 过点(4,0)A ,且被圆1C
截得的弦长为l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂的直线12l l 和,它们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标
例3.椭圆的中心为原点O
,离心率e =
,一条准线的方程为x =(Ⅰ)求该椭圆的标准方程;
(Ⅱ)设动点P 满足:OP OM ON =+2uu u r uuu r uuu r ,其中,M N 是椭圆上的点,直线OM 与ON 的斜率之积为1-2,
问:是否存在两个定点
,F F 12,使得PF PF 12+为定值?若存在,求,F F 12的坐标;若不存在,说明理由.
例4已知平面内一动点P 到点F (1,0)的距离与点P 到y 轴的距离的等等于1.(I )求动点P 的轨迹C 的方程;(II )过点F 作两条斜率存在且互相垂直的直线12,l l ,设1l 与轨迹C 相交于点,A B ,2l 与轨
迹C 相交于点,D E ,求AD EB ∙ 的最小值.
例5.已知抛物线1:C 2x =y ,圆2:C 22
(4)1x y +-=的圆心为点M 。
(Ⅰ)求点M 到抛物线1C 的准线的距离;(Ⅱ)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于A ,B 两点,若过M ,P 两点的直线l 垂足于AB ,求直线l 的方程.
三、作业
1.已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||AB 为C 的实轴长的2倍,C 的离心率为_________
2.设双曲线()22
2109x y a a -=>的渐近线方程为320x y ±=,则a 的值为_________
3.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x
轴上,离心率为.过点1F 的直
线l 交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为_________.
4.已知点A (0,2),B (2,0).若点C 在函数y = x 的图像上,则使得ΔABC 的面积为2的点C 的个数为_________
5.在平面直角坐标系xOy 中,已知双曲线C :2
221x y a
-=(0a >)的一条渐近线与直线l :210x y -+=垂直,则实数=a
6.在平面直角坐标系xOy 中,设直线l :10kx y -+=与圆C :224x y +=相交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAMB ,若点M 在圆C 上,则实数k =
7.已知椭圆2222:1(0)x y G a b a b +=>>
右焦点为
(),斜率为I 的直线l 与椭圆G 交与A 、B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(I )求椭圆G 的方程;(II )求PAB ∆的面积.
8.在等腰ABC 中,已知AB AC =,且点(1,0)B -。
点(2,0)D 为AC 的中点。
(1) 求点C 的轨迹方程
(2) 已知直线:40,l x y +-=求边BC 在直线l 上的射影EF 长的最大值。