初中几何综合复习
- 格式:docx
- 大小:125.03 KB
- 文档页数:5
初中数学几何知识点提纲_中考数学几何复习提纲1.基本概念-点、线、面的定义与性质-角的定义与性质-直线、射线、线段的性质2.角的分类-钝角、直角、锐角的定义与判断-平角与周角的定义与判断-对顶角、同位角的概念与性质3.图形的分类-三角形的分类与性质-四边形的分类与性质-多边形的分类与性质4.三角形的性质-三角形内角和定理-三角形外角和定理-同旁内角相等定理5.三角形的相似性-相似三角形的定义与判断-相似三角形的性质与判定方法-相似三角形中的比例关系6.三角形的面积-三角形面积计算公式-直角三角形的特殊性质-任意三角形的面积计算方法7.四边形的性质-平行四边形的性质与判定方法-矩形、正方形、菱形、长方形的性质与判定方法-梯形、平行四边形、矩形面积的计算方法8.圆的性质-圆的定义与性质-圆的直径、半径、弧长的计算方法-圆的面积的计算方法9.垂直与平行-垂直与平行线的判定方法-垂线的性质与判定方法-平行线的性质与判定方法10.空间几何-空间几何图形的投影与视图-空间几何图形的旋转、平移、镜面对称性质-空间几何图形的切割与拼接1.平面几何-点、线、面的定义与性质-基本图形(三角形、四边形、多边形)的分类与性质-三角形的内角和定理、外角和定理、中位线定理、高的性质与应用2.类似与全等-相似三角形的定义与性质-相似三角形的判定方法-相似三角形中的比例关系与应用3.角的平分线与垂直平分线-角的平分线的性质与判定方法-垂直平分线的性质与判定方法-相关题目的解题技巧与方法4.平行线与四边形-平行线的性质与判定方法-平行线与四边形内角和的关系-各种四边形的性质与判定方法5.圆-圆的定义与性质-弧长、弦长、扇形面积的计算方法-圆锥与球的性质与计算方法6.空间几何-空间几何图形的投影与视图-空间几何图形的旋转、平移、镜面对称性质。
初三数学几何复习资料初三数学几何复习资料数学作为一门重要的学科,对于学生的综合素质培养起着至关重要的作用。
而在初三阶段,几何是数学中的一个重要分支,对于学生来说也是一项难以绕过的内容。
因此,为了帮助初三学生更好地复习几何知识,下面将提供一些有关初三数学几何复习资料的内容。
一、基础概念的复习在几何学中,基础概念是理解和运用几何知识的基石。
因此,初三学生在复习几何知识时,首先要对基础概念进行复习和巩固。
例如,点、线、面的定义和性质,平行线与垂直线的判定条件,等边三角形和等腰三角形的性质等等。
这些基础概念的复习可以通过观看相关视频教学、阅读教材中的相关章节以及做一些相关的练习题来进行。
二、图形的性质和判定在几何学中,图形的性质和判定是学生需要掌握的重要内容。
例如,正方形的性质和判定条件,矩形的性质和判定条件,平行四边形的性质和判定条件等等。
在复习这些内容时,学生可以通过观看相关视频教学,查阅教材中的相关章节,并结合实际例子进行思考和分析,以便更好地理解和掌握这些知识。
三、图形的计算和应用除了图形的性质和判定外,初三学生还需要掌握图形的计算和应用。
例如,计算三角形的面积和周长,计算圆的面积和周长,计算梯形的面积等等。
在复习这些内容时,学生可以通过观看相关视频教学,阅读教材中的相关章节,并结合实际例子进行练习和应用,以便更好地掌握这些计算方法和应用技巧。
四、几何证明的方法和技巧几何证明是初三数学几何中的重点和难点。
在几何证明中,学生需要通过运用几何知识和推理方法,证明一些几何命题的正确性。
在复习几何证明时,学生可以通过观看相关视频教学,阅读教材中的相关章节,并结合实际例子进行练习和分析,以便更好地掌握几何证明的方法和技巧。
五、错题集的整理和分析在复习几何知识的过程中,学生可能会遇到一些难以理解和掌握的问题。
为了更好地解决这些问题,学生可以将自己做错的题目整理成一个错题集,并结合教材和相关资料进行分析和解答。
七年级上几何总复习一、几何专题知识点讲解【一】多姿多彩的图形把 的各种图形统称为几何图形.几何图形包括立体图形和平面图形.各部分不都在同一平面内的图形是 图形. 包括: .各部分都在同一平面内的图形是 图形.如: . 要求:①会画出同一个物体从不同方向(正面、上面、侧面)看得的平面图形.②知道并会画出常见几何体的表面展开图. ③知道由常见平面图形经过旋转所得的几何体.注意:①点、线、面、体之间有如图所示的联系. ②点是构成图形的基本元素.例1.画出下列立体图形的三视图: 例2如图所示的长方形ABCD ,当绕着AB 与绕着BC 旋转一周得到的立体图形的体积一样吗?2010A B C D【二】直线、射线、线段 1.直线的性质:经过两点有一条直线, 一条直线. 简述为: . 两条不同的直线有一个 时,就称两条直线相交,这个公共点叫它们的 . 注意:①直线的性质表明了两层含义,分别是存在性和唯一性.②射线和线段都是直线的一部分.2.直线、射线、线段的记法:3.线段的中点正面看上面看左面看名称表示法 作法叙述 端点直线直线AB (BA ) 字母无序;直线a 过A 点或B 点作直线AB 无端点射线 射线AB ; 字母有序;射线a 以A 为端点作射线AB 一个线段 线段AB (BA ) 字母无序;线段b 连接AB 两个 动交动交交动体面线点lP M B A ABM定义:把一条线段分成相等的两条线段的点,叫做线段的中点.如图,点M 是线段AB 的中点,则有AM =MB =12AB 或 2AM =2MB =AB符号语言:∵点M 是线段AB 的中点,∴AM =MB = 12( 或 AM =2 =AB )类似的,把线段分成相等的三条线段的点,叫线段的三等分点.把线段分成相等的n 条线段的点,叫线段的n 等分点.4.线段的性质:两点的所有连线中,线段最短. 简述为: 之间, 最短.两点间的距离:连接两点之间的线段的长度,叫做这两点的距离.要求:①会结合图形比较线段的大小;②会画线段的和与差;③会根据几何作图语句画出符合条件的图形,会用几何语句描述一个图形.例3:根据下列语句画图① 延长线段AB 与直线l 交于点C .② 连接MP ; ③ 反向延长PM ; ④ 在PC 的方向上截取PD =PM .【三】角静态(从构成上看): 有 的两条 组成的图形叫做角.动态(从形成上看): 由一条射线 而形成的图形叫做角. 1.角的表示方法①用三个英文大写字母表示任意一个角;②用一个英文大写字母表示一个独立的角(顶点处只有一个角);③加弧线、标数字表示一个角;④加弧线、标小写希腊字母(如:α,β)表示一个角. 例4.为恰当的方法表示出下图中的所有小于平角的角.ED C BA2.角的度量① 1个周角=2个平角=4个直角=360° ② 1°=60′=3600″③ 用一副三角尺能画的角都是15°的整数倍. 例5填空·计算O A BC 北西南东60°① 用度、分、秒表示37.26°= .② 用度表示52°9′36″= .③ 45°19′28″+26°40′32″ ④ 98°18′-56. 5°3.角的平分线定义:从角的 出发,把这个角分成 的两个角的 ,叫做这个角的平分线.如图,射线OB 是∠AOC 的平分线,则有∠AOB =∠BOC = 12∠AOC 或 2∠AOB =2∠COB =∠AOC用符号语言表示: ∵OB 平分 ∴∠AOB =∠BOC = 12∠AOC (2∠ AOB =2∠COB =∠AOC ) 类似的,从一个角的顶点出发,把这个角分成相等的n 个角的射线,叫做这个角n 等分线. 例6、 如图,∠AOC 与∠AOB 的和是160°,OM 、ON 分别平分∠AOC 、∠AOB ,∠MON =50°,求∠AOC 与∠AOB 的大小.MONB AC4.角的比较与运算要求:①会结合图形利用度量法或叠合法比较角的大小;②会进行角度运算.例7 ∠AOC 和∠BOD 都是直角,如果∠DOC =36°,则∠AOB 是 度.5.方向角(用角度表示方向)一般以正北、正南为基准,用向东或向西旋转的角度表示方向.如图所示,OA 方向可表示为北偏西60°.例8 海上一灯塔上观测到一渔船在灯塔的北偏东40°方向,则在渔船上的渔民观测灯塔在何方位?二、几何专题训练题【一】多姿多彩的图形1.如下图所示,这些物体所对应的立体图形的名称分别是:.2.如下图所示,每个图片都是由6个大小相同的正方形组成的,其中不能折成正方体的是().A B C D3.如下图所示,经过折叠能围成一个棱柱的是().A.①② B.①③ C.①④ D.②④4.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积为 .5.如图,是正方体的一种平面展开图,各面都标有数字,则数字为-4的面与它对面的数字之积是.【二】直线、射线、线段1.判断下列说法是否正确()①直线AB与直线BA不是同一条直线.()②用刻度尺量出直线AB的长度.()③直线没有端点,且可以用直线上任意两个点来表示.()④线段AB中间的点叫做线段AB的中点.()⑤取线段AB的中点M,则AB-AM=BM .()⑥连接两点间的直线的长度,叫做这两点间的距离.()⑦一条射线上只有一个点,一条线段上有两个点.2.已知点A、B、C三个点在同一条直线上,若线段AB=8,BC=5,则线段AC= .3.如图,四点A、B、C、D在一直线上,则图中有条线段,有条射线;若AC=12cm,BD=8cm,且AD=3BC,则AB= ,BC= ,CD= .CDAB4.若C为线段AB的中点,D在线段CB上,6DA=,4DB=,则CD=_________.5.如图,点C在线段AB上,E是AC的中点,D是BC的中点,若ED=6,则AB的长为 .第7题图E D C B A6.如下图已知线段a 、b 、c ,画一条线段,使它等于a +2b -c (•用尺规和刻度尺两种方法).cb a【三】角1.如图,已知∠AOB =2∠BOC ,且∠AOC =90°,则∠AOB =________.2.已知有公共顶点的三条射线OA 、OB 、OC ,若∠AOB =120°,∠BOC =30°,则∠AOC =_________.3.如图所示:已知∠EOF =90°,直线AB 经过点O ,则∠BOF - ∠AOE =__________.若∠AOF =2∠AOE ,则∠BOF =___________.4. 2点35分时,时钟与分钟所成的角为___________度.第1题图O A B C 第3题图F E O A B 第6题图30°N N 'A B 第10题图E D CBA O 第11题图M D 'C 'A B CD N5.如图,由A 到B 的方向是( )A .南偏东30°B .南偏东60°C .北偏西30°D .北偏西60°6.某测绘装置上一枚指针原来指向南偏西50°,把这枚指针按逆时针方向旋转周,则结果指针的指向( )A .南偏东50°B .西偏北50°C .南偏东40°D .东南方向7.如图,∠AOB =60°,OD 、OE 分别平分∠BOC 、∠AOC ,那么∠EOD =___________.8.如图,沿着直线MN 折叠长方形ABCD ,若∠MNB =70°,则∠BNC’= . 9.如图,∠AOB =110°,∠COD =70°,OA 平分∠EOC ,OB 平分∠DOF ,求∠EOF 的大小.OA B CD E FNMFEDCBA三、几何题综合复习题训练1.下列四个平面图形中,不能折叠成无盖的长方体盒子的是( )(A ) (B ) (C ) (D )2. 有一个正方体木块,它的六个面上分别标有数字1~6,图1是这个正方体从不同方向所观察到的数字情况,则数字1和5对面的数字是( ) A.4,3 B.3,2 C.3,4 D.5,13. 如图2,直线AB 与CD 相交于点O ,12=∠∠,若140AOE =∠,则A O C ∠的度数为( )A.40 B.60 C.80D.1004.已知点AB C ,,在同一直线上,若20cm AB =,30cm AC =,则BC 的长是( ) A.10cm B.50cm C.25cm D.10cm 或50cm5. 如图,把一张长方形的纸片沿着EF 折叠,点C 、D 分别落在M 、N 的位置,且∠MFB=12∠MFE.则∠MFB=( )A.30°B.36°C.45°D.72°6.一个无盖的正方体盒子的平面展开图可以是下列图形中的( )A.只有图①B.图①、图②C.图②、图③D.图①、图③(第5题)四、自我测评训练:【一】精心选一选1、下列说法正确的是()A、直线AB和直线BA是两条直线B、射线AB和射线BA是两条射线C、线段AB和线段BA是两条线段D、直线AB和直线a不能是同一条直线2、下列图中角的表示方法正确的个数有()A、1个B、2个C、3个D、4个3、下面图形经过折叠可以围成一个棱柱的是()4、经过同一平面内任意三点中的两点共可以画出()A、一条直线B、两条直线C、一条或三条直线D、三条直线5、若∠A=20 o 18′,∠B=20 o 15′30〞,∠C=20.25 o,则()A、∠A>∠B>∠CB、∠B>∠A>∠CC、∠A>∠C >∠BD、∠C >∠A >∠B6、如图,每个图片都是6个相同的正方形组成的,不能折成正方形的是()7、如下图所示的正方体沿某些棱展开后,能得到的图形是()8、下列语句正确的是 ( )A 、钝角与锐角的差不可能是钝角;B 、两个锐角的和不可能是锐角;C 、平角与钝角的差一定是锐角;D 、∠α和∠β和为180°(∠α>∠β),则∠α是钝角或直角。
初中数学几何复习资料初中数学几何是数学的一个重要分支,是建立在初中数学基础上的。
在教学中,几何内容不仅贯穿初中三年级的所有课程,而且也是高中和大学数学的基础。
复习几何需要理解概念、记忆公式和手绘图形。
以下是我整理的初中数学几何复习资料,希望能对你的学习有所帮助。
1. 平面几何在平面几何的学习中,我们需要掌握各种图形的性质和重要公式。
1.1 直线直线是平面几何的基本概念,它没有宽度和长度,并且和平面相交于一点。
常见的直线有平行线、垂直线和角平分线。
1.2 角角是由两条线段或两个平面相交所形成的图形。
通过角的定义和性质,我们可以计算角的大小和度数,掌握各种角的分类和相关公式。
1.3 三角形三角形是由三条线段所组成的图形,它有三个顶点、三条边和三个内角。
学习三角形需要掌握三角形的性质、分类、周长和面积公式,并且能够通过角的计算方法求解三角形的各种问题。
1.4 四边形四边形是由四条线段所组成的图形,它有四个顶点、四条边和四个角。
学习四边形需要掌握四边形的性质、分类、周长和面积公式,并且能够通过角的计算方法求解四边形的各种问题。
2. 空间几何空间几何是关于立体图形的研究,它是由平面几何推广而来的。
在空间几何的学习中,我们需要掌握各种立体图形的性质和重要公式。
2.1 球体球体是一种特殊的立体图形,它由一个半径为r的圆所沿着直径旋转所得到的图形。
学习球体需要掌握球体的性质、公式和相关例题。
2.2 锥体锥体是由一个有限的多边形(底面)和一条线段(母线)所围成的图形。
学习锥体需要掌握锥体的性质、公式和相关例题。
2.3 圆台圆台是由一个圆和一个与圆不在同一平面的多边形所围成的图形。
学习圆台需要掌握圆台的性质、公式和相关例题。
3. 空间向量空间向量是指在三维空间中用方向和长度表示的量。
在学习空间向量时,我们需要掌握向量的基本概念、向量的加减、数量积、向量积等内容。
总结初中数学几何是一个系统性的学科,需要我们深入理解各种图形的性质和公式,掌握各种几何计算的方法和技巧。
几何综合题(旋转为主的题型)一、知识梳理二、教学重、难点三、作业完成情况四、典题探究例1 已知:如图,点P 是线段AB 上的动点,分别以AP 、BP 为边向线段AB 的同侧作正△APC和正△BPD ,AD 和BC 交于点M.(1)当△APC 和△BPD 面积之和最小时,直接写出AP : PB 的值和∠AMC 的度数; (2)将点P 在线段AB 上随意固定,再把△BPD 按顺时针方向绕点P 旋转一个角度α,当α<60°时,旋转过程中,∠AMC 的度数是否发生变化?证明你的结论.(3)在第(2)小题给出的旋转过程中,若限定60°<α<120°,∠AMC 的大小是否会发生变化?若变化,请写出∠AMC 的度数变化范围;若不变化,请写出∠AMC 的度数.例2 探究:(1)如图1,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,试判断BE 、DF 与EF 三条线段之间的数量关系,直接写出判断结果: ;(2)如图2,若把(1)问中的条件变为“在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF=21∠BAD ”,则(1)问中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由;(3)在(2)问中,若将△AEF 绕点A 逆时针旋转,当点分别E 、F 运动到BC 、CD 延长线上时, 如图3所示,其它条件不变,则(1)问中的结论是否发生变化?若变化,请给出结论并予以证明..例3 已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,其中BA =BC ,DA =DE ,联结EC ,取EC 的中点M ,联结BM 和DM .(1)如图1,如果点D 、E 分别在边AC 、AB 上,那么BM 、DM 的数量关系与位置关系是 ;(2)将图1中的△ADE 绕点A 旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.DCB AEMMEABCD图1 图2例4 在ABCD 中,A DBC ∠=∠,过点D 作DE DF =,且EDF ABD =∠,连接EF ,EC ,N 、P 分别为EC ,BC 的中点,连接NP . (1)如图1,若点E 在DP 上,EF 与DC 交于点M ,试探究线段NP 与线段NM 的数量关系及ABD ∠与MNP ∠满足的等量关系,请直接写出你的结论;(2)如图2,若点M 在线段EF 上,当点M 在何位置时,你在(1)中得到的结论仍然成立,写出你确定的点M 的位置,并证明(1)中的结论.五、演练方阵A 档(巩固专练)1.(1)如图1,△ABC 和△CDE 都是等边三角形,且B 、C 、D 三点共线,联结AD 、BE相交于点P ,求证: BE = AD .(2)如图2,在△BCD 中,∠BCD <120°,分别以BC 、CD 和BD 为边在△BCD 外部作等边三角形ABC 、等边三角形CDE 和等边三角形BDF ,联结AD 、BE 和CF 交于点P ,下列结论中正确的是 (只填序号即可)①AD=BE=CF ;②∠BEC=∠ADC ;③∠DPE=∠EPC=∠CPA =60°; (3)如图2,在(2)的条件下,求证:PB+PC+PD=BE .2. 已知:2AD =,4BD =,以AB 为一边作等边三角形ABC .使C 、D 两点落在直线AB 的两侧. (1)如图,当∠ADB=60°时,求AB 及CD 的长;(2)当∠ADB 变化,且其它条件不变时,求CD 的 最大值,及相应∠ADB 的大小.3. 如图,△ABC 中,∠ACB=90°,AD=AC,AB=AN,连结CD 、BN,CD 的延长线交BN 于点F . (1)当∠ADN 等于多少度时,∠ACE=∠EBF,并说明理由;(2)在(1)的条件下,设∠ABC=α,∠CAD =β,试探索α、β满足什么关系时,△ACE ≌△FBE ,并说明理由.4. 在△ABC 中,AB =4,BC =6,∠ACB =30°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1. (1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图2,连接AA 1,CC 1.若△CBC 1的面积为3,求△ABA 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转的过程中,点P 的对应点是点P 1,直接写出线段EP 1长度的最大值与最小值.图2AFAB 图1C 1C BA 1A图2A 1C 1ABC图1图3A5. 问题1:如图1,在等腰梯形ABCD 中,AD ∥BC ,AB =BC =CD ,点M ,N 分别在AD ,CD 上,若∠MBN =12∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系?请直接写出你的猜想,不用证明;问题2:如图2,在四边形ABCD 中,AB =BC ,∠ABC +∠ADC =180°,点M ,N 分别在DA ,CD 的延长线上,若∠MBN =12∠ABC 仍然成立,请你进一步探究线段MN ,AM ,CN 又有怎样的数量关系?写出你的猜想,并给予证明.6. 如图,四边形ABCD 、1111A B C D 是两个边长分别为5和1且中心重合的正方形.其中,正方形1111A B C D 可以绕中心O 旋转,正方形ABCD 静止不动.(1)如图1,当11D D B B 、、、四点共线时,四边形11DCC D 的面积为 __; (2)如图2,当11D D A 、、三点共线时,请直接写出11CD DD = _________; (3)在正方形1111A B C D 绕中心O 旋转的过程中,直线1CC 与直线1DD 的位置关系是______________,请借助图3证明你的猜想.B 档(提升精练)1. 如图,△ABC 中,∠90ACB =︒, 2=AC ,以AC 为边向右侧作等边三角形ACD . (1)如图24-1,将线段AB 绕点A 逆时针旋转︒60,得到线段1AB ,联结1DB ,则与1DB 长度相等的线段为 (直接写出结论);(2)如图24-2,若P 是线段BC 上任意一点(不与点C 重合),点P 绕点A 逆时针旋转︒60得到点Q ,求ADQ ∠的度数; (3)画图并探究:若P 是直线BC 上任意一点(不与点C 重合),点P 绕点A 逆时针旋转︒60得到点Q ,是否存在点P ,使得以 A 、 C 、 Q 、 D 为顶点的四边形是梯形,若存在,请指出点P 的位置,并求出PC 的长;若不存在,请说明理由.2. 如图1,△ABC 是等腰直角三角形,四边形ADEF 是正方形,D 、F 分别在AB 、AC 边上,此时BD=CF ,BD ⊥CF 成立.(1)当正方形ADEF 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF 成立吗? 若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF 绕点A 逆时针旋转45°时,如图3,延长BD 交CF 于点G . ①求证:BD ⊥CF ; ②当AB=4,AD=时,求线段BG 的长.3. 已知:在△AOB 与△COD 中,OA =OB ,OC =OD ,︒=∠=∠90COD AOB .(1)如图1,点C 、D 分别在边OA 、OB 上,连结AD 、BC ,点M 为线段BC 的中点,连结OM ,则线段AD 与OM 之间的数量关系是 ,位置关系是 ; (2)如图2,将图1中的△COD 绕点O 逆时针旋转,旋转角为α (︒<<︒900α).连结AD 、BC ,点M 为线段BC 的中点,连结OM .请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的 △COD 绕点 O 逆时针旋转到使 △COD 的一边OD 恰好与△AOB 的边OA 在同一条直线上时,点C 落在OB 上,点M 为线段BC 的中点.请你判断(1)中线段AD 与OM 之间的数量关系是否发生变化,写出你的猜想,并加以证明.4. 在Rt △ABC 中,AB =BC ,∠B =90°,将一块等腰直角三角板的直角顶点O 放在斜边AC 上,将三角板绕点O 旋转. (1)当点O 为AC 中点时,①如图1, 三角板的两直角边分别交AB ,BC 于E 、F 两点,连接EF ,猜想线段AE 、CF 与EF 之间存在的等量关系(无需证明);②如图2, 三角板的两直角边分别交AB ,BC 延长线于E 、F 两点,连接EF ,判断①中的猜想是否成立.若成立,请证明;若不成立,请说明理由;(2)当点O 不是AC 中点时,如图3,,三角板的两直角边分别交AB ,BC 于E 、F 两点,若14AO AC ,求OE OF的值.5. 如图1,四边形ABCD ,将顶点为A 的角绕着顶点A 顺时针旋转,若角的一条边与DC 的延长线交于点F ,角的另一条边与CB 的延长线交于点E ,连接EF . (1)若四边形ABCD 为正方形,当∠EAF=45°时,有EF=DF -BE .请你思考如何证明这个结论(只思考,不必写出证明过程);(2)如图2,如果在四边形ABCD 中,AB=AD ,∠ABC=∠ADC=90°,当∠EAF=21∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出它们之间的关系式(只需写出结论); (3)如图3,如果四边形ABCD 中,AB=AD ,∠ABC 与∠ADC 互补,当∠EAF=21∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出它们之间的关系式并给予证明.(4)在(3)中,若BC=4,DC=7,CF=2,求△CEF 的周长(直接写出结果即可).C 档(跨越导练)1. 已知:正方形ABCD 中,45MAN ∠=,绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N . (1)如图1,当M A N ∠绕点A 旋转到BM DN =时,有BM DN MN +=.当M A N ∠ 绕点A 旋转到BM DN ≠时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间有怎样的等量关系?请写出你的猜想,并证明.2. 如图,已知四边形ABCD 是正方形,对角线ACBD 相交于O .(1) 如图1,设 E 、F 分别是AD 、AB 上的点,且∠EOF =90°,线段AF 、BF 和EF 之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设 E 、F 分别是AB 上不同的两个点,且∠EOF =45°,请你用等式表示线段AE 、BF 和EF 之间的数量关系,并证明.3. 问题:如图1, 在Rt △ABC 中,90C ∠=︒,30ABC ∠=︒,点D 是射线CB 上任意一点,△ADE 是等边三角形,且点D 在ACB ∠的内部,连接BE .探究线段BE 与DE 之间的数量关系. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1) 当点D 与点C 重合时(如图2),请你补全图形.由BAC ∠的度数为 ,点E落在 ,容易得出BE 与DE 之间的数量关系为 ;(2) 当点D 在如图3的位置时,请你画出图形,研究线段BE 与DE 之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.4. 在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。
九年级几何综合知识点汇总在九年级的几何学学习中,我们需要掌握一系列的几何综合知识点。
本文将对这些知识点进行汇总和总结,以帮助同学们更好地理解和应用几何学知识。
一、图形的性质和判定1. 点、线、面的基本概念和性质:点是没有大小和形状的,线是由无数个点组成的,而面是由无数个线组成的。
这些基本概念是我们研究图形性质和判定的基础。
2. 角的性质和判定:角是由两条边和一个顶点组成的图形元素。
角可以根据其度数进行分类,如锐角、直角、钝角和平角等。
我们可以通过测量角的大小来判断其性质,还可以利用三角形的性质来判定角的关系和性质。
3. 三角形的性质和分类:三角形是由三条线段组成的图形。
根据三个内角的大小关系,我们可以将三角形分为锐角三角形、直角三角形和钝角三角形。
此外,根据边长和角度的关系,三角形还可以分类为等边三角形、等腰三角形和普通三角形等。
4. 四边形的性质和分类:四边形是由四条线段和四个顶点组成的图形。
根据四个内角的大小关系,我们可以将四边形分为矩形、正方形、平行四边形、菱形等。
四边形还有一些重要的性质,如对角线互相平分等。
5. 圆的性质和判定:圆是由一条曲线和其中心组成的图形。
圆的性质包括半径、直径、弧长、扇形面积等。
我们可以通过测量圆的半径或直径来判定圆的性质。
二、图形的相似和全等1. 相似图形的判定和性质:相似图形是指形状相似且对应边成比例的图形。
我们可以通过比较两个图形的边长比例来判断它们是否相似。
相似图形的一些性质包括对应角相等、对应边成比例等。
2. 全等图形的判定和性质:全等图形是指形状和大小完全相同的图形。
我们可以通过比较两个图形的各边边长和各内角大小来判断它们是否全等。
全等图形的一些性质包括对应边相等、对应角相等等。
三、面积和体积的计算1. 二维图形的面积计算:常见的二维图形包括矩形、三角形、圆等。
我们可以通过不同的公式来计算它们的面积,如矩形的面积公式为长乘以宽,三角形的面积公式为底乘以高的一半,圆的面积公式为半径的平方乘以π等。
初中数学几何三大专题复习一、平面几何平面几何是数学中重要的分支之一,涉及到点、线、面和图形等概念的研究。
初中数学几何的复重点主要包括以下三个方面:1. 图形的性质及相关定理- 点、线、面和图形的基本概念及定义;- 长度、角度、面积和体积的计算方法;- 直线、射线、线段、平行线和垂直线的性质;- 三角形、四边形、多边形等图形的性质及分类;- 圆的性质及相关定理。
2. 直线与角的关系- 同位角、内错角、对顶角等角度关系的计算和性质;- 平行线与转角、同旁内角等角度关系的计算和性质。
3. 图形的相似性- 相似图形的概念、判定和性质;- 相似三角形的相似判定定理和相应性质;- 相似三角形的比例关系及应用;- 射影定理及其应用。
二、立体几何立体几何是研究空间中的物体和几何体的形状、位置和运动的学科。
初中数学几何的复重点主要包括以下三个方面:1. 空间几何体的性质和关系- 空间几何体的基本概念和定义;- 球体、长方体、正方体、棱柱、棱锥、圆台等几何体的性质;- 几何体的面积和体积的计算方法。
2. 空间直线和平面的关系- 平面与直线的关系及其相交情况;- 平面与平面的关系及其相互位置。
3. 空间几何体的投影和视图- 空间几何体的投影概念和特点;- 空间几何体在不同位置的视图。
三、坐标几何坐标几何是利用坐标系统来研究几何性质和关系的分支学科。
初中数学几何的复重点主要包括以下三个方面:1. 直角坐标系- 直角坐标系的基本概念和性质;- 平面直角坐标系和空间直角坐标系的关系。
2. 平面上的点和图形- 平面上点的坐标表示和计算;- 图形的坐标表示和计算。
3. 直线和曲线方程- 直线的斜率和截距的计算;- 直线和曲线方程的表示和应用。
以上是初中数学几何三大专题的复习内容概要,希望能帮助你有针对性地进行复习,取得更好的成绩!。
中考数学——几何综合(讲义)➢ 知识点睛1. 几何综合问题的处理思路①标注条件,合理转化 ②组合特征,分析结构 ③由因导果,执果索因 2. 常见的思考角度304560 1 ↔⎧⎪↔⎪⎪↔⎨⎪↔⎪⎪︒︒︒↔⎩,,同位角、内错角、同旁内角平行内角、外角、对顶角、余角、补角转化计算角圆心角、圆周角在圆中,由弧找角,由角看弧直角互余、勾股定理、高、距离、直径特殊角等在直角三角形中,找边角关系() 2 ↔⎧⎪⎧⎪↔⎨⎪⎩⎪⎪⎧⎨⎪⎪⎪↔⎨⎪⎪⎪⎪⎪⎩⎪↔⎩、角平分线、垂直平分线轴对称性质勾股定理放在直角三角形中边角关系遇弦,作垂线边、线段连半径转移边放在圆中遇直径找直角遇切线连半径结合全等相似线段间比(例关系) 3 n ⎧⎧⎪⎪⎪⎪→⎨⎪⎪⎪⎨⎪⎩⎪⎪⎧⎪→⎨⎪⎩⎩倍长中线中位线中点三线合一特殊点斜边中线等于斜边的一半相似等分点面积转化() 4 ⎧⎧⎪⎪⎧⎪⎪→⎨⎪⎪⎨⎪⎪⎨⎪⎪⎩⎩⎪⎪⎧⎪→⎨⎪⎩⎩公式法相似规则图形转化法同底面积共高分割求和不规则图形割补法)补形作差(3. 常见结构、常用模型⎧→⎧⎪⎪→⎪⎪⎨⎪→⎪⎪⎪→⎪⎩⎪⎧⎨⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩中点结构中点的思考角度直角结构斜转直常见结构旋转结构全等变换折叠结构轴对称的思考层次角平分线模型弦图模型常用模型相似基本模型三等角模型半角模型 ➢ 课前预习1. 如图,在△ABC 中,D 是BC 边的中点,E 是AD 上一点,BE =AC ,BE 的延长线交AC 于点F .若∠AEF =55°,则∠EAF=________.F EDCBA提示:倍长中线,构造全等三角形转移条件.具体操作:D 为中点,延长AD 到G 使DG =AD ,连接BG .得到△ADC ≌△GDB .2. 如图,在直角梯形ABCD 中,AB ∥CD ,∠ADC =90°,∠C =70°,点E 是BC的中点,CD =CE ,则∠EAD 的度数为( ) A .35°B .45°C .55°D .65°提示:平行夹中点,构造全等三角形补全图形.AD CE B具体操作:AB ∥CD ,E 为BC 的中点,延长AE 交直线CD 于点F .得到△ABE ≌△FCE .3. 如图,在四边形ABCD 中,AD =BC ,E ,F ,G 分别是AB ,CD ,AC 的中点,若∠ACB =66°,∠CAD =20°,则∠EFG =____.AB CD FEG提示:多个中点考虑中位线,利用中位线性质转移角、转移边.具体操作:GF ,GE 分别为△CDA ,△ABC 的中位线.4. 如图,在△ABC 中,AB =AC ,BD =DC =3,sin C =45,则△ABC 的周长为______.提示:等腰三角形底边上的的中点——通过等腰三角形三线合一,构造直角三角形.具体操作:连接AD ,得到Rt △ADC .5. 如图,在锐角三角形ABC 中,∠BAC =60°,BN ,CM 为高,P 是BC 的中点,连接MN ,MP ,NP .则以下结论:①NP =MP ;②当∠ABC =60°时,MN ∥BC ;③BN =2AN ;④当∠ABC =45°时,BNPC .其中正确的有( )具体操作:在Rt △BMC 中,MP 为斜边中线;在Rt △BNC 中,NP 为斜边中线.6. 如图,正方形ABCD 边长为9,点E 是线段CD 上一点,且CE 长为3,连接BE ,作线段BE 的垂直平分线分别交线段AD ,BC 于点F ,H ,垂足为G ,则AF 的长为______.H G F EDCBA方法1:提示:从边的角度考虑直角,往往先表达,然后用勾股定理建等式. 具体操作:连接BF ,EF ,则BF =EF ,设AF 为x ,分别在Rt △BAF 和Rt △EDF 中表达BF 2,EF 2,再利用BF 2=EF 2求解. 方法2:提示:从角度转移考虑直角,往往先找角相等,然后证相似或全等. 具体操作:过点F 作FM ⊥BC 于点M ,则可证△FMH ≌△BCE ,则MH =CE =3,连接EH ,利用勾股定理求解EH (BH ),则AF =BH -MH . 7. 如图,在△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC 于D .则AD 的长为_______________.DCBA提示:①特殊角+直角;②直角两边可看做是面积中的底或高.具体操作:①过点C 作CE ⊥AB ,交BA 延长线于点E ,在Rt △CAE 中利用特殊角60°求解;②将AD 看成高,求出BC 后,利用CE AB AD BC ⋅=⋅求解.8. 如图,在△ABC 中,∠A =90°,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于E ,若CE =5cm ,则BD =________.ABECD提示:直角+角平分线,逆用三线合一构造出等腰三角形.具体操作:BE 既是角平分线、又是高.延长BA ,CE 交于点F ,可证△CAF ≌△BAD .9. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,BD =2,AD =8,则CD =_________.DC提示:多个直角(直角三角形斜边上的高),考虑母子型相似.具体操作:由∠ACB =∠ADC =90°,考虑△BDC ∽△CDA ∽ △BCA .10. 如图,在梯形ABCD 中,AB ∥CD ,∠B =∠C =90°,点E 在BC 边上,AB =3,CD =2,BC =7.若∠AED =90°,则CE =_____.ABCDE提示:多个直角(一线三等角),考虑三等角模型.具体操作:∠ABE =∠ECD =∠AED =90°,考虑△ABE ∽△ECD .11. 如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 为边向外作正方形ABDE ,且正方形对角线交于点O ,连接OC ,已知AC =5,OC=BC 的长为________.CB OAED提示:多个直角(斜放置的正方形、等腰直角三角形),考虑弦图.具体操作:过点D 作DF ⊥CB ,交CB 延长线于点F ,连接OF .由弦图可知,△OCF 是等腰直角三角形.12. 如图,将三角板放在矩形ABCD 上,使三角板的一边恰好经过点B ,三角板的直角顶点E 落在矩形对角线AC 上,另一边交CD 于点F .若AB =3,BC =4,则EF EG=________. FEDCG (B )A提示:斜直角要放平(关键是与其他直角配合),利用互余转移角后,寻找三角形相似或全等.具体操作:过点E 分别作EM ⊥CD 于M ,EN ⊥BC 于N ,则△EMF ∽△ENG .13. 已知直线l 1:y =112x b -+与直线l 2垂直,且直线l 2经过定点A (3,0),则直线l 2表达式为________________.提示:坐标系下的垂直,优先考虑121k k ⋅=-. 具体操作:由121k k ⋅=-求得k 2,再利用A (3,0)求b 2.14. 如图,在⊙O 中,弦AB,弦ADACB =45°,则弦AD 所对的圆心角为_______.CA提示:圆背景下,要构造直角,考虑:①直径所对的圆周角是直角;②垂径定理.具体操作:连接AO 并延长交⊙O 于点E ,连接DE ,BE .在Rt △ABE 中,求解直径AE ;在Rt △ADE 中,利用边角关系,求解∠AED 进而得到∠AOD . 15. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边上的点B ′处.若AE =2,DE =6,∠EFB =60°,则矩形ABCD 的面积是__________.B'A'F EDCBA提示:折叠,考虑:①利用对应边、对应角相等,考虑转移边、转移角;②矩形中的折叠常出现等腰三角形.具体操作:由折叠∠EFB =∠EFB′=60°,AE =A′E =2,∠B =∠A′B′F =90°,结合内错角∠B′EF =∠BFE =60°,可在Rt △A′B′E 中求解A′B′,即AB 的长.16. 如图,将长为4cm ,宽为2cm 的矩形纸片ABCD 折叠,使点B 落在CD 边的中点E 处,压平后得到折痕MN ,则线段AM 的长为__________.BCFAEMD提示:折叠,考虑折痕是对应点连线的垂直平分线.具体操作:连接BE ,BM ,ME ,则BM =ME ,在Rt △BAM 和Rt △MDE 中表达BM 2,ME 2,利用相等建等式求解.17. 如图,已知直线l :y =122x -+与x 轴交于点A ,与y 轴交于点B ,将△AOB沿直线l 折叠,点O 落在点C 处,则点C 的坐标为_________.提示:折叠,可考虑折痕垂直平分对应点连线.函数背景下的折叠可以考虑121k k ⋅=-和中点坐标公式的组合应用.具体操作:连接OC ,先利用原点坐标和121k k ⋅=-求得OC 解析式;联立OC 和AB 解析式求出OC 的中点坐标后,进而求出点C 坐标.18. 如图,Rt △ABC 的边BC 位于直线l 上,ACACB =90°,∠A =30°.若Rt △ABC 由现在的位置向右无滑动地翻转,则当点A 第3次落在直线l 上时,点A 所经过的路线长为__________.(结果保留π)19.的位置,使得CC′∥AB ,则∠BAB′的度数为( ) A .30°B .35°C .40°D .50°C'B'ABC提示:旋转是全等变换,对应边相等,对应角相等;会出现等腰三角形. 具体操作:由旋转可知AC =AC′(对应边相等),∠BAB′=∠CAC′(旋转角相等).20. 如图,P 是等边三角形ABC 内的一点,连接P A ,PB ,PC ,以BP 为边作∠PBQ =60°,且BQ =BP ,连接PQ ,CQ .若P A :PB :PC =3:4:5,则∠PQC =________.QBCPA提示:利用旋转可以重新组合条件.当看到等腰结构时往往会考虑利用旋转思想构造全等.具体操作:由等腰结构AB =BC ,PB =BQ ,先考虑△APB 和△BQC 的旋转关系,证明△APB ≌△CQB 后验证,重新组合条件后利用勾股定理进行证明.➢ 精讲精练1. 如图,在△ABC 中,∠BAC =30°,AB =AC ,AD 是BC 边上的中线,∠ACE =12∠BAC ,CE 交AB 于点E ,交AD 于点F .若BC =2,则EF 的长为________. FEDBA2. 如图,矩形ABCD 中,AB =8,点E 是AD 上一点,且AE =4,BE 的垂直平分线交BC 的延长线于点F ,交AB 于点H ,连接EF 交CD 于点G .若G 是CD 的中点,则BC 的长是_______.HGOB A DEC F3. 如图,在□ABCD 中,AB :BC =3:2,∠DAB =60°,点E 在AB 边上,且AE :EB =1:2,F 是BC 的中点,过点D 分别作DP ⊥AF 于点P ,DQ ⊥CE 于点Q ,则DP :DQ 等于( ) A .3:4BCD.QDCFBPEACBGFEDA第3题图 第4题图4. 如图,在△ABC 中,∠ABC =90°,BD 为AC 边上的中线,过点C 作CE ⊥BD于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG =BD ,连接BG ,DF .若AG =13,CF =6,则四边形BDFG 的周长为________.5. 如图,已知四边形ABCD 为等腰梯形,AD ∥BC ,AB =CD,AD =CD 中点,连接AE,且AE =BF =________.BCEADF6. 如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =3,BC =5,将腰DC 绕点D 逆时针方向旋转90°并缩小,恰好使DE =23CD ,连接AE ,则△ADE 的面积是________.7. 如图,在平面直角坐标系中,已知直线y=x 上一点P (1,1),C 为y 轴上一点,连接PC .线段PC 绕点P 顺时针旋转90°至线段PD ,过点D 作直线AB ⊥x 轴,垂足为B ,直线AB 与直线y =x 交于点A ,且BD =2AD .若直线CD 与直线y =x 交于点Q ,则点Q 的坐标为__________.8. 如图,把矩形ABCD 沿直线AC 折叠,点B 落在点E 处,连接DE .若DE :AC =3:5,则ADAB的值为_________. ED C B AEDCBA9. 如图1,将正方形纸片ABCD 对折,使AB 与CD 重合,折痕为EF ;如图2,展开再折叠一次,使点C 落在线段EF 上,折痕为BM ,BM 交EF 于O ,且△NMO的周长为3,展开再折叠一次,使点C 与点E 重合,折痕为GH ,点B 的对应点为P ,EP 交AB 于Q ,则△AQE 的周长为_______.图1BAD FC EMN图2OBAD F CE PHG 图3Q BA D F CE10.如图,在边长为的正方形ABCD 中,E 是AB 边上一点,G 是AD 延长线上一点,BE =DG ,连接EG ,CF ⊥EG 于点H ,交AD 于点F ,连接CE ,BH .若BH =8,则FG =_______.GHBA D F CE11.顺时针旋转得到△A B′C′,连接CC ′并延长,交AB 于点O ,交BB ′于点F .若CC ′=CA ,则BF =_____.C'O B AFC B'12. 如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE ,过点A 作AE 的垂线交DE 于点P ,连接BP .若AE =AP =1,PB =APD ≌△AEB ;②BE ⊥DE ;③点B 到直线AE;④1△△APD APB S S +=⑤4ABCD S =正方形 ) A .③④⑤B .①②⑤C .①③⑤D .①②④⑤PDA B CE【参考答案】 ➢ 课前预习1. 55°2. A3. 23°4. 165. B6. 27.7 8. 10 cm 9. 410. 1或6 11. 712. 4313. 26y x =-14.120°15.16.138cm17.816 () 55,18.(4π19.C20.90°➢精讲精练1.12.73.D4.205.4-6.27.99 () 44,8.1 29.1210.11.5 212.B。
九年级几何综合知识点总结几何学是数学的重要分支之一,通过研究图形的性质和空间的关系,帮助我们理解和解决实际问题。
在九年级的学习中,我们学习了许多几何知识点,下面是对这些知识点的总结和归纳。
一、图形的性质1. 点、线、面:几何学中最基本的概念就是点、线、面。
点是没有大小和方向的,用字母来表示。
线由无数个点连在一起形成,有长度但没有宽度。
面是由线构成的,有面积。
2. 直线和曲线:直线是一条无限延伸的线段,它没有弧度。
曲线是一条有弧度的线段,可以是圆弧或其他曲线。
3. 角:两条线段的相交部分就形成了角。
角可以分为钝角、直角、锐角三种。
直角是90度角,钝角大于90度,锐角小于90度。
4. 三角形:由三条边和三个顶点组成的图形。
根据边长和角度的不同,三角形可以分为等边三角形、等腰三角形和普通三角形。
5. 四边形:由四条边和四个顶点组成的图形。
根据边长和角度的不同,四边形可以分为平行四边形、矩形、正方形、菱形等。
二、相交关系1. 平行线和垂直线:如果两条直线永远不相交,则它们是平行线。
如果两条直线相交,并且相交的角度为90度,则它们是垂直线。
2. 相似图形:如果两个图形的形状相同但大小不同,我们称它们为相似图形。
相似图形的边长比例相等。
3. 共线和共面:如果几个点在同一条直线上,我们称这些点共线。
如果一些点在同一个平面内,我们称这些点共面。
三、几何运算1. 长度和面积的计算:计算图形的长度和面积是几何学中重要的运算。
通过使用不同公式和方法,我们可以求得三角形、矩形、圆等图形的面积和周长。
2. 三角形的性质:在学习几何学的过程中,我们掌握了许多三角形的性质。
比如三角形两边之和大于第三边,三角形内角之和为180度等。
3. 四边形的性质:四边形是一个有四条边的图形,根据其性质可以进行一系列的运算。
比如平行四边形对角线相等,矩形对角线相等等。
四、几何证明在几何学中,证明是一种重要的学习方法。
通过严谨的逻辑推理和准确的图形操作,可以证明得出某些几何关系成立。
中考总复习---几何综合几何综合题常研究以下几个方面的问题:1.证明线段、角的数量关系(包括相等、和差、倍、分关系以及比例关系);2.证明图形的位置关系(如点与线、线与线、线与圆等);3.面积计算问题;4.动态几何问题在解几何综合问题时,常要分解基本图形,挖掘隐含的数量关系,另外,也需要注意使用数形结合、方程、分类讨论等数学思想方法来解决问题。
借助变换的观点也能帮助我们找到更有效的解决问题的思路。
解几何综合题,要充分利用综合与分析的思维方法。
当思维受阻时要及时改变方向;要熟悉常用的辅助线添法;强化变换的意识;从特殊或极端位置探究结论。
第一课时:基本证明与计算:例1.直线CF垂直且平分AD于点E,四边形ABCD是菱形,BA的延长线交CF于点F,连接AC。
(1)写出图中两对全等三角形。
(2)求证:ΔABC是正三角形。
例2、在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G. (1)求证:ΔADE≌ΔCBF(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论。
例3、如图1,在四边形ABCD 中,已知AB=BC =CD ,∠BAD 和∠CDA 均为锐角,点P 是对角线BD 上的一点,PQ ∥BA 交AD 于点Q ,PS ∥BC 交DC 于点S ,四边形PQRS 是平行四边形。
(1)当点P 与点B 重合时,图1变为图2,若∠ABD =90°,求证:△ABR ≌△CRD ;(2)对于图1,若四边形PRDS 也是平行四边形,此时,你能推出四边形ABCD 还应满足什么条件? 练习:1.在梯形ABCD 中,AB CD ∥,90ABC ∠=°,5AB =,10BC =,tan 2ADC ∠=. (1)求DC 的长;(2)E 为梯形内一点,F 为梯形外一点,若BF DE =,FBC CDE ∠=∠,试判断ECF △的形状,并说明理由.(3)在(2)的条件下,若BE EC ⊥,:4:3BE EC =,求DE 的长.图2图1R DCBASRPQDCBAE A D2.如图,四边形ABCD 为一梯形纸片,AB//CD ,AD=BC .翻折纸片ABCD , 使点A 与点C 重合,折痕为EF .已知CE ⊥AB . (1)求证:EF//BD ;(2)若AB=7,CD=3,求线段EF 的长.3.已知:在ABC △中,D 为AB 边上一点,36A ∠= ,AC BC =,AD AB AC ⋅=2(1)试说明:ADC △和BDC △都是等腰三角形; (2)若1AB =,求AC 的值;(3)请你构造一个等腰梯形,使得该梯形连同它的两条对角线得到8个等腰三角形.(标明各角的度数)4.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B 、C 。
京华中学初三辅导班资料9 初中几何综合复习 学校 姓名 一、典型例题 例1(2005重庆)如图,在△ABC 中,点E 在BC 上,点D 在AE 上,已知∠ABD =∠ACD,∠BDE =∠CDE .求证:BD =CD 。
例2(2005南充)如图2-4-1,⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点.(1)求证:DF 是⊙O的切线.(2)若AE =14,BC =12,求BF 的长.例3.用剪刀将形状如图1所示的矩形纸片ABCD 沿着直线CM 剪成两部分,其中M 为AD 的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt △BCE就是拼成的一个图形.(1)用这两部分纸片除了可以拼成图2中的Rt △BCE 外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内. (2)若利用这两部分纸片拼成的Rt △BCE 是等腰直角三角形,设原矩形纸片中的边AB 和BC 的长分别为a 厘米、b 厘米,且a 、b 恰好是关于x 的方程01)1(2=++--m x m x 的两个实数根,试求出原矩形纸片的面积.二、强化训练练习一:填空题1.一个三角形的两条边长分别为9和2,第三边长为奇数,则第三边长为 .2.已知∠a=60°,∠AOB=3∠a,OC 是∠AOB 的平分线,则∠AOC = ___ .3.直角三角形两直角边的长分别为5cm 和12cm ,则斜边上的中线长为4.等腰Rt △ABC, 斜边AB 与斜边上的高的和是12厘米, 则斜边AB= 厘米.5.已知:如图△ABC 中AB=AC, 且EB=BD=DC=CF, ∠A=40°, 则∠EDF 的度数为________.6.点O 是平行四边形ABCD 对角线的交点,若平行四边行ABCD 的面积为8cm ,则△AOB 的面积为 .7.如果圆的半径R 增加10% , 则圆的面积增加_________ .8.梯形上底长为2,中位线长为5,则梯形的下底长为 .9. △ABC 三边长分别为3、4、5,与其相似的△A′B′C′的最大边长是10,则△A′B′C′的面积是 .10.在Rt △ABC 中,AD 是斜边BC 上的高,如果BC=a ,∠B=30°,那么AD 等于 .练习二:选择题1.一个角的余角和它的补角互为补角,则这个角等于 [ ]° ° ° °2.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是 [ ]A .矩形B .三角形C .梯形D .菱形3.下列图形中,不是中心对称图形的是 [ ]A. B. C. D. A B C D EEB AC B A M CD M 图3 图4 图1 图24.既是轴对称,又是中心对称的图形是 [ ]A.等腰三角形B.等腰梯形C.平行四边形D.线段5.依次连结等腰梯形的各边中点所得的四边形是 [ ]A.矩形B.正方形C.菱形D.梯形6.如果两个圆的半径分别为4cm和5cm,圆心距为1cm,那么这两个圆的位置关系是[ ]A.相交B.内切C.外切D.外离7.已知扇形的圆心角为120°,半径为3cm,那么扇形的面积为 [ ]三点在⊙O上的位置如图所示,若∠AOB=80°,则∠ACB等于 [ ]A.160° B.80°C.40° D.20°9.已知:AB∥CD,EF∥CD,且∠ABC=20°,∠CFE=30°,则∠BCF的度数是[ ]°°°°(第9题图)(第10题图)10.如图OA=OB,点C在OA上,点D在OB上,OC=OD,AD和BC 相交于E,图中全等三角形共有[ ]对对对对练习三:几何作图1.下图左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形,要求大小与左边四边形不同。
2. 正方形网格中,小格的顶点叫做格点,小华按下列要求作图:①在正方形网格的三条不同实线上各取一个格点,使其中任意两点不在同一条实线上;②连结三个格点,使之构成直角三角形,小华在左边的正方形网格中作出了Rt△ABC,请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等。
3.将图中的△ABC作下列运动,画出相应的图形,并指出三个顶点的坐标所发生的变化.(1)沿y轴正向平移2个单位;(2)关于y轴对称;4. 如图, 要在河边修建一个水泵站, 分别向张村, 李村送水.修在河边什么地方, 可使所用的水管最短?(写出已知, 求作, 并画图)练习四:计算题1.求值:cos45°+ tan30°sin60°.2.如图:在矩形ABCD中,两条对角线AC、BD相交于点O,AB=4cm ,AD=34cm.(1)判定△AOB的形状. (2)计算△BOC的面积.3. 如图,某厂车间的人字屋架为等腰三角形,跨度AB=12米,∠A=30°,求中柱CD和上弦AC 的长(答案可带根号)4.如图,折叠长方形的一边AD,点D落在BC边的点F处,已知AB=8cm, BC=10cm ,求AE 的长.练习五:证明题1.阅读下题及其证明过程:已知:如图,D是△ABC中BC边上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.证明:在△AEB和△AEC中,ABD F C∴△AEB ≌△AEC(第一步)∴∠BAE=∠CAE(第二步)问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程;2. 已知:点在线段AB 上,PC =PD 。
请你添加一个条件,使图中存在全等三角形并给予证明。
所加条件为_____,你得到的一对全等三角形是△___≌△___。
证明:3.已知:如图 , AB=AC , ∠B=∠C .BE 、DC 交于O 点.求证:BD=CE练习六:实践与探索 1.用两个全等的等边△ABC 和△ACD 拼成如图的菱形ABCD 。
现把一个含60°角的三角板与这个菱形叠合,使三角板的60°角的顶点与点A 重合,两边分别与AB 、AC 重合。
将三角板绕点A 逆时针方向旋转。
(1)当三角板的两边分别与菱形的两边BC 、CD 相交于点E 、F 时(图a )①猜想BE 与CF 的数量关系是__________________;②证明你猜想的结论。
(2)当三角板的两边分别与菱形的两边BC 、CD 的延长线相交于点E 、F 时(图b ),连结EF ,判断△AEF 的形状,并证明你的结论。
2.如图,四边形ABCD 中,AC=6,BD=8,且AC ⊥BD ,顺次连接四边形ABCD各边中点,得到四边形A 1B 1C 1D 1;再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2……,如此进行下去得到四边形A n B n C n D n 。
(1)证明:四边形A 1B 1C 1D 1是矩形;·仔细探索·解决以下问题:(填空) (2)四边形A 1B 1C 1D 1的面积为____________ A 2B C 2D 2的面积为___________; (3)四边形A n B n C n D n 的面积为____________(用含n 的代数式表示); (4)四边形A 5B 5C 5D 5的周长为____________。
3.如图,在平面直角坐标系中,四边形ABCO 是正方形,点C 的坐标是(4,0)。
(1)直接写出A 、B 两点的坐标。
A ______________ B____________(2)若E 是BC 上一点且∠AEB=60°,沿AE 折叠正方形ABCO ,折叠后点B 落在平面内点F 处,请画出点F 并求出它的坐标。
(3)若E 是直线..BC 上任意一点,问是否存在这样的点E ,使正方形ABCO 沿AE 折叠后,点B 恰好落在x 轴上的某一点P 处?若存在,请写出此时点P 与点E 的坐标;若不存在,请说明理由。
参考答案例1证明:因为∠ABD =∠ACD ,∠BDE =∠CDE 。
而∠BDE =∠ABD + ∠BAD ,∠CDE =∠ACD +∠CAD 。
所以 ∠BAD =∠CAD ,而∠ADB=180°-∠BDE ,∠ADC =180°-∠CDE ,所以∠ADB =∠ADC 。
在△ADB 和△ADC 中,∠BAD =∠CADAD =AD∠ADB =∠ADC所以 △ADB ≌△ADC 所以 BD =CD 。
例2(1)证明:连接OD ,AD . AC 是直径,∴ AD ⊥BC . ⊿ABC 中,AB =AC , ∴ ∠B =∠C ,∠BAD =∠DAC .P A A B C D E F 图a A B C D E F 图b A B D A 1 B 1 C 1 D 1 A 2 B 2 C 2 D 2 A 3 B 3 C 3 D 3 … A B C O E又∠BED 是圆内接四边形ACDE 的外角,∴∠C =∠BED .故∠B =∠BED ,即DE =DB .∴ 点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径,即∠DAC =∠BAD =∠ODA .∴OD ⊥DF ,DF 是⊙O 的切线.(2)解:设BF =x ,BE =2BF =2x .又 BD =CD =21BC =6, 根据BE AB BD BC ⋅=⋅,2(214)612x x ⋅+=⨯. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去).则 BF 的长为2.例3答案:(1)如图 (2)由题可知AB =CD =AE ,又BC =BE =AB +AE 。
∴BC =2AB , 即a b 2=由题意知 a a 2,是方程01)1(2=++--m x m x 的两根∴⎩⎨⎧+=⋅-=+1212m a a m a a 消去a ,得 071322=--m m 解得 7=m 或21-=m 经检验:由于当21-=m ,0232<-=+a a ,知21-=m 不符合题意,舍去.7=m 符合题意.∴81=+==m ab S 矩形答:原矩形纸片的面积为8c m 2.练习一. 填空2. 90°3. 5. 70° % 10.43 练习二. 选择题练习三:略2. 下面给出三种参考画法:4.作法:(1)作点A 关于直线a 的对称点A'. (2)连结A'B 交a于点C .则点C 就是所求的点.证明:在直线a 上另取一点C', 连结AC,AC', A'C', C'B .∵直线a 是点A, A'的对称轴, 点C, C'在对称轴上∴AC=A'C, AC'=A'C'∴AC+CB=A'C+CB=A'B∵在△A'C'B 中,A'B <A'C'+C'B ∴AC+CB <AC'+C'B即AC+CB 最小.练习四:计算1. 12.①等边三角形 ②433. 23、434. 55练习五:证明1.第一步、推理略2.略3. 证:∵∠A=∠A , AB=AC , ∠B=∠C .∴△ADC ≌△AEB(ASA)∴AD=AE B A C B A M C E M 图3 图4 E∵AB=AC, ∴BD=CE.练习六;实践与探索1.(1)①相等②证明△AFD≌△AEC即可(2)△AEF为等边三角形,证明略2..(1)证明略(2)12, 6 (3)242n(4)723. (1)A(0,4)B(4,4)(2)图略,F(2,4 )(3)存在。