161分式-1612分式的基本性质教案人教新课标八年级下
- 格式:docx
- 大小:13.67 KB
- 文档页数:3
初中数学《分式的基本性质》教案一、教学内容本节课选自初中数学教材第九章第二节,主要详细讲解分式的基本性质。
内容包括分式的定义、分式的基本性质、分式的简化以及分式在生活中的应用等。
二、教学目标1. 理解并掌握分式的定义,能够识别并运用分式的基本性质。
2. 学会简化分式,并能运用简化后的分式解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力,激发学生对数学学习的兴趣。
三、教学难点与重点教学难点:分式的基本性质的理解与应用。
教学重点:分式的定义、简化分式的方法以及分式的实际应用。
四、教具与学具准备1. 教具:黑板、粉笔、教学课件。
2. 学具:学生用书、练习本、计算器。
五、教学过程1. 实践情景引入利用生活中的例子(如水果分配、时间计算等)引出分式的概念。
2. 知识讲解(1)分式的定义:讲解分式的构成,分子、分母、分数线等。
(2)分式的基本性质:讲解分式的分子分母同乘(除)一个不等于0的数,分式的值不变。
(3)简化分式:讲解如何将分式简化,并举例说明。
3. 例题讲解结合教材例题,详细讲解分式的简化过程。
4. 随堂练习(1)让学生独立完成练习题,巩固分式的简化方法。
(2)小组讨论,解决实际问题,培养学生的合作意识。
5. 课堂小结六、板书设计1. 分式的定义2. 分式的基本性质3. 简化分式的步骤4. 例题及解答七、作业设计1. 作业题目2x^2 / 4x, (x+1)^2 / (x+1), 6x^3 / 3x^2(2)运用分式的性质,解决实际问题。
2. 答案(1)简化后的分式分别为:x / 2, x+1, 2x(2)实际问题答案根据具体情况而定。
八、课后反思及拓展延伸2. 拓展延伸:引导学生探索分式在生活中的其他应用,提高学生的创新意识和应用能力。
重点和难点解析1. 分式的基本性质的理解与应用。
2. 简化分式的方法。
3. 实际问题的解决。
4. 板书设计。
5. 作业设计与答案。
一、分式的基本性质的理解与应用分式的分子分母同乘(除)一个不等于0的数,分式的值不变。
八年级数学人教版16.1.2分式基本性质(一)教学设计柳州市柳江县成团中学熊柳英邮编:54510316.1.2分式的基本性质(第一课时)的分子和分母中的教学设计说明:本节棵课主要是采用了本校倡导的新的教学方法,“先学后教,当堂训练”的教学模式。
主要以学生的自学为主,教师指导为辅,在巡堂的过程中个别询问,特别是通过板演,练习等检测形式进行调查,最大限度地暴露学生自学中的疑难问题,并认真分析带倾向性的问题,进行整理、归类,为“后教”作好准备。
在引入环节,通过具体的例子来引导学生回忆前面所学过的分数的基本性质,通过类比得出分式的基本性质;学会通过看课本自学,让学生自行归纳,学会用数学语言及字母来叙述分式的基本性质,来完成自学指导(一)。
通过整合教材,而设计了分式的分子分母都是单项式的例题进行过度到课本的例2分式的分子、分母都是多项式来掌握分式基本性质的应用,搭建了一个适当的梯度,学生自学的难度就降低了,书本上大部分知识学生通过自学能够解决,老师的讲反而更耽误时间。
所以这节课无论从引入还是例题的学习我都先给一定的时间让学生先自学,而我是指导他们如何解决在自学中所出现的疑惑,这样平时老师需要讲十几分钟的内容,学生自学5分就可以了,给课题增强了生命力,提高了学习效率。
因为我规定学生自学几分钟就要做练习题,学生有一种紧迫感,不认真看就不会做练习题,落在别人后边,从而培养了学生的竞争意识。
在完成拓展题,让学生学会交流,会听取别人的意见来补充自己的不足。
从而找出答案,重要的是学会了学习。
本节课设计的当堂训练题有层次性,课时演练达到15分钟,题目分:必做题、选做题和思考题,一个循序渐进的过程,满足于大多数学生的同时,拓展题又能让上等水平的学生的能力得到提升,这符合学生心理发展特点;照顾到班级中的“好、中、差”生。
16.1.2 分式的基本性质一、教学目标知识与技能1、通过类比分数的基本性质,学习并掌握分式的基本性质。
2、说出最简分式的意义和特征。
3、能根据分式的基本性质对分式进行约分和通分。
过程与方法通过分式的恒等变形提高学生的运算能力.情感、态度与价值观渗透类比转化的数学思想方法.二、教学重、难点重点:使学生理解并掌握分式的基本性质,这是学好本章的关键.难点:灵活运用分式的基本性质和变号法则进行分式的恒等变形.三、教学准备多媒体课件。
四、教学方法分组讨论五、教学过程(一)复习旧知通过提问的方式,唐学生回答1.分式的定义?2.分数的基本性质?有什么用途?(二)新课讲授1、类比分数的基本性质,由学生小结出分式的基本性质:(1)、在括号内填上适当的数,使等式成立:2()312= 18()122= (学生迅速解题,师巡堂指点) 生1:8, 3 生2:6., 3 师:生1是对的(2)、想一想:上面的题目我们运用了什么性质?你能说出来吗?类比这个性质完成下面的题目:()A A M B B M ⨯=⨯ ; ()A A MB M ÷=÷ B ( 其中M 是不等于零的整式) 这就是分式的基本性质,谁能用语言叙述出来?(让学生讨论后回答)分式的基本性质:分式的分子分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
2、分式的约分 (1)、引入:1863()24644⨯==⨯ 同理:232232226(2)(3)()8(2)(4)4a b a b b a b a b a a ⋅== ;222()()()()x xy x x y xx y x y x y ++==--⋅+ (让学生类比分数的约分,讨论交流分式的约分)(2)、约分的定义:约分就是把分式的分子与分母中的公因式约去。
约分后,分子与分母不再有公因式,我们把这样的分式称为最简分式.(师给出定义后出示例题,先由学生自主解答,再由师生共同加以纠正)3、分式的通分(1)、把分数65,43,21通分。
2019-2020学年八年级数学下册 161分式教案 人教新课标版 教学目标(一) 知识与技能目标1.使学生了解分式的概念,明确分母不得为零是分式概念的组成部分.2.使学生能够求出分式有意义的条件.(二) 过程与方法目标能用分式表示现实情境中的数量关系,体会分式是表示现实世界中一类量的数学模型,进一步发展符号感,通过类比分数研究分式的教学,引导学生运用类比转化的思想方法研究解决问题.(三)情感与价值目标在土地沙化问题中,体会保护人类生存环境的重要性。
培养学生严谨的思维能力. 教学重点和难点准确理解分式的意义,明确分母不得为零既是本节的重点,又是本节的难点. 教学方法:分组讨论.教学过程1. 情境引入:面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成原计划任务,原计划每月固沙造林多少公顷?(1) 这一问题中有哪些等量关系?(2) 如果设原计划每月固沙造林x 公顷,那么原计划完成一期工程需要____________个月,实际完成一期工程用了____________个月;根据题意,可得方程 ;2、解读探究x 2400,302400+x ,43024002400=+-x x 认真观察上面的式子,方程有什么特点?做一做1.正n 边形的每个内角为 度2一箱苹果售价a 元,箱子与苹果的总质量为mkg ,箱子的质量为nkg ,则每千克苹果售价是多少元? 上面问题中出现的代数式x 2400,302400+x ,nn 180)2(⨯-;它们有什么共同特征? (1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:的分母.(2)由学生举几个分式的例子.(3)学生小结分式的概念中应注意的问题.①分母中含有字母.②如同分数一样,分式的分母不能为零.(4)问:何时分式的值为零?(以(2)中学生举出的分式为例进行讨论)例1(1)当a=1,2时,求分式aa 21+的值; (3) 当a 取何值时,分式a a 21+有意义? 解:(1)当a =1时,;1121121=⨯+=+a a 当a=2时43221221=⨯+=+a a (2)当分母的值等于零时,分式没有意义,除此以外,分式都有意义。
八年级数学下册 16.1.2 分式的基本性质教案1新人教版16、1、2分式的基本性质一、教学目标知识与技能1、总结分式的基本性质;2、利用分式的基本性质对分式进行“等值”变形;3、说出分式通分、约分的步骤和依据,总结分式通分、约分的方法;4、说出最简分式的意义,能将分式化为最简分式。
过程与方法经历与他人合作探究分式的基本性质及应用的过程,通过类比分数的基本性质,推测出分式的基本性质。
情感态度价值观体会知识点之间的联系,在已有数学经验的基础上,提高学数学的乐趣。
二、教学重点、难点重点:1、分式的基本性质;2、利用分式的基本性质约分、通分;3、将一个分式化简为最简分式、将分式通分。
难点:分子、分母是多项式的分式的约分和通分。
三、教学方法:启发引导,类比分数,讲练结合四、教学媒体:多媒体课件五、课时安排:1课时六、教学设计过程(一)复习引入通过回顾我们可以得出:一般地,对于任意一个分数有,其中a,b,c是数。
(二)讲授新课活动1通过类比分数的基本性质,我们可以推想出分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变。
用式子表示为:活动2例2 填空仔细分析,看分母如何变化,是“多”还是“少”?想分子如何变化;看分子如何变化,是“多”了还是“少”了,想分母如何变化。
例3第二课时约分活动3思考类比分数的的约分,例3 约分重点关注:1、约分的依据。
2、约分的关键是公因式。
3、公因式如何确定。
4、约分后的最后结果应为最简分式。
即:分子、分母没有公因式。
(化为最简分式有什么意义?)活动4 通分类比分数的的通分例4重点关注:1、通分的依据。
2、通分的关键是确定几个分式的公分母。
3、如何确定几个分式的公分母。
(三)课堂练习课后反思:。
2024年分式的基本性质课时教案一、教学内容本节课选自人教版数学八年级下册第十四章《分式》第一节《分式的基本性质》。
具体内容包括分式的概念、分式的分子与分母同乘(除)一个不等于0的整式,分式的值不变、分式的分子与分母同乘(除)一个不等于0的整式,分式的约分等。
二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质进行分式的化简和运算。
2. 培养学生的逻辑思维能力和抽象思维能力,提高学生的数学素养。
3. 培养学生运用分式基本性质解决实际问题的能力,增强学生的应用意识。
三、教学难点与重点教学难点:分式的分子与分母同乘(除)一个不等于0的整式,分式的值不变;分式的约分。
教学重点:分式的基本性质及其运用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:学生用书、练习本、文具。
五、教学过程1. 实践情景引入通过一个关于实际问题的情景,如“计算两个长方形的面积比”,引出分式的概念。
2. 例题讲解(1)讲解分式的定义,通过具体的例子让学生理解分式的组成。
(2)讲解分式的基本性质,结合例题让学生掌握分子与分母同乘(除)一个不等于0的整式,分式的值不变。
(3)讲解分式的约分,通过例题使学生掌握约分的方法。
3. 随堂练习让学生独立完成教材第14页练习题1、2、3。
5. 课堂小结六、板书设计1. 分式的概念2. 分式的基本性质3. 分式的约分4. 例题及解答过程七、作业设计1. 作业题目:(1)教材第14页习题1、2、3。
(2)已知分式 $\frac{a}{b}$ 的值,求 $\frac{2a}{3b}$、$\frac{3b}{2a}$ 的值。
2. 答案:(1)见教材。
(2)$\frac{2a}{3b}$ 的值为 $\frac{2}{3} \times\frac{a}{b}$,$\frac{3b}{2a}$ 的值为 $\frac{3}{2} \times\frac{b}{a}$。
八、课后反思及拓展延伸1. 反思:关注学生在课堂上的表现,及时发现问题,调整教学方法,提高教学效果。
初中数学精品教案《分式的基本性质》教案:《分式的基本性质》一、教学内容1. 分式的概念:分式是形如a/b的表达式,其中a和b是整式,且b不为0。
2. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
3. 分式的约分和通分:根据分式的基本性质,可以将分式约分或通分。
二、教学目标1. 理解分式的概念,掌握分式的基本性质。
2. 学会运用分式的基本性质对分式进行约分和通分。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点1. 教学难点:分式的基本性质的理解和运用。
2. 教学重点:分式的基本性质的运用,包括约分和通分。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:练习本、尺子、圆规。
五、教学过程1. 实践情景引入:情景:小红购买了一本书,原价是24元,现在打8折,问小红实际支付了多少钱?解答:原价24元,打8折后的价格是240.8=19.2元,小红实际支付了19.2元。
2. 例题讲解:例题1:计算分式2/3+4/5。
解答:找到分母3和5的最小公倍数是15,然后将两个分式的分母都变为15,得到25/35+43/53=10/15+12/15=22/15。
例题2:计算分式6/83/4。
解答:找到分母8和4的最小公倍数是8,然后将两个分式的分母都变为8,得到6/832/42=6//8=0。
3. 随堂练习:练习1:计算分式3/5+2/7。
练习2:计算分式4/91/3。
4. 分式的基本性质:引导学生发现,在例题1和例题2中,我们可以将分式的分子和分母同时乘以(或除以)同一个不为0的整式,使得分式的值不变。
这就是分式的基本性质。
5. 分式的约分和通分:根据分式的基本性质,我们可以将分式约分或通分。
六、板书设计1. 分式的概念:a/b,其中a和b是整式,且b不为0。
2. 分式的基本性质:分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。