2018届辽宁师范大学附属中学高三上学期期末考试数学(理)试题Word版含解析版
- 格式:doc
- 大小:877.50 KB
- 文档页数:14
2017-2018学年度上学期期末考试高二试题数学(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线2233x y -=的渐近线方程是( )A .y =B .13y x =± C .3y x =± D .y = 2.命题P :“平面内与两个定点的距离的和等于常数的点的集合叫做椭圆”;命题Q :“平面内与两个定点的距离的差的绝对值等于常数的点的集合叫做双曲线”.下列命题中正确的是( )A .命题PB .命题Q ⌝C .命题P Q ∨D .命题P Q ⌝∨ 3.若0a b <<,1a b +=,则a ,12,2ab 中最大的数为( ) A .a B .2ab C .12D .无法确定 4.对于常数m 、n ,“0mn >”是“方程221mx y +=的曲线是椭圆”的( )条件 A .充分不必要 B .必要不充分 C.充分必要 D .既不充分也不必要条件5.下列选项错误的是( )A .命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =”B .“2x >”是“2320x x -+>”的充分不必要条件;C.若命题p :x R ∀∈,210x x ++≠,则p ⌝:0x R ∃∈,2010x x ++=; D .在命题的四种形式中,若原命题为真命题,则否命题为假命题6.在各项均为正数的等比数列{}n a 中,21a =,5642a a a =+,则6a 的值是( )A .1B .2 C..47.在平行六面体1111ABCD A B C D -中,M 为AC 与BD 的交点,若11A B a =,11A D b =,1A A c =,则下列向量中与1B M 相等的向量是( )A .1122a b c -++B .1122a b c -+ C. 1122a b c --+ D .1122a b c ++8.已知抛物线214y x =,P 是抛物线上一点,F 为焦点,一个定点(35)A ,,则PA PF +的最小值为( )A .5B .6 C.7 D .89.已知1v ,2v 分别为直线1l ,2l 的方向向量(1l ,2l 不重合),1n ,2n 分别为平面α,β的法向量(α,β不重合),则下列说法中:①1212v v l l ⇔∥∥;②1212v v l l ⊥⇔⊥;③12n n αβ⇔∥∥;④12n n αβ⊥⇔⊥,其中正确的有( )个 A .1 B .2 C.3 D .410.已知椭圆中心在原点,且一个焦点为(0F ,直线43130x y +-=与其相交于M 、N 两点,MN 中点的横坐标为1,则此椭圆的方程是( )A .221325y x +=B .221325x y += C.221369y x += D .221369x y +=11.设x ,y 满足约束条件1x y a x y +⎧⎨--⎩≥≤,且z x ay =+的最小值为7,则a =( )A .5-B .3 C.5-或3 D .5或3- 12.函数1y x=的图象也是双曲线,请根据上述信息解决以下问题:若圆222(1)x y r +-=与曲线(1)1x y -=没有公共点,则半径r 的取值范围是( )A .0r <.0r <<C.0r <<.0r <<第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若椭圆的短轴的一个端点与两个焦点是同一个正三角形的顶点,则这个椭圆的离心率为 .14.已知四面体P ABC -,60PAB BAC PAC ∠=∠=∠=︒,1AB =,2AC =,3AP =,则AB AP AC ++= .15.已知0x >,0y >,2280x xy y ++-=,则2x y +的最小值是 .16.已知各项均为正数的数列{}n a 的前n 项和为n S ,若11S =,221132n n n n S a S a ++-=,则数列{}n a 的通项公式为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在等差数列{}n a 中,26a =,420S = (1)求数列{}n a 的通项公式; (2)设2(12)n n b n a =-(*n N ∈),12n n T b b b =+++(*n N ∈),求n T 18. 如图,已知正方体ABCD A B C D ''''-的棱长为1,E ,F ,G ,H 分别是棱AB ,CC ',AA ',C D ''的中点.(1)求证:EF ∥平面GHD ; (2)求直线EF 与BD '所成的角.19. 在平面直角坐标系xOy 中,直线l 与抛物线24y x =相交于A 、B 两点. (1)求证:“如果直线l 过点(30)T ,,那么3OA OB ⋅=-”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.20. 如图,在直角梯形11AA B B 中,190A AB ∠=︒,11A B AB ∥,11122AB AA A B ===.直角梯形11AA C C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使平面11AA C C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点.(1)求证:AC AB ⊥;(2)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值; (3)是否存在点P ,使得直线1AC ∥平面AMP ?请说明理由. 21. 在学习过程中,我们通常遇到相似的问题.(1)已知动点P 为圆O :222x y r +=外一点,过P 引圆O 的两条切线PA 、PB .A 、B 为切点,若0PA PB ⋅=,求动点P 的轨迹方程;(2)若动点Q 为椭圆M :22143x y +=外一点,过Q 引椭圆M 的两条切线QC 、QD .C 、D 为切点,若0QC QD ⋅=,猜想动点Q 的轨迹是什么,请给出证明并求出动点Q 的轨迹方程. 22.已知抛物线2C :22x py =(0p >)的通径(过焦点且垂直于对称轴的弦)长为4,椭圆1C :22221x y a b+=(0a b >>2C 的焦点.(1)求抛物线2C 和椭圆1C 的方程;(2)过定点3(1)2M -,引直线l 交抛物线2C 于A 、B 两点(A 在B 的左侧),分别过A 、B作抛物线2C 的切线1l ,2l ,且1l 与椭圆1C 相交于P 、Q 两点,记此时两切线1l ,2l 的交点为D .①求点D 的轨迹方程;②设点1(0)4E ,,求EPQ △的面积的最大值,并求出此时D 点的坐标.2017-2018学年度上学期期末考试高二试题数学(理)参考答案及评分标准一、选择题1-5:ABCBD 6-10:DABDC 11、12:BC二、填空题13.12 14.5 15.4 16.21122n n n a n -=⎧=⎨⎩,,≥ 三、解答题17.解:设{}n a 的公差为d ,由题意得1164620a d a d +=⎧⎨+=⎩解得182a d =⎧⎨=-⎩得82(1)102n a n n =--=- (2)∵2111(12)(1)1n n b n a n n n n ===--++123n n T b b b b =++++=11111(1)()()22311nn n n -+-++-=++ 18.(1)证明:以D 为原点O ,建立空间直角坐标系[;]O DA DC DD ',, 由已知条件可得(000)D ,,,1(10)2G ,,,1(01)2H ,,,1(10)2E ,,,1(01)2F ,,11(1)22EF =-,,,1(10)2DG =,,,1(01)2DH =,,EF DH DG =-,又有EF ⊄平面GHD所以EF ∥平面GHD(其它证法酌情给分,但要注意“EF ⊄平面GHD ”) (2)如(1)问建系,(110)B ,,,(001)D ',, (111)BD '=--,,,11(1)22EF =-,,cos EF BD EF BD EF BD '⋅'==',11(1)(1)(1)1-⨯-+⨯-+⨯= 所以EF BD '=, 即求直线EF 与BD '所成的角19.证明:(1)设过点(30)T ,的直线l 交抛物线24y x =于点11()A x y ,,22()B x y , 当直线l 的斜率不存在时,直线l 的方程为3x =,此时,直线l与抛物线相交于点(3A ,、(3B -,,∴3OA OB ⋅=- 当直线l 的斜率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠ 由24(3)y x y k x ⎧=⎨=-⎩得24120ky y k --=,则1212y y =- 又∵21114x y =,22214x y =,∴2121212121()316OA OB x x y y y y y y ⋅=+=+=- 综上所述,命题“如果直线l 过点(30)T ,,那么3OA OB ⋅=-”是真命题. (2)逆命题是:设直线l 交抛物线24y x =于A 、B 两点, 如果3OA OB ⋅=-,那么直线l 过点(30)T ,, 该命题是假命题.例如:取抛物线上的点(12)A ,,(12)B -,.此时3OA OB ⋅=- 直线AB 的方程为1x =,而(30)T ,不在直线AB 上.20.解:(1)由已知190A AC ∠=︒,平面11AA C C ⊥平面11AA B BAC ⊂平面11ACC A ,平面11ACCA 平面111ABB A AA =所以AC ⊥平面11ABB A 又AB ⊂平面11ACC A 所以AC AB ⊥(2)由(1)可知AC ,AB ,1AA 两两垂直.分别以AC ,AB ,1AA 为x 轴,y 轴,z 轴建立空间直角坐标系如图所示.由已知1112AB AC AA A B ===1122A C ==所以(000)A ,,,(020)B ,,,(200)C ,,,1(012)B ,,,1(002)A ,,因为M 为线段BC 的中点,P 为线段1BB 的中点. 所以(110)M ,,,3(01)2P ,,易知平面ABM 的一个法向量(001)m =,, 设平面APM 的一个法向量为()n x y z =,,由00n AM n AP ⎧⋅=⎪⎨⋅=⎪⎩得0302x y y z +=⎧⎪⎨+=⎪⎩取2y =,得(223)n =--,,由图可知,二面角P AM B --的大小为锐角,所以cos 17m n m n m n⋅===⋅,(3)存在点P ,使得直线1AC ∥平面AMP设111()P x y z ,,,且1BP BB λ=,[01]λ∈,,则111(2)(012)x y z λ-=-,,,,所以10x =,12y λ=-,12z λ=.所以(022)AP λλ=-,, 设平面AMP 的一个法向量为0000()n x y z =,,,由0000n AM n AP ⎧⋅=⎪⎨⋅=⎪⎩得00000(2)20x y y z λλ+=⎧⎨-+=⎩取01y =,得02(11)2n λλ-=-,,(0λ=不符合题意) 又1(202)AC =-,,若1AC ∥平面AMP ,则10AC n ⊥ 所以10220AC n λλ-⋅=--=,所以23λ= 所以存在点P ,使得直线1AC ∥平面AMP21.解:(1)由切线的性质及0PA PB ⋅=可知,四边形OAPB 为正方形 所以点P 在以O 为圆心,OP 长为半径的圆上,且OP OA = 进而动点P 的轨迹方程为2222x y r += (2)动点Q 的轨迹是一个圆 设两切线1l ,2l①当1l 与x 轴不垂直且不平行时,设点Q 的坐标为00()Q x y ,,则02x ≠± 设1l 的斜率为k ,则0k ≠,2l 的斜率为1k-,1l 的方程为00()y y k x x -=-,联立22143x y +=得2220000(34)8()4()120k x k y kx x y kx ++-+--= 因为直线与椭圆相切,所以0=△,得2222200008()4(34)4[()3]0k y kx k y kx --+⋅--=化简,2222200004()(34)()(34)30k y kx k y kx k --+-++=进而2200()(34)0y kx k --+=所以2220000(4)230x k x y k y --+-= 所以k 是方程222000(4)230x k x y k y --+-=的一个根. 同理1k-是方程222000(4)230x k x y k y --+-=的另一个根. 所以202031()4y k k x -⋅-=-,得2207x y +=,其中02x ≠± ②当1l x ⊥轴或1l x ∥轴时,对应2l x ∥轴或2l x ⊥轴,可知(2P ±,,满足上式, 综上知:点P 的轨迹方程为227x y += 22.解:(1)∵抛物线2C 的通径长为4 ∴24p =,得2p =∴抛物线2C 的方程为24x y = ∵抛物线2C 的焦点(01),在椭圆1C 上 ∴211b =,得21b = ∵椭圆1C的离心率为c e a ===∴24a =∴椭圆1C 的方程为2214x y +=(2)设211()4x A x ,,200()4x B x ,其中A B x x ≠,0A x <,0B x > ∵点A 、M 、B 三点共线∴2233424211A B A B x x x x --=++∴60A B A B x x x x +++=(*)设切线1l 的方程为2()4AA x y k x x =-+,与抛物线方程24x y =联立消去y ,得22440A A x kx kx x -+-=,由0=△,可得2Ax k =即224A Ax x y x =- 同理可得,切线2l 的方程为224B Bx x y x =- 联立两方程解得,点D 坐标为()24A B A Bx x x x +, ①设点()D x y ,,则2A B x x x +=,4A B x x y = 代入(*)式得,点D 的轨迹方程为:230x y ++= ②由切线1l 和椭圆1C 方程,消去y 得:22344(1)4160A A A x x x x x +-+-=∴321AP Q A x x x x +=+,42164(1)A P Q A x x x x -=+∴PQ=∵点E 到切线1l的距离为2d ==∴EPQ △的面积为212S =∴当28Ax =,A x =-S此时,由(*)可得B x = ∴点D坐标为倚窗远眺,目光目光尽处必有一座山,那影影绰绰的黛绿色的影,是春天的颜色。
辽宁师范大学附属中学2018届高三上学期期末考试数学(文)试题一、单选题1.设复数112i z i -=+(i 是虚数单位),则z 的共轭复数为( ) A. 1355i + B. 1355i - C. 1355i -+ D. 1355i -- 答案:B解答: 化简1()(1)1(1)(2)1312()(12)2(2)(2)5i i i i i i i z i i i i i i ---++++=====+-+--+,∴1355z i =-,故选B. 2. 已知集合{|ln(1)}A x y x ==-, {|12}B x x =-<<,则A B =I ( )A.(1,2)B.(1,2)-C.(1,1)-D.(1,1]-答案:A解答:集合{|ln(1)}{|1}A x y x x x ==-=>, {|12}B x x =-<<,所以{|12}(1,2)A B x x =<<=I ,故选A.3. 元代数学家朱世杰的数学名著《算术启蒙》是中国古代数学的通论,其中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若16a =, 9b =,则输出的n =( )A.2B.3C.4D.5答案:A解答:模拟程序的运行,可得16,9,1,24,18a b n a b =====,不满足a b ≤,执行循环体, 2,36,36n a b ===,满足条件a b ≤,退出循环,输出n 的值为2,故选A.4. 已知焦点在x 轴上的双曲线C 的两条渐近线方程为340x y +=和340x y -=,则该双曲线的离心率为( ) A. 54或532C.53D. 54 答案:D解答:由渐近线方程为34=0,340x y x y +-=,即渐近线方程为34y x =±,设双曲线的方程为22221(,0)x y a b a b -=>,则渐近线方程为b y x a =±,即有34b a =, 又2222229251616c a b a a a =+=+=,即54c a =,可得54c e a ==,故选D. 5. 下列函数中,既是偶函数又在区间(0,1)上单调递减的是( ) A. 13y x =B. x y e =C. 1()2x y =D. ln y x =答案:C解答:A ,13y x =是奇函数,在区间(0,1)内单调递增,不满足条件;B ,x y e =不是偶函数,在区间(0,1)内单调递增,不满足条件;C ,1()2xy =是偶函数,在区间(0,1)内单调递减,满足条件;D ,ln y x =不是偶函数,在区间(0,1)内单调递减,不满足条件,故选C.6. 某校初三年级有400名学生,随机抽查了40名学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( )A. 该校初三年级学生1分钟仰卧起坐的次数的中位数为25次B. 该校初三年级学生1分钟仰卧起坐的次数的众数为24次C. 该校初三年级学生1分钟仰卧起坐的次数超过30次的人数约有80人D. 该校初三年级学生1分钟仰卧起坐的次数少于20次的人数约为8人答案:C解答:第一组数据的频率为0.0250.1⨯=;第二组数据的频率为0.0650.3⨯=,第三组的频率为0.0850.4⨯=,∴中位数在第三组内,设中位数为25x +,则.080.50.10.30.1x ⨯=--=,∴ 1.25x =,∴数据的中位数为26.25,故A 错误;最高矩形是第三组数据,第三组数据的中间值为27.5,∴众数为27.5,故B 错误;学生1分钟仰卧起坐的成绩超过30次的频率为0.0450.2⨯=,∴超过30次的人数为4000.280⨯=人,故C 正确;学生1分钟仰卧起坐的成绩少于20次的频率为0.0250.1⨯=,∴1分钟仰卧起坐的成绩少于20次的人数为4000.140⨯=人,故D 错误,故选C.7. 若α, β均为锐角且1cos 7α=, 11cos()14αβ+=-,则3sin(2)2πβ+=( ) A.12-B.12C.答案:B解答:∵α,β为锐角,∴0αβπ<+<,∵111cos ,cos()714ααβ=+=-,∴sin sin(ααβ=+cos =cos[()]βαβα+-()1111cos +cos sin()sin ()1471472αβααβα=++=-⨯+=, 231sin(2)cos 212cos 22πβββ+=-=-=,故选B. 8. 甲乙丙丁四名同学参加某次过关考试,甲乙丙三个人分别去老师处问询成绩,老师给每个人只提供了其他三人的成绩.然后,甲说:我们四个人中至少两人不过关;乙说:我们四人中至多两人不过关;丙说:甲乙丁恰好有一人过关.假设他们说的都是真的,则下列结论正确的是( )A.甲没过关B.乙没过关C.丙没过关D.丁过关答案:B解答:因为甲说:我们四个人中至少两人不过关;乙说:我们四人中至多两人不过关;所以四人组有且只有两人过关,两人不过关,又因为,丙说:甲乙丁恰好有一人过关,不过关的情况有三种可能:甲乙、甲丁、乙丁,根据甲不知道自己成绩的情况下说四个人中至少两人不过关,可见乙丙丁中有两人不过关,不过关的可能的情况有三种:乙丙、丙丁、乙丁,结合以上六种,同时成立的是乙丁不过关,甲丙过关,故选B.9. 一个正六棱柱的主视图(由两个边长等于4的正方形组成)如图所示,则该六棱柱的侧视图的面积为( )A.16B.D.答案:C解答:由三视图可得,正六棱柱的直观图如图, 111111ABCDEF A B C D E F -,图中8FB =, 设底面正六边形边长为a8,a ==112A D a ==,∴棱柱侧视图是边长为3与4的矩形,4= C.10.已知数列{}n a 是公差不为0的等差数列,23a =,且3a ,5a ,8a 成等比数列,设11n n n b a a +=,则数列{}n b 的前n 项和n T 为( ) A. 1n n +B. 1n n - C. 221nn + D. 24nn +答案:D解答:设首项为1a ,公差为d , ∵23583,,,a a a a =成等比数列,∴112113(2)((4)7)a d a a a d d d +==++⎧⎨+⎩,解得121a d =⎧⎨=⎩,∴1n a n =+,111(1)(2)12n b n n n n ==-++++,∴12...n n T b b b =+++11111111+...2334122224nn n n n =--++-=-=++++,故选D.11. “01m <≤”是函数1,1() 1,1mx f x x x x ⎧->⎪=⎨⎪-+≤⎩满足:对任意的12xx ≠,都有12()()f x f x ≠”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件答案:A解答:∵当01m <≤时,()1mg x x =-在(1,)+∞上递减,()1h x x =-+在(,1)-∞递减,且(1)(1)g h ≤,∴()f x 在(,)-∞+∞上递减,∴任意12x x ≠都有12()()f x f x ≠, 若0,()m g x <在(1,)+∞上递增,()h x 在(,1)-∞上递减,()0,()0g x h x <≥, ∴任意12x x ≠,都有12()()f x f x ≠,∴“01m <≤”是函数1,1() 1,1m x f x x x x ⎧->⎪=⎨⎪-+≤⎩满足:对任意的12x x ≠,都有12()()f x f x ≠”的充分不必要条件,故选A.12. 已知三棱锥P ABC -的四个顶点都在同一个球面上, 90BAC ∠=︒,BC =,PA = PA ⊥平面ABC ,则此三棱锥外接球的表面积为( ) A.163π B.4πC.15πD.16π 答案:C解答:因为PA ⊥平面ABC ,所以,PA AB PA AC ⊥⊥ ,又因为90BAC ∠=︒,所以AB AC ⊥ ,所以三棱锥P ABC -的外接球就是以,,PA AB AC 为长宽高的长方体的外接球, 所以外接球的直径等于长方体的体对角线,可得22222222415R PA AB AC PA BC =++=+=+=,此三棱锥外接球的表面积为2415R ππ=,故选C.二、填空题13. 若函数2,[1,1]() (2),(1,)x x f x f x x ⎧∈-=⎨-∈+∞⎩,则(5)f = . 答案:1解答:因为函数2,[1,1]() (2),(1,)x x f x f x x ⎧∈-=⎨-∈+∞⎩,所以2(5)(3)(1)11f f f ====,故答案为1. 14. 已知数列{}n a 的前n 项和为n S ,且2()13nn S =+,则n a = .答案: 15,13 12(),233n n n -⎧⎪=-⋅≥⎪⎨⎪⎪⎩ 解答:1n =时,1153a S ==,2n ≥时,1122()1[()1]33n n n n n a S S --=-=+-+, ∴15,13 12(),233n n n a n -⎧=⎪⎪=⎨⎪-⋅≥⎪⎩,故答案为15,13 12(),233n n n -⎧⎪⎪⎨=-≥⎪⎪⎩⋅. 15. 若0a >, 0b >,点(0,0)A在圆2240x y a b +++--=的外部,则2a b +的范围是 .答案:(2,8)解答:2240x y a b +++--=可化为22(24y a b x +=+-+,∴240a b +->,又∵(0,0)在圆2240x y a b +++--=的外部,∴40,4a b a b -->+<,画出4 0,0240a b a b a b ⎧⎪⎨⎪>>+-+⎩><的可行域,如图,由图知2a b +在(0,4)处有最大值8, 2a b +在(2,0)处有最小值2, 因为此可行域在边界处不能取值,∴2a b +的取值范围是(2,8),故答案为(2,8).16. 直角梯形ABCD 中, CB CD ⊥, //AD BC , ABD ∆是边长为2的正三角形, P是平面上的动点, ||1CP =u u r ,设A P AB D A λμ=+u u u r u u u r u u u r (λ, R μ∈),则λμ+的最大值为 .答案:解答:以C 为原点, CD uuu r 为x 轴, BC uu u r 所在直线为y 轴,建立直角坐标系, ∵1CP =uu r ,∴可设(cos ,sin )CP αα=u u r,(1AD =-u u u r ,(2,0)AB =-u u u r,(AC =-u u u r ,(cos 2,sin AP AC CP αα=+=-u u u r u u u r u u r ,因为AP AD AB λμ=+u u u r u u u r u u u r ,所以(cos 2,sin (2)ααλμ-+=--.sin 12cos 23 sin 11cos 22λαλμααμαα⎧⎪⎨⎧=+⎪--=-⎪⇒⎨=⎪=--+⎪⎩⎩⎪,1333cos =)2222λμαααϕ+=-++-+≤= , 即λμ+的最大值为96+故答案为96+.三、解答题 17. 已知(cos ,1)4x m =u r ,2,cos )44x x n =r ,设函数()f x m n =⋅u r r . (1)求函数()f x 的单调增区间;(2)设ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,且a ,b ,c 成等比数列,求()f B 的取值范围.答案:(1)[]424433k k ππππ-+,,k Z ∈; (2)(. 解答:(1)21()(cos ,1),cos )sin()444262x x x x f x m n π=⋅=⋅=++u r r , 令222262x k k πππππ-≤+≤+, 则424433k x k ππππ-≤≤+, k Z ∈, 所以函数()f x 单调递增区间为424,4]33[k k ππππ-+, k Z ∈. (2)由2b ac =可知,2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=(当且仅当a c =时,取等号),所以03B π<≤,6263B πππ<+≤,11()2f B +<≤,综上()f B 的取值范围为. 18. 某中学调查了某班全部40名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(1)能否有95%的把握认为参加书法社团和参加演讲社团有关?(附: 当2 3.841χ>时,有95%的把握说事件A 与B 有关;当2 3.841χ≤,认为事件A 与B 是无关的.)(2)已知既参加书法社团又参加演讲社团的8名同学中,有5名男同学12345,,,,A A A A A , 3名女同学123,,B B B .现从这5名男同学和3名女同学中各随机选1人,求1A 被选中且1B 未被选中的概率.答案:(1)见解析;(2)215P =.解答:(1)由调查数据可知, 没有95%的把握认为参加书法社团和参加演讲社团有关.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:11[,]A B ,12[,]A B ,13[,]A B ,21[,]A B ,22[,]A B ,23[,]A B ,31[,]A B ,32[,]A B ,33[,]A B ,41[,]A B ,42[,]A B ,43[,]A B ,51[,]A B ,52[,]A B ,53[,]A B 共15个.根据题意,这些基本事件的出现是等可能的.事件“1A 被选中且2B 未被选中”所包含的基本事件有: 11[,]A B , 13[,]A B ,共2个. 因此, 1A 被选中且2B 未被选中的概率为215P =. 19. 如图,在直三棱柱111ABC A B C -中,E 、F 分别为11A C 、BC 的中点, 12AA AB BC ===, 1C F AB ⊥.(1)求证:1//C F 平面ABE ;(2)求三棱锥1E ABC -的体积.答案:(1)见解析;(2)23. 解答:(1)设D 为边AB 的中点,连接ED , FD ,∵D ,F 分别为AB ,BC 的中点,∴//DF AC , 12DF AC =, 又∵1//EC AC , 112EC AC =, ∴1//DF EC , 1DF EC =,∴ 四边形1EC FD 为平行四边形.∴1//C F ED ,又ED ⊂平面EAB , 1C F ⊄平面EAB ,∴1//C F 平面ABE .(2)在直三棱柱中1CC AB ⊥,又1C F AB ⊥,1CC ⊂平面11BCC B , 1C F ⊂平面11BCC B , 111CC C F C =I ,∴AB ⊥平面11BCC B ,知AB BC ⊥,可得三角形ABC 的面积为2,三角形ABF 的面积为1,由(1)1//C F 平面ABE 知: 1C 到平面EAB 的距离等于F 到平面EAB 的距离, ∴ .20. 已知椭圆22221x y a b+=(0a b >>),长轴长为,1F 是左焦点,M 是椭圆上一点且在第二象限,1MF x ⊥轴,1MF =(1)求椭圆标准方程;(2)若00(,)R x y (0x ≠±)是椭圆上任意一点,过原点作圆R : 2200021)()6(4y y x x x +-=+-的两条切线,分别交椭圆于P ,Q ,求证:OP OQ ⊥. 答案: (1)2212412x y +=; (2)见解析.解答:(1)由题意可知22 a b a==⎧⎪⎨⎪⎩,∴a b ⎧==⎪⎨⎪⎩, 椭圆标准方程为2212412x y +=. (2)∵0x ≠±OP ,OQ 斜率均存在,并记作1k , 2k ,故设过原点和圆R 相切的直线方程为y kx =,= 22220000031(6)26044x k x y k y x --+--=*, 可知1k , 2k 是*方程的两个根, ∴22001220164364y x k k x --=- 22200022001312(1)6624441336644x x x x x ----===---, 综上可知,OP OQ ⊥.21. 已知函数()2(1)x f x x e ax =-+, e 为自然对数的底数.(1)若函数()f x 在(1,(1))f 处的切线方程为y ex a e =-++,求实数a 的值;(2)讨论()f x 的单调性.答案:(1)a e =-;(2)见解析.解答:(1)∵()(2)x f x x e a '=+, (1)2f e a e '=+=-,∴a e =-.(2)()(2)x f x x e a '=+.①当0a ≥时, 20x e a +>.(,0)x ∈-∞, ()0f x '<,函数()f x 递减;(0,)x ∈+∞时, ()0f x '>,函数()f x 递增;②当102a -<<时, 021a <-<,ln(2)0a -<. (,ln(2))x a ∈-∞-, 20x e a +<, ()0f x '>,函数()f x 递增;(ln(2),0)x a ∈-, 20x e a +>, ()0f x '<,函数()f x 递减; 当(0,)x ∈+∞, 20x e a +>, ()0f x '>,函数()f x 递增; ③当12a =-时, ()(1)0x f x x e '=-≥,函数()f x 在(,)-∞+∞递增; ④当12a <-时, 21a ->, ln(2)0a ->. (0)x ∈-∞,, 20x e a +<, ()0f x '>,函数()f x 递增;(0,ln(2))x a ∈-, 20x e a +<, ()0f x '<,函数()f x 递减;(ln(2),)x a ∈-+∞, 20x e a +>, ()0f x '>,函数()f x 递增.22. 选修4-4:坐标系与参数方程在平面直角坐标系xoy 中,以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系.曲线C 的极坐标方程为4cos ρθ=,曲线l的参数方程为12 x t y ⎧⎪⎪⎨-=⎪⎪⎩=(t 为参数).(1)求曲线C 的直角坐标方程及曲线l 的极坐标方程;(2)当1t t =(10t <)时在曲线l 上对应的点为1M ,若1OCM ∆,求1M 点的极坐标,并判断1M 是否在曲线C 上(其中点C 为半圆的圆心).答案:(1)见解析;(2)见解析.解答:(1)曲线C 的普通方程为224(2)x y +=-,曲线l 的极坐标方程为: 23πθ=,( R ρ∈). (2)设1M 的极坐标为1(),23ρπ,( 10ρ<)11122sin()23OCM S ππρ∆=⨯⨯-= ∴12ρ=-,所以点1M 的极坐标为(22,)3π-,符合方程4cos ρθ=,所以点1M 在曲线C 上. 23. 选修4-5:不等式选讲 已知函数()f x x a =-,且不等式()1f x ≤的解集为{|02}x x ≤≤.(1)求实数a 的值;(2)若关于x 的不等式2()44f x x t t ++<-解集非空,求实数t 的取值范围. 答案:(1)1a =;(2)(,1)(5,)-∞-+∞U .解答:(1)由1x a -≤,得11a x a -≤≤+, ∴10 12a a -=+=⎧⎨⎩,得1a =.(2)由题意可知2144x x t t -++<-解集非空,()2min 4|1||4|t t x x ->-++, ∵14(1)(4)5x x x x -++≥--+=,所以245t t ->,所以1t <-或5t >,实数t 的取值范围为(,1)(5,)-∞-+∞U .。
2017-2018学年度上学期期末考试高二试题数学(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 双曲线的渐近线方程是()A. B. C. D.【答案】A【解析】由双曲线可得:即,∴双曲线的渐近线方程是故选:A2. 命题:“平面内与两个定点的距离的和等于常数的点的集合叫做椭圆”;命题:“平面内与两个定点的距离的差的绝对值等于常数的点的集合叫做双曲线”.下列命题中正确的是()A. 命题PB. 命题C. 命题D. 命题【答案】B【解析】命题错误,椭圆的定义中,常数必须大于两个定点的距离;命题错误,双曲线的定义中,常数必须小于两个定点的距离;∴命题为真命题,故选:B3. 若,,则,,中最大的数为()A. B. C. D. 无法确定【答案】C【解析】∵,,∴,即,;又,()∴最大的数为故选:C4. 对于常数、,“”是“方程的曲线是椭圆”的()条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要条件【答案】B【解析】试题分析:由方程的曲线是椭圆可得,所以“”是“方程的曲线是椭圆”的必要不充分条件考点:椭圆方程及充分条件必要条件视频5. 下列选项错误的是()A. 命题“若,则”的逆否命题是“若,则”B. “”是“”的充分不必要条件;C. 若命题:,,则:,;D. 在命题的四种形式中,若原命题为真命题,则否命题为假命题【答案】D【解析】对于A,命题“若,则”的逆否命题是“若,则”,正确;对于B,由解得:或,∴“”是“”的充分不必要条件,正确;对于C,若命题:,,则:,,正确;对于D,在命题的四种形式中,原命题与逆否命题同真同假,逆命题与否命题同真同假,原命题与否命题关系不定,故错误;故选:D6. 在各项均为正数的等比数列中,,,则的值是()A. B. C. D.【答案】D【解析】由题意,得到解得:,即,∴故选:D7. 在平行六面体中,为与的交点,若,,,则下列向量中与相等的向量是()A. B. C. D.【答案】A【解析】由题意得:,,故选:A8. 已知抛物线,是抛物线上一点,为焦点,一个定点,则的最小值为()A. B. C. D.【答案】B【解析】设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|,∴要求|PA|+|PF|取得最小值,即求|PA|+|PD|取得最小,当D,P,A三点共线时|PA|+|PD|最小为5﹣(﹣1)=6,故选:B点睛:利用抛物线的定义,实现由点到点的距离与点到直线的距离的转化,由此可解抛物线中的最值问题。
2017-2018学年度上学期期末考试高三试题数学(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设复数(是虚数单位),则的共轭复数为()A. B. C. D.【答案】B化为,,故选B.2. 已知集合,,则()A. B. C. D.【答案】D集合,,所以,故选A.3. 元代数学家朱世杰的数学名著《算术启蒙》是中国古代代数学的通论,其中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.右图是源于其思想的一个程序图,若,,则输出的()A. B. C. D.【答案】A模拟程序的运行,可得,不满足,执行循环体,,满足条件,退出循环,输出的值为,故选A.4. 已知双曲线的两条渐近线方程为和,则该双曲线的离心率为()A. 或B. 或C.D.【答案】A由渐近线方程为,即渐近线方程为,设双曲线的方程为,则渐近线方程为,即有,又,即,可得,故选D.5. 下列函数中,既是偶函数又在区间上单调递减的是()A. B. C. D.【答案】C是奇函数,在区间内单调递增,不满足条件;不是偶函数,在区间内单调递增,不满足条件;是偶函数,在区间内单调递减,满足条件;,是偶函数,在区间内单调递增,不满足条件,故选C.6. 某校初三年级有名学生,随机抽查了名学生,测试分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是()A. 该校初三年级学生分钟仰卧起坐的次数的中位数为次B. 该校初三年级学生分钟仰卧起坐的次数的众数为次C. 该校初三年级学生分钟仰卧起坐的次数超过次的人数约有人D. 该校初三年级学生分钟仰卧起坐的次数少于次的人数约为人.【答案】C第一组数据的频率为;第二组数据的频率为,第三组的频率为中位数在第三组内,设中位数为,则数据的中位数为,故错误;最高矩形是第三组数据,第三组数据的中间值为人众数为,故错误;学生分钟仰卧起坐的成绩超过次的频率为人超过次的人数为人,故正确;学生分钟仰卧起坐的成绩少于次的频率为分钟仰卧起坐的成绩少于次的人数为人,故错误,故选C.7. 若,均为锐角且,,则()A. B. C. D.【答案】B为锐角,,,,,,故选B.8. 甲乙丙丁四名同学参加某次过关考试,甲乙丙三个人分别去老师处问询成绩,老师给每个人只提供了其他三人的成绩.然后,甲说:我们四个人中至少两人不过关;乙说:我们四人中至多两人不过关;丙说:甲乙丁恰好有一人过关.假设他们说的都是真的,则下列结论正确的是()A. 甲没过关B. 乙没过关C. 丙过关D. 丁过关【答案】B因为甲说:我们四个人中至少两人不过关;乙说:我们四人中至多两人不过关;所以四人组有且只有两人过关,两人不过关,又因为,丙说:甲乙丁恰好有一人过关,不过关的情况有三种可能:甲乙、甲丁、乙丁,根据甲不知道自己成绩的情况下说四个人中至少两人不过关,可见乙丙丁中有两人不过关,不过关的可能的情况有三种:乙丙、丙丁、乙丁,结合与以上六种,同时成立的是乙丁不过关,所以一定正确的结论是乙没过关,故选B.9. 一个正六棱柱的主视图(由两个边长等于的正方形组成)如图所示,则该六棱柱的侧视图的面积为()A. B. C. D.【答案】C由三视图可得,正六棱柱的直观图如图,,图中,设正六边形边长为,则,棱柱侧视图是边长为与的矩形,面积为,故选C.【方法】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力以及正六棱柱的性质,属于难题. 三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.10. 已知数列是公差不为的等差数列,,且,,成等比数列,设,则数列的前项和为()A. B. C. D.【答案】D设首项为,公差为,成等比数列,,解得,,,,故选D.【方法点晴】本题主要考查等差数列的通项公式,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.11. “”是函数满足:对任意的,都有”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B当时,在上递减,在递减,且在上递减,任意都有,充分性成立;若在上递减,在上递增,任意,都有,必要性不成立,“”是函数满足:对任意的,都有”的充分不必要条件,故选A...................12. 已知三棱锥的四个顶点都在同一个球面上,,,,平面,则此三棱锥外接球的表面积为()A. B. C. D.【答案】D因为平面,所以,又因为,所以,所以三棱锥的外接球就是以为长宽高的长方体的外接球,所以外接球的直径等于长方体的对角线,可得,此三棱锥外接球的表面积为,故选C.【方法】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若,则__________.【答案】1令x=1,得到=0,令x=0得到两式子做差得到.故答案为:1.14. 已知数列的前项和为,且,则__________.【答案】时,时,,,故答案为.15. 若,,点在圆的外部,则的范围是__________.【答案】可化为,,又在圆的外部,,画出的可行域,如图,由图知,在处有最大值,在处有最小值,因为此可行域在边界处不能取值,的取值范围是,故答案为.【方法点晴】本题主要考查点与圆的位置关系以及线性规划中利用可行域求目标函数的最值,属简单题. 求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.16. 直角梯形中,,,是边长为的正三角形,是平面上的动点,,设(,),则的最大值为__________.【答案】以为原点,为轴,所在直线为轴,建立直角坐标系,可设,因为,所以,,即的最大值为故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知,,设函数(1)求函数的单调增区间;(2)设的内角,,所对的边分别为,,,且,,成等比数列,求的取值范围.【答案】(1)单调递增区间为,;(2).试题:(1)根据平面向量的数量积公式、二倍角的正弦公式、二倍角的余弦公式以及两角差的正弦公式化简可得,根据正弦函数的单调性可得,解不等式可得函数的单调增区间;(2)由,,成等比数列,可得,再根据余弦定理结合基本不等式可得,从而可得角的范围,进而可得的取值范围.试题:(1).,令,则,,所以函数单调递增区间为,.(2)由可知(当且仅当时,取等号),所以,,综上的取值范围为.18. 某中学调查了某班全部名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(1)能否由的把握认为参加书法社团和参加演讲社团有关?(附:当时,有的把握说事件与有关;当,认为事件与是无关的)(2)已知既参加书法社团又参加演讲社团的名同学中,有名男同学,名女同学.现从这名男同学和名女同学中选人参加综合素质大赛,求被选中的男生人数的分布列和期望. 【答案】(1)见;(2)见.试题:(1)根据表格中的数据得到,此时可以下结论;(2)根据题意分别求出的取值为,,,,时的概率值,再写出分布列和期望值即可。
2017-2018学年高三数学精品卷(文科)(满分:150分 考试时间:120分钟) 一.选择题:(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.已知集合{}21P x x =≤,{}M a =.若PM P =,则a 的取值范围是( ).A .(],1-∞-B .[)1,+∞C .[]1,1-D .(][),11,-∞-+∞2.设n m ,是平面α内的两条不同直线,21,l l 是平面β内两条相交直线,则βα⊥的一个充分不必要条件是( )A .11,l m l n ⊥⊥B .12,m l m l ⊥⊥C .12,m l n l ⊥⊥D .1//,m n l n ⊥ 3.在复平面内,复数431iz i+=+对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限4.如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为( ). A .B. C .D.5.已知1sin ,63πα⎛⎫-=⎪⎝⎭则2cos 23πα⎛⎫+= ⎪⎝⎭( ) A .79- B .13- C .13 D .796.已知函数俯视图侧视图正视图)0,4()4sin()(ππP x y x f y 的图象关于点的图象和+==对称,现将)(x f 的图象向左平移4π个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数)(x g y =的图象,则)(x g y =的表达式为( )A .x y 41sin-= B .1cos 4y x =-C .)44sin(π--=x y D .)44cos(π--=x y7.阅读右边的程序框图,运行相应的程序, 则输出i 的值为( ). A .3 B .4 C .5 D .68.已知y x ,满足⎪⎩⎪⎨⎧≤++≤+≥041c by ax y x x ,记目标函数y x z +=2的最大值为7,最小值 为1,则a b c a ++= ( ) A .2B .1C .-1D .-29.设点(1,0)A ,(2,1)B ,如果直线1ax by +=与线段AB 有一个公共点,那么22a b +( ) A .最小值为15 B.最小值为5 C .最大值为15D.最大值为5 10. 下列说法错误的是( )A .若2:,10p x R x x ∃∈-+=,则2:,10p x R x x ⌝∀∈-+≠ B .“若0a =,则0ab =”的否是:“若0a ≠,则0ab ≠”C .“1sin 2θ=”是“30θ=”的充分不必要条件 D .若“p ⌝”与“p 或q ”都是真,那么q 一定是真11.双曲线C:)0,0(12222>>=-b a bx a y 的焦点为21,F F ,P 为C 上任意 一点,则以||||21PF PF 或为直径的圆与以实轴为直径的圆一定( )A.相交B.相离C.相切D.内含12.已知函数y =f (x )是定义在R 上的增函数,函数y =f (x -1)的图象关于点(1,0)对称,若任意的x ,y ∈R ,不等式f (x 2-6x +21)+f (y 2-8y )<0恒成立,则当x >3时,x 2+y 2的取值范围是( ) A .(3,7) B. (9,25) C. (9,49) D. (13,49)二.填空题:(本题共4小题,每小题5分,共20分.)13.已知向量,a b 满足2,1,(2),==-⊥+=a b b a b a b 则___________.14.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =, 则c o s B = .15.若12a x x >对于(0,1)x ∀∈恒成立,则实数a 的取值范围是_______________.16.函数()f x =.给出函数()f x 下列性质:⑴函数的定义域和值域均为[]1,1-;⑵函数的图像关于原点成中心对称;⑶函数在定义域上单调递增;(4)A 、B 为函数()f x 图象2AB ≤.请写出所有关于函数()f x 性质正确描述的序号 .三.解答题:(本题共6道大题,共70分.) 17.(本小题满分12分) 已知数列{}n a 的前n 项和为n S ,且满足)2(02,2111≥=+=-n S S a a n n n . (Ⅰ)}1{nS 是否为等差数列?证明你的结论; (Ⅱ)求n S 和n a ; (Ⅲ)求证:222121124n S S S n+++≤-. 18.(本小题满分12分)为了研究“教学方式”对教学质量的影响,某高中数学老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.(1)现从甲班数学成绩不低于8087分的同学至少有一名被抽中的概率;(2)学校规定:成绩不低于75分的为优秀.请填写下面的22⨯列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.9 8 7 6 5(参考公式:22112212211212()n n n n n n n n n χ++++-=)19.(本小题满分12分)(本小题满分12分)已知在四棱锥A B C D P -中,底面A B C D 是边长为4的正方形,PAD ∆是正三角形,平面PAD ⊥平面A B C D ,G F E ,,分别是BCPC PD ,,的中点.(1)求平面EFG ⊥平面PAD ;(2)若M 是线段CD 上一动点,试判断三棱锥E F G M -的体积是否为定值,若是,求出该三棱锥的体积;若不是,请说明理由。
优异文档辽宁省实验中学、大连八中、大连二十四中、鞍山一中、东北育才学校 2018 届高三上学期期末考试数学(理)试题第Ⅰ卷(共 60 分)一、选择题:本大题共 12 个小题 , 每题 5 分 , 共 60 分 . 在每题给出的四个选项中,只有一项为哪一项吻合题目要求的.1 21. 已知 i 是虚数单位,则复数i )z的虚部是(1 iA . 1B . 1C . iD . i2. 设会集 M x 0x 1 , N = x x 21 ,则 M C R N ( )A . 0,1B . 1,1C . 1,1D . 0,13. 若 cos4,且 为第二象限角,tan()5A . 4B.3C.4D.334344. 已知向量 a 与 b 的夹角为 120 , a 1,0 , b 2 ,则 2a b ( )A . 3B . 2C .23D . 45. 某四棱锥的三视图以下列图,则该四棱锥的外接球半径为( )A.1B. 3 C. 2 D.12 2 26. 已知数列a n的前n项和 S n a n 20 ,则()b n,若 aA. na n na1S n B.S n na1na n C.na1S n na nD. na n S n na1x y 207. 若x, y满足拘束条件x 2 y 2 0 ,则z x y 的最大值是()2x y 20A.2B.0C.2D.48. 把四个不一样的小球放入三个分别标有1? 3 号的盒子中,不一样意有空盒子的放法有()A.12 种B. 24 种C.36 种D.48 种9. 已知函数 f x 2sin 2x ,现将 y f x 的图象向左平移个单位,再将所得图象6 12上各点的横坐标缩短为原来的1倍,纵坐标不变,获取函数y g x 的图象,则 g x 在25的值域为()0,24A.1,2B.0,1C.0,2D.1,010. 已知椭圆x2 y2 1 的左右焦点分别为F1、F2,过F1的直线l1 与过 F2的直线 l2交于点3 2P ,设 P 点的坐标x0 , y0,若 l1 l 2,则以下结论中不正确的选项是()x02 y021 B x02 y021 C2 2 y0 2 1x y1A.2 .2. 3 x0 D.0 03 3 3 2 11. 某班有三个小组,甲、乙、丙三人分属不一样的小组. 某次数学考试成绩宣告情况以下: 甲和三人中的第 3 小组那位不一样样,丙比三人中第1 小组的那位的成绩低,三人中第 3 小组的那位比乙分数高。
5 2 3辽宁师范大学附属中学高三上学期期末考试数学(文)试题Word 版含答案2017-2018学年度上学期期末考试高三试题数学(文)第I 卷(共60 分)、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选 项中,只有一项是符合题目要求的3.元代数学家朱世杰的数学名著 《算术启蒙》是中国古代代数学的通论,其中有关于“松竹5.下列函数中,既是偶函数又在区间 (0,1)上单调递减的是( )3x 4y 0和3x 4y 0,则该双曲线A. 5 或 543 C. A. 1 , 2 B,则三的共轭复数为(,则D 1 ,1并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等 .下图是源于C. ” (訓6.某校初三年级有[400名学生,随机抽查了 匹|名学生,测试也分钟仰卧起坐的成绩(次数),ln x将数据整理后绘制成如图所示的频率分布直方图 •用样本估计总体,下列结论正确的是B.该校初三年级学生也分钟仰卧起坐的次数的中位数为25次也分钟仰卧起坐的次数的众数为 _24次C.该校初三年级学生D.该校初三年级学生 丄分钟仰卧起坐的次数超过 30次的人数约有80人 也分钟仰卧起坐的次数少于空次的人数约为人.7.若—,|均为锐角且刁 11 I3cos 二,cos(,sinH 2 )__1 1 14 | 21 C.耳D.丨2丨218.甲乙丙丁四名同学参加某次过关考试, 甲乙丙三个人分别去老师处问询成绩,A.老师给每个人只提供了其他三人的成绩 •然后,甲说:我们四个人中至少两人不过关;乙说:我们四人 中至多两人不过关;丙说:甲乙丁恰好有一人过关 •假设他们说的都是真的,则下列结论正确的是()9. 一个正六棱柱的主视图(由两个边长等于[4的正方形组成)如图所示,则该六棱柱的侧视A. 116 B10.已知数列a n是公差不为0的等差数列, 3,且関,离,闔成等比数列,设图的面积为(a2第U 卷(共90 分)、填空题(每题5分,满分20分,将答案填在答题纸上)b 01,点 | A(0 , 0) |在圆 x 2 y 2 2J ax 4 a b 0 的外部,贝|a 2b| 的范围R ),贝U 的最大值为13.若函数 2 f (x )X( x X 2)[1x 1(1 ),则匣14. 已知数列过的前也项和为应,且S n(2)n,则a16.直角梯形ABCD 中,CB CD , AD // BC△ ABD 是边长为[2]的正三角形, |P 是平面b n —1a n an 1的( )A.充分不必要条件 B•必要不充分条件 C.充要条件D.既不充分也不必要条件12.已知三棱锥P ABC 的四个顶点都在同一个球面上,BAC ~~9^1,BC 73,PA 2庐, PA 平面ABC ,则此三棱锥外接球的表面积为() I 1615.若 a 0) B11. “0 m w 1 ,都有 f(Xj f(X 2)-,则数列叵的前mi 项和冋为 上的动点,rutw --- tutr ----- t tm-i .__. 设 AP AD AB (口,三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)n (\/3sin°, cos2-),设函数f (x) m n4 4 ----------------(1)求函数f(x)的单调增区间;(2)设△ ABC |的内角[A, B,叵]所对的边分别为叵],冋,用,且迢,际用成等比数列, 求f(B)的取值范围18. 某中学调查了某班全部匝名同学参加书法社团和演讲社团的情况,数据如下表:(单位:(1)求证:GF //平面IABE (2 )求三棱锥 E ABG 的体积.20. 已知椭圆X 2 y r 1 (|a b 01),长轴长为 丽,冋是左焦点,[M参加书法社团 未参加书法社团参加演讲社团西未参加演讲社团(附:2n(ad be)(a b)(e d)(a e)(b d)2 ----------------------------------------------当 3.841时,有95%的把握说事件 因与⑥有关;当2 < 3.841,认为事件囚与叵]是无 关的)(2)已知既参加书法社团又参加演讲社团的囲名同学中,有 制名男同学"A , A , A , A ,A ,囘名女同学包,空,色.现从这国名男同学和3名女同学中各随机选 M 人,求△被选 中且B !位被选中的概率•19.如图,在直三棱柱|ABC AB Q ]中,回、[F 分别为I AG |、UC 的中点,[AB BC 2人)是椭圆上一点且在 a b 1—[第二象限,|MF1 国轴,|吋| 76 .(1)求椭圆标准方程;1求实数色的值;(2)若|R(X o , y。
辽宁师范大学附属中学2018-2019学年高三上学期第一次模块考试-数学(文)试题1.集合3{{}2}M log a N a b ==,,,,若{}1M N ⋂=,则M N ⋃=( ) A .{}0,1,2 B .{}0,1,3 C .{}0,2,3 D .{}1,2,3 2.若复数z 满足()121i z i +=-,则z =( )A .25B .35 CD3.“0m <”是“函数2()log (1)f x m x x =+≥存在零点”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 4.已知函数1()3()3x x f x =-,则()f x A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 5.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用(万元)销售额(万元)根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元 6.将函数y =sin(6x +π4)的图象上各点的纵坐标不变,横坐标伸长到原来的3倍,再向右平移π8个单位,得到的函数的一个对称中心是( )A .(π2,0)B .(π4,0)C .(π9,0)D .(π16,0)7.函数y =2x 2–e |x |在[–2,2]的图像大致为( )A .B .C .D .8.已知数列{}n a 的前n 项和为n S ,11a =,当2n ≥时,12n n a S n -+=,则2019S 的值为( )A .1008B .1009C .1010D .10119.若不等式210x a x a -++≤()的解集是[]43-,的子集,则a 的取值范围是( ) A .[]4,1- B .[]4,3- C .[]1,3 D .[]1,3-10.在锐角ABC V 中,602B AB AC =︒-=u u u v u u u v ,,则AB AC ⋅u u u v u u u v 的取值范围为( ) A .()0,12 B .1,124⎡⎫-⎪⎢⎣⎭ C .(]0,4 D .(]0,2 11.在三棱锥S ABC -中,SA BC ==5SB AC ==,SC AB ==三棱锥S ABC -外接球的表面积为( )A .25πB .100C .50π D.12.已知函数()2ln x z e f x k x kx x=+-,若2x =是函数f x ()的唯一极值点,则实数k 的取值范围是( )A .2,4e ⎛⎤-∞ ⎥⎝⎦B .,2e ⎛⎤-∞ ⎥⎝⎦C .(]0,2D .[)2,+∞ 13.已知实数x ,y 满足22020220x y x y x y --≥⎧⎪-+≥⎨⎪+-≥⎩,则3z x y =-的最小值为________.14.一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为______.15.数列{}n a 为正项等比数列,若33a =,且*11232n n n a a a n n N +-=+≥∈(,),则此数列的前5项和5S =______.16.若,,0a b c >,且24a ab ac bc +++=,则2a b c ++的最小值为 . 17.D 为ABC V 的边BC 的中点.222AB AC AD ===.(1)求BC 的长;(2)若ACB ∠的平分线交AB 于E ,求ACE S V .18.中国神舟十一号载人飞船在酒泉卫星发射中心成功发射,引起全国轰动.开学后,某校高二年级班主任对该班进行了一次调查,发现全班60名同学中,对此事关注的占13,他们在本学期期末考试中的物理成绩如下面的频率分布直方图:(1)求“对此事关注”的同学的物理期末平均分(以各区间的中点代表该区间的均值).(2)若物理成绩不低于80分的为优秀,请以是否优秀为分类变量,①补充下面的22⨯列联表:②是否有95%以上的把握认为“对此事是否关注”与物理期末成绩是否优秀有关系?参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++. 参考数据:19.如图,正方体1111ABCDA B C D 的棱长为2,E F M 、、分别是1111C B C D ,和AB 的中点.(1)求证:1//MD 平面BEFD .(2)求M 到平面BEFD 的距离.20.在等比数列{}n a 中,()*10a n N>∈,且328a a -=,又15,a a 的等比中项为16.(1)求数列{}n a 的通项公式: (2)设4log n n b a =,数列{}n b 的前n 项和为n S ,是否存在正整数k ,使得1231111nk S S S S ++++<L 对任意*n N ∈恒成立.若存在,求出正整数k 的最小值;若不存在,请说明理由.21.已知函数()ln .f x x x =(I )求函数()f x 在[,2](0)t t t +>上的最小值;(II )求证:对一切(0,)x ∈+∞,都有12ln x x e ex>- 22.已知在平面直角坐标系xOy 中,直线l 的参数方程是26x t y t =⎧⎨=+⎩(t 是参数),以原点O 为极点,x 轴正半轴为极轴且取相同的单位长度建立极坐标系,曲线C 的极坐标方程为ρθ=.(1)求直线l 与曲线C 的普通方程;(2)设(,)M x y 为曲线C 上任意一点,求x y +的取值范围.23.已知函数()54f x x x =-++(1)求不等式()12f x ≥的解集;(2)若13()210a f x ---≥对x R ∀∈恒成立,求实数a 的取值范围.参考答案1.D【解析】【分析】因为{}1M N ⋂=,所以1N ∈且1M ∈,即31log a =,则3a =,那么1b =,故{}123M N ,,⋃=.【详解】解:由题意知∵{}1M N ⋂=,∴1N ∈且1M ∈∴31log a = 即3a =又∵1N ∈∴1b =即{}{}1213M N ==,,∴{}123M N ,,⋃= 故选:D .【点睛】本题主要考查元素的互异性及并集的运算,属于基础题型.2.C【解析】【分析】由复数除法运算求出z ,得到其共轭复数,然后再求模.【详解】 由题意1(1)(12)131312(12)(12)555i i i i z i i i i -----====--++-,∴1355z i =-+,∴5z ==. 故选:C.【点睛】本题考查复数的除法运算,考查共轭复数的定义,考查复数的模的运算,解题关键是掌握复数除法运算.3.A【解析】显然由于21,log 0x x ≥≥,所以当m<0时,函数f( x)= m+log 2x (x≥1)存在零点;反之不成立,因为当m=0时,函数f(x)也存在零点,其零点为1,故应选A .4.A【解析】分析:讨论函数()133xx f x ⎛⎫=- ⎪⎝⎭的性质,可得答案.详解:函数()133x x f x ⎛⎫=- ⎪⎝⎭的定义域为R ,且()()111333,333x x x x xx f x f x --⎡⎤⎛⎫⎛⎫⎛⎫-=-=-+=--=-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ 即函数()f x 是奇函数, 又1y 3,3xx y ⎛⎫==- ⎪⎝⎭在R 都是单调递增函数,故函数()f x 在R 上是增函数.故选A.点睛:本题考查函数的奇偶性单调性,属基础题.5.B【解析】【分析】【详解】 试题分析:4235492639543.5,4244x y ++++++====Q , ∵数据的样本中心点在线性回归直线上,回归方程ˆˆˆybx a =+中的ˆb 为9.4, ∴42=9.4×3.5+a ,∴ˆa =9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5考点:线性回归方程6.A【解析】由函数y =sin(6x +π4)的图象上各点的纵坐标不变,横坐标伸长到原来的3倍得到y =sin(2x +π4),向右平移π8个单位得到y =sin(2(x −π8)+π4)=sin2x ,将x =π2代入得y =0,所以函数的一个对称中心是(π2,0),故选A .7.D【解析】试题分析:函数f (x )=2x 2–e |x|在[–2,2]上是偶函数,其图象关于y 轴对称,因为f(2)=8−e 2,0<8−e 2<1,所以排除A,B 选项;当x ∈[0,2]时,y ′=4x −e x 有一零点,设为x 0,当x ∈(0,x 0)时,f(x)为减函数,当x ∈(x 0,2)时,f(x)为增函数.故选D8.C【解析】【分析】利用()12n n n S S a n --=≥,结合数列的递推公式可解决此问题.【详解】解:当 2n ≥时,12n n a S n -+=①,故121n n a S n ++=+②由②-①得,()1121n n n n a a S S +--+-=,即()112n n a a n ++=≥所以()()()201912345201820191010S a a a a a a a =+++++⋯++=故选C .【点睛】本题考查数列的递推公式的应用,含有n S 时常用()12n n n S S a n --=≥进行转化. 9.B【解析】【分析】求出不等式的等价条件,结合子集关系建立不等式分类讨论进行求解即可.【详解】解:由210x a x a -++≤()得()()10x a x --≤,若1a =,不等式等价解为1x =即解集为{1}满足{}[]143⊆-,, 若1a <,不等式等价解为1a x ≤≤即解集为[]1a ,,若满足][143a ⎡⎤⊆-⎣⎦,,,则41a -≤<, 若1a >,不等式等价解为1x a ≤≤即解集为[]1a ,,若满足][143a ⎡⎤⊆-⎣⎦,,,则13a ≤<, 综上43a -≤≤,即实数a 的取值范围是[]43,-, 故选:B .【点睛】本题主要考查不等式的应用,结合不等式的解法求出不等式的解集,利用子集关系进行转化是解决本题的关键.10.A【解析】【分析】以B 为原点,BA 所在直线为x 轴建立坐标系,得到C 的坐标,找出三角形为锐角三角形的A 的位置,得到所求范围.【详解】解:以B 为原点,BA 所在直线为x 轴建立坐标系, ∵602B AB AC BC =︒-==u u u v u u u v u u u v ,,∴C , 设0A x (,)∵ABC V 是锐角三角形,∴120A C +=︒,∴3090A ︒︒<<,即A 在如图的线段DE 上(不与D E ,重合), ∴14x <<,则221124AB AC x x x u u u v u u u v ()⋅=-=--, ∴AB AC u u u v u u u v⋅的范围为012(,). 故选:A .【点睛】本题考查数量积的应用,根据向量数量积的模长公式,利用解析法建立坐标系,利用坐标法求数量积范围是解决本题的关键.综合性较强,有一定的难度. 11.C 【解析】分析:首先通过题中的条件,得到棱锥的三组对棱相等,从而利用补体,得到相应的长方体,列式求得长方体的对角线长,从而求得外接球的半径,利用球体的表面积公式求得结果. 详解:对棱相等的三棱锥可以补为长方体(各个对面的面对角线),设长方体的长、宽、高分别是,,a b c ,则有222222412534a b b c a c ⎧+=⎪+=⎨⎪+=⎩,三个式子相加整理可得22250a b c ++=,所以长方体的对角线长为所以其外接球的半径2R =,所以其外接球的表面积2450S R ππ==,故选C.点睛:该题考查的是有关几何体的外接球的体积问题,在解题的过程中,注意根据题中所给的三棱锥的特征,三组对棱相等,从而将其补体为长方体,利用长方体的外接球的直径就是该长方体的对角线,利用相应的公式求得结果. 12.A 【解析】 【分析】由f x ()的导函数形式可以看出,需要对k 进行分类讨论来确定导函数为0时的根.【详解】解:∵函数f x ()的定义域是0(,)+∞ ∴()()()233222'x x e kx x e x k f x k x x x---=+-=(), ∵2x =是函数f x ()的唯一一个极值点 ∴2x =是导函数'0f x =()的唯一根, ∴20x e kx -=在0(,)+∞无变号零点, 即2x e k x =在0x >上无变号零点,令()2xe g x x=,因为()32'x e x g x x()-=,所以g x ()在02(,)上单调递减,在2x >上单调递增 所以g x ()的最小值为224e g =(),所以必须24e k ≤,故选:A . 【点睛】本题考查由函数的导函数确定极值问题.对参数需要进行讨论.13.3 【解析】 【分析】作出可行域,作目标函数对应的直线,平移该直线可得最优解. 【详解】作出可行域,如图,由射线BA ,线段BC ,射线CD 围成的阴影部分,作直线:30l x y -=, 平移直线l ,当直线l 过点(1,0)B 时,3z x y =-取得最小值3. 故答案为:3.【点睛】本题考查简单的线性规划,解题关键是作出可行域,作出目标函数对应的直线,平移直线得最优解.14【解析】 【分析】由三视图还原原几何体,可得该几何体为组合体,左边是三棱锥,右边是四棱锥,其中平面PAD ⊥底面ABCDE ,且PAD V 为等边三角形,ED EA =,1EO =,四边形ABCD 为正方形,边长是2.再由棱锥体积公式求解. 【详解】解:由三视图还原原几何体如图,该几何体为组合体,左边是三棱锥,右边是四棱锥,其中平面PAD ⊥底面ABCDE ,且PAD V 为等边三角形,ED EA =,1EO =,四边形ABCD 为正方形,边长是2.∴这个几何体的体积1112122323V =⨯⨯⨯⨯⨯=. 【点睛】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题. 15.1213【解析】 【分析】运用数列的递推公式和等比数列的性质可解决此问题. 【详解】解:根据题意,111333n n n n n n a a a a a a +--+=+=+() ∵{}n a 为等比数列 ∴3q =,又33a =∴113a =∴()551131213133S -==-故答案为1213. 【点睛】本题考查数列的递推公式和等比数列的性质. 16.4 【解析】由已知得a 2+ab +ac +bc =(a +b)(a +c)=4,则2a +b +c =(a +b)+(a +4,当且仅当a +b =a +c ,即b =c 时取等号.∴2a +b +c 的最小值为4.17.(1)=BC 2)20【解析】 【分析】(1)由题意知21AB AC AD ===,.设BD DC m ==,在ADB △与ADC V 中,由余弦定理即可解得m 的值.(2)在ACE △与BCE V 中,由正弦定理,角平分线的性质可得AE AC BE BC ==.可求BE =,215AE =().利用余弦定理可求cos BAC ∠的值,根据同角三角函数基本关系式可求sin BAC ∠的值,利用三角形的面积公式即可计算得解. 【详解】解:(1)由题意知21AB AC AD ===,.设BD DC m ==.在ADB V 与ADC V 中,由余弦定理得:2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠.即:212cos 4m m ADB +-∠=,①212cos 1m m ADB ++∠=.②由①+②,得:232m =,所以m =,即BC = (2)在ACE V 与BCE V 中,由正弦定理得:,sin sin sin sin AE EC BE ECACE EAC BCE CBE==∠∠∠∠,由于ACE BCE ∠=∠,且sin sin BC ACBAC CBA=∠∠,所以AE AC BE BC ==所以BE =,所以215AE =().又222222121cos 22214AB AC BC BAC AB AC +-+-∠===-⋅⨯⨯,所以sin BAC ∠=,所以11211225ACE S AC AE sin BAC =⋅⋅∠=⨯⨯=V () 【点睛】本题主要考查了余弦定理,正弦定理,角平分线的性质,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题. 18.(1)75.5;(2)列联表见解析,没有. 【解析】试题分析:(1)各小矩形中点横坐标与纵坐标的乘积的和即是对此事关注的同学的物理期末平均分;(2)根据直方图求出列联表所需数据,即可完成22⨯列联表,利用公式()()()()()22n ad bc k a b c d a c b d -=++++求得2K ,与邻界值比较,即可得到结论.试题解析:(1)对此事关注的同学的物理期末平均分为(450.005550.005650.020⨯+⨯+⨯ 750.030850.030+⨯+⨯ 950.010)1075.5+⨯⨯=(分).(2)①补充的22⨯列联表如下:②由①中的列联表可得()()()()()22n ad bc k a b c d a c b d -=++++ ()26083281216442040⨯⨯-⨯=⨯⨯⨯ 302.733.84111=≈<, 所以没有95%以上的把握认为“对此事是否关注”与物理期末成绩是否优秀有关系. 【方法点睛】本题主要考查频率分布直方图的应用以及独立性检验,属于中档题.独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.) 19.(1)见解析(2)23【解析】 【分析】(1)连接BF ,证明四边形1BMD F 是平行四边形即可得出1//D M BF ,故1//MD 平面BEFD ;(2)根据M BDE E BDM V V --=求出M 到平面BEFD 的距离. 【详解】解:(1)证明:连接BF , ∵111111111111////22D F A B D F A B BM A B BM A B ==,,,, ∴11//D F BM D F BM =,, ∴四边形1BMD F 是平行四边形, ∴1//D M BF ,又1D M ⊄平面BEFD ,BF ⊂平面BEFD , ∴1//MD 平面BEFD .(2)解:连接ED EM DM ,,, 则112122323E BDM V -=⨯⨯⨯⨯=,又3BD BE DE ======,∴222cos 210BD BE DE DBE BD BE +-∠==⋅,∴sin 10DBE ∠=.∴13210BDE S =⨯=V , 设M 到平面BEFD 的距离为d ,则12333M BDE V d -=⨯⨯=, ∴23d =.即M 到平面BEFD 的距离为23.【点睛】本题考查了线面平行的判定,棱锥的体积计算,属于中档题.20.(1)12n n a +=(2)3.【解析】 试题分析:(1)由题意可得316a =,又328a a -=,故28a =,由此可得等比数列的公比2q =,因此可得12n n a +=.(2)由(1)得12n n b +=,所以()34n n n S +=,从而()14411333n S n n n n ⎛⎫==- ⎪++⎝⎭,求和可得123111141111141122113231233239n S S S S n n n L ⎛⎫⎛⎫++++=⨯++---<⨯++= ⎪ ⎪+++⎝⎭⎝⎭,所以可得229k ≥,故存在满足题意得k ,且k 的最小值为3. 试题解析:(1)设等比数列{}n a 的公比为q , ∵15a a ,的等比中项为16. ∴316a =, 又328a a -=,28a ∴=,∴322a q a ==, ∴21822n n n a -+=⨯==. (2)由(1)得141log 22n n n b ++==, ∴数列{}n b 为等差数列,且11b =.∴()113224n n n n n S +⎛⎫+ ⎪+⎝⎭==, ∴()14411333n S n n n n ⎛⎫==- ⎪++⎝⎭, ∴123111141111111131425363n S S S S n n ⎛⎫++++=⨯-+-+-++- ⎪+⎝⎭L L 4111111323123n n n ⎛⎫=⨯++--- ⎪+++⎝⎭ 4112213239⎛⎫<⨯++= ⎪⎝⎭, ∴229k ≥, ∴存在满足题意得k ,且k 的最小值为3. 点睛:用裂项法求和的原则及规律(1)裂项原则:一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止.(2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项,消项后的剩余部分具有对称性.21.(I )min 110()=1ln t e ef x t t t e ⎧-<<⎪⎪⎨⎪≥⎪⎩,,. (II )见解析. 【解析】 【分析】(I )分三类情况102t t e<<+<,102t t e <<<+,12t t e ≤<+即可求得最小值;(II )问题等价于证明2ln ((0,))xx x x x e e>-∈+∞,借助(I )可得到证明. 【详解】【解】(I )()ln 1f x x '=+,当10,e x ⎛⎫∈ ⎪⎝⎭,()0f x '<,()f x 单调递减,当1,x e ⎛⎫∈+∞ ⎪⎝⎭,()0f x '>,()f x 单调递增.①102t t e<<+<,t 无解; ②102t t e <<<+,即10t e <<时,min 11()f x f e e ⎛⎫==- ⎪⎝⎭;③12t t e ≤<+,即1t e≥时,()f x 在[t, t+2]上单调递增,min ()()ln f x f t t t ==; 所以min110()=1ln t e ef x t t t e ⎧-<<⎪⎪⎨⎪≥⎪⎩,,. (II )问题等价于证明2ln ((0,))x x x x x e e>-∈+∞, 由(I )可知()ln ((0,))f x x x x =∈+∞的最小值是1e -,当且仅当1x e=-时取到.设2()((0,))x x m x x e e=-∈+∞,则1()x x m x e -'=,易得max 1()(1)m x m e ==-.,当且仅当1x =时取到,从而对一切(0,)x ∈+∞,都有12ln x x e ex >-. 【点睛】本题主要考查利用导函数求最小值,利用导函数证明不等式,意在考查学生的分析能力,计算能力.22.(1)l :260x y -+=,C :22(2x y -+=; (2)2⎡-⎣. 【解析】【分析】(1)直接利用转换关系式,把参数方程直角坐标方程和极坐标方程之间进行转换.(2)由(,)M x y 为曲线C 上任意一点,根据(1)的结果设)M θθ,利用三角函数关系式的变换和正弦型函数性质可求出结果.【详解】由直线l 的参数方程是26x t y t =⎧⎨=+⎩(t 是参数). 转换为直角坐标方程为:26y x =+,故直线l 的普通方程为260x y -+=,曲线C 的极坐标方程为ρθ=.整理得:2cos ρθ=所以22x y +=,即22(2x y -+=.故曲线C 的普通方程为22(2x y +=.(2) 据题意设点)M θθ则x y θθ+=+)4πθ+,所以2,2x y +∈+,故x y +的取值范围是2⎡-⎣.【点睛】本题考查参数方程直角坐标方程和极坐标方程之间的转换,三角函数关系式的恒等变变换,正弦型函数的性质的应用,主要考查学生的运算能力和转化能力,属于基础题型. 23.(1)111322x x x ⎧⎫≤-≥⎨⎬⎩⎭或;(2)2,3⎡⎫-+∞⎪⎢⎣⎭. 【解析】试题分析:(1)零点分区间去掉绝对值,分段解不等式即可;(2)135421a x x --++≥+对x R ∀∈成立,即1-3921a ≥+,解出不等式即可.解析: (1)原不等式等价于55412x x x >⎧⎨-++≥⎩或()455412x x x -≤≤⎧⎨-++≥⎩,或()4,5412,x x x <-⎧⎨--+≥⎩解得132x ≥或112x ≤- 所以不等式()12f x ≥的解集为111322x x x ⎧⎫≤-≥⎨⎬⎩⎭或 (2)据题意,得135421a x x --++≥+对x R ∀∈成立. 又因为()min 549x x -++=,所以1-3921a ≥+,解得23a ≥-. 故所求实数a 的取值范围是2,3⎡⎫-+∞⎪⎢⎣⎭。
2018—2018学年上学期第一次模块考试数学(理)命题人:孙勇 校对人:田芳第Ⅰ卷( 40分)一.选择题:(本大题共10小题,每小题4分,共40分。
每题只有一个正确答案,将正确答案的序号涂在答题卡上.) 1.设U ={1,2,3,4,5} ,若B A ⋂={2},}4{)(=⋂B A C U ,}5,1{)()(=⋂B C A C U U 则下列结论正确的是 ( )A .A ∉3且B ∉3 B .A ∈3且B ∉3C .A ∉3且B ∈3D .A ∈3且B ∈3 2.已知命题:p 对任意x R ∈,总有20x >;:"1"q x >是"2"x >的充分不必要条件。
则下列命题为真命题的是( )A.qp ∧ B.qp ⌝∧⌝ C.q p ∧⌝D.q p ⌝∧3.下列函数中,与函数xy 1=有相同定义域的是( )A.f(x)=log 2xB.f(x)=错误!未找到引用源。
C.f(x)=|x|D.f(x)=2x4.如图,曲线y =x 2和直线x =0,x =1,y =14,所围成的图形(阴影部分)的面积为( )A.23 B .13 C.12 D .14 5.定义两种运算:a b ⊕=,a b ⊗,则函数2()(2)2xf x x ⊕=⊗-为( )A .奇函数 B.偶函数 C.奇函数且为偶函数D.非奇函数且非偶函数6.已知,62322x y x =+则u=的最大值是122-+y x ( ) A.25 B. 3 C. 27D. 47.若函数1log )(+=x x f a 在区间(1,0)上有f (x )>0 ,则f (x )的递增区间是( ) A.( -,1) B. (1,+ ) C.( -,-1)D.(-1,+ )8.若函数f(x)=212log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若f(a)>f(-a),则实数a 的取值范围是( )A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1) 9.已知函数f(x)=-x 2-x 4-x 6,x 1,x 2,x 3∈R 且x 1+x 2<0,x 2+x 3<0,x 3+x 1<0,则f ′(x 1)+f ′(x 2)+ f ′(x 3)的值(f ′(x)是f(x)的导数)( )A.一定小于零B.等于零C.一定大于零D.正负均有可能10.设函数()f x 是定义在(0)-∞,上的可导函数,其导函数为()f x ',且有22()()f x xf x x '+>,则不等式0)2(4)2015()2015(2>--++f x f x 的解集为( )A .(),2012-∞-B .()20120-,C .()+∞-,2017D .()2017,-∞-第Ⅱ卷(60分)二、填空题:(本大题共4小题,每小题5分,共20分) 11.直线02=--by ax 与曲线3x y =在点P(1,1)处的切线互相垂直,则ba =__________________12.设函数⎪⎩⎪⎨⎧>≤=)0(,log )0(,2)(2x x x x f x,则方程1()2f x =的解集为 .13.函数()f x 满足:()()()f a b f a f b +=⋅ 且(1)2f =则()()()()()()++++34212122f f f f f f ()()()++5632f f f )2015()2016()1008(2f f f + .14.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,3x +4,x <0,若互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3),则x 1+x 2+x 3的取值范围为__________.三、解答题(解答应写出文字说明,证明过程或演算步骤) 15. (本题满分10分)已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数。
2017-2018学年度上学期期末考试高三试题数学(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设复数(是虚数单位),则的共轭复数为()A. B. C. D.【答案】B【解析】化为,,故选B.2. 已知集合,,则()A. B. C. D.【答案】D【解析】集合,,所以,故选A.3. 元代数学家朱世杰的数学名著《算术启蒙》是中国古代代数学的通论,其中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.右图是源于其思想的一个程序图,若,,则输出的()A. B. C. D.【答案】A【解析】模拟程序的运行,可得,不满足,执行循环体,,满足条件,退出循环,输出的值为,故选A.4. 已知双曲线的两条渐近线方程为和,则该双曲线的离心率为()A. 或B. 或C.D.【答案】A【解析】由渐近线方程为,即渐近线方程为,设双曲线的方程为,则渐近线方程为,即有,又,即,可得,故选D.5. 下列函数中,既是偶函数又在区间上单调递减的是()A. B. C. D.【答案】C【解析】是奇函数,在区间内单调递增,不满足条件;不是偶函数,在区间内单调递增,不满足条件;是偶函数,在区间内单调递减,满足条件;,是偶函数,在区间内单调递增,不满足条件,故选C.6. 某校初三年级有名学生,随机抽查了名学生,测试分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是()A. 该校初三年级学生分钟仰卧起坐的次数的中位数为次B. 该校初三年级学生分钟仰卧起坐的次数的众数为次C. 该校初三年级学生分钟仰卧起坐的次数超过次的人数约有人D. 该校初三年级学生分钟仰卧起坐的次数少于次的人数约为人.【答案】C【解析】第一组数据的频率为;第二组数据的频率为,第三组的频率为中位数在第三组内,设中位数为,则数据的中位数为,故错误;最高矩形是第三组数据,第三组数据的中间值为人众数为,故错误;学生分钟仰卧起坐的成绩超过次的频率为人超过次的人数为人,故正确;学生分钟仰卧起坐的成绩少于次的频率为分钟仰卧起坐的成绩少于次的人数为人,故错误,故选C.7. 若,均为锐角且,,则()A. B. C. D.【答案】B【解析】为锐角,,,,,,故选B.8. 甲乙丙丁四名同学参加某次过关考试,甲乙丙三个人分别去老师处问询成绩,老师给每个人只提供了其他三人的成绩.然后,甲说:我们四个人中至少两人不过关;乙说:我们四人中至多两人不过关;丙说:甲乙丁恰好有一人过关.假设他们说的都是真的,则下列结论正确的是()A. 甲没过关B. 乙没过关C. 丙过关D. 丁过关【答案】B【解析】因为甲说:我们四个人中至少两人不过关;乙说:我们四人中至多两人不过关;所以四人组有且只有两人过关,两人不过关,又因为,丙说:甲乙丁恰好有一人过关,不过关的情况有三种可能:甲乙、甲丁、乙丁,根据甲不知道自己成绩的情况下说四个人中至少两人不过关,可见乙丙丁中有两人不过关,不过关的可能的情况有三种:乙丙、丙丁、乙丁,结合与以上六种,同时成立的是乙丁不过关,所以一定正确的结论是乙没过关,故选B.9. 一个正六棱柱的主视图(由两个边长等于的正方形组成)如图所示,则该六棱柱的侧视图的面积为()A. B. C. D.【答案】C【解析】由三视图可得,正六棱柱的直观图如图,,图中,设正六边形边长为,则,棱柱侧视图是边长为与的矩形,面积为,故选C.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力以及正六棱柱的性质,属于难题. 三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.10. 已知数列是公差不为的等差数列,,且,,成等比数列,设,则数列的前项和为()A. B. C. D.【答案】D【解析】设首项为,公差为,成等比数列,,解得,,,,故选D.【方法点晴】本题主要考查等差数列的通项公式,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.11. “”是函数满足:对任意的,都有”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】当时,在上递减,在递减,且在上递减,任意都有,充分性成立;若在上递减,在上递增,任意,都有,必要性不成立,“”是函数满足:对任意的,都有”的充分不必要条件,故选A...................12. 已知三棱锥的四个顶点都在同一个球面上,,,,平面,则此三棱锥外接球的表面积为()A. B. C. D.【答案】D【解析】因为平面,所以,又因为,所以,所以三棱锥的外接球就是以为长宽高的长方体的外接球,所以外接球的直径等于长方体的对角线,可得,此三棱锥外接球的表面积为,故选C.【方法点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若,则__________.【答案】1【解析】令x=1,得到=0,令x=0得到两式子做差得到.故答案为:1.14. 已知数列的前项和为,且,则__________.【答案】【解析】时,时,,,故答案为.15. 若,,点在圆的外部,则的范围是__________.【答案】【解析】可化为,,又在圆的外部,,画出的可行域,如图,由图知,在处有最大值,在处有最小值,因为此可行域在边界处不能取值,的取值范围是,故答案为.【方法点晴】本题主要考查点与圆的位置关系以及线性规划中利用可行域求目标函数的最值,属简单题. 求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.16. 直角梯形中,,,是边长为的正三角形,是平面上的动点,,设(,),则的最大值为__________.【答案】【解析】以为原点,为轴,所在直线为轴,建立直角坐标系,可设,因为,所以,,即的最大值为故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知,,设函数(1)求函数的单调增区间;(2)设的内角,,所对的边分别为,,,且,,成等比数列,求的取值范围.【答案】(1)单调递增区间为,;(2).【解析】试题分析:(1)根据平面向量的数量积公式、二倍角的正弦公式、二倍角的余弦公式以及两角差的正弦公式化简可得,根据正弦函数的单调性可得,解不等式可得函数的单调增区间;(2)由,,成等比数列,可得,再根据余弦定理结合基本不等式可得,从而可得角的范围,进而可得的取值范围.试题解析:(1).,令,则,,所以函数单调递增区间为,.(2)由可知(当且仅当时,取等号),所以,,综上的取值范围为.18. 某中学调查了某班全部名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(1)能否由的把握认为参加书法社团和参加演讲社团有关?(附:当时,有的把握说事件与有关;当,认为事件与是无关的)(2)已知既参加书法社团又参加演讲社团的名同学中,有名男同学,名女同学.现从这名男同学和名女同学中选人参加综合素质大赛,求被选中的男生人数的分布列和期望. 【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)根据表格中的数据得到,此时可以下结论;(2)根据题意分别求出的取值为,,,,时的概率值,再写出分布列和期望值即可。
2018届辽宁师范大学附属中学高三上学期期末考试数学(理)试题(解
析版)
第Ⅰ卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. ,则的共轭复数为()
B. D.
【答案】B
B.
2. ,,则()
【答案】D
A. 3. 元代数学家朱世杰的数学名著《算术启蒙》是中国古代代数学的通论,其中有关于“松竹并生”的问题:
松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.
)
【答案】A
【解析】模拟程序的运行,执行循环体,
A.
4. 的两条渐近线方程为)
【答案】A
【解析】设双曲线的方程为
,即,故选D. 5. 下列函数中,既是偶函数又在区间上单调递减的是()
【答案】C
【解析】内单调递增,不满足条件;
递增,不满足条件;
内单调递增,不满足条件,故选C.
6. ,将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是()
A.
B. 分钟仰卧起坐的次数的众数为
C.
D. .
【答案】C
,则
错误;最高矩形是第三组数据,第三组数据的中间值为
次的频率为次的人数为
C.
7. )
D.
【答案】B
,
B.
8. 甲乙丙丁四名同学参加某次过关考试,甲乙丙三个人分别去老师处问询成绩,老师给每个人只提供了其他三人的成绩.然后,甲说:我们四个人中至少两人不过关;乙说:我们四人中至多两人不过关;丙说:甲乙丁恰好有一人过关.假设他们说的都是真的,则下列结论正确的是()
A. 甲没过关
B. 乙没过关
C. 丙过关
D. 丁过关
【答案】B
【解析】因为甲说:我们四个人中至少两人不过关;乙说:我们四人中至多两人不过关;所以四人组有且只有两人过关,两人不过关,又因为,丙说:甲乙丁恰好有一人过关,不过关的情况有三种可能:甲乙、甲丁、乙丁,根据甲不知道自己成绩的情况下说四个人中至少两人不过关,可见乙丙丁中有两人不过关,不过关的可能的情况有三种:乙丙、丙丁、乙丁,结合与以上六种,同时成立的是乙丁不过关,所以一定正确的结论是乙没过关,故选B.
9.
()
【答案】C
【解析】
,图中
, C.
【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力以及正六棱柱的性质,属于难题. 三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.
10. 的等差数列,,,
)
【答案】D
【解析】设首项为,成等比数列,
【方法点晴】本题主要考查等差数列的通项公式,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构
(3)
;(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
11. ”是函数满足:对任意的)
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
【答案】B
【解析】当时,在上递减,在递减,且
在上递减,任意都有,充分性成立;若
在上递减,在上递增,任意,都有
,必要性不成立,“”是函数满足:对任意的
,都有”的充分不必要条件,故选A...................
12. 的四个顶点都在同一个球面上,,,,
则此三棱锥外接球的表面积为()
【答案】D
,所以三棱锥
为长宽高的长方体的外接球,所以外接球的直径等于长方体的对角线,
此三棱锥外接球的表面积为
C.
【方法点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①(为三棱的长);②
((为;③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.
第Ⅱ卷(共90分)
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13. .
【答案】1
【解析】令x=1,,令x=0
故答案为:1.
14. .
时,时,
15. 若,在圆的外部,则__________.
【答案】
【解析】
的外部,
处有最大值处有最小值,因为此可行域在边界处
,故答案为
【方法点晴】本题主要考查点与圆的位置关系以及线性规划中利用可行域求目标函数的最值,属简单题. 求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.
16.
__________.
【解析】
所在直线为
,
即的最大值为故答案为
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17.
(1)求函数的单调增区间;
(2,,成等比数列,求.
【答案】(1(2
【解析】试题分析:(1)根据平面向量的数量积公式、二倍角的正弦公式、二倍角的余弦公式以及两角差
的单调增区间;(2)由,,成等比数列,可得,再根据余弦定理结合基本不等式可得
.
试题解析:(1)
,
,
所以函数单调递增区间为
(2。