九年级数学视图与投影(1)
- 格式:ppt
- 大小:425.50 KB
- 文档页数:11
初三数学:投影与视图知识点归纳一、知识要点1、投影(1)投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影(projection),照射光线叫做投影线,投影所在的平面叫做投影面。
(2)平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。
由平行光线形成的投影是平行投影(parallel projection).(3)中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影(center projection)。
(4)正投影:投影线垂直于投影面产生的投影叫做正投影。
注:物体正投影的形状、大小与它相对于投影面的位置有关。
2、三视图(1)三视图:是指观测者从三个不同位置观察同一个空间几何体而画出的图形。
将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。
一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图--能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图--能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图--能反映物体的左面形三视图就是主视图、俯视图、左视图的总称。
(2)特点:一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。
三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。
三视图是从加速度学习网我的学习也要加速三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
二、经验之谈:多读两遍吧!有兴趣的同学可以多画图观察。
第五章投影与视图 2024--2025学年北师大版九年级数学上册专题一投影【知识聚焦】投影通常考查画图与计算两个方面:画图可根据投影的定义,利用平行投影中光线平行为已知条件;中心投影常利用两条直线相交确定光;计算常利用相似知识解决.1. 投影的相关概念物体在光线的照射下,在某个平面内形成的影子叫做投影. 这时,照射光线叫做投影线,影子(投影)所在的平面叫做投影面.2. 平行投影的概念由平行光线形成的投影是平行投影. (注意:平行投影的投影线都是平行的)3. 正投影的概念投影线垂直于投影面产生的投影叫做正投影. 在实际作图中,正投影被广泛应用,主要有线段、平面图形及立体图形.4. 中心投影的概念由同一点(点光) 发出的光线形成的投影叫做中心投影.(注意:中心投影的光是点光,它的光线相交于一点)5. 视点、视线和盲区的概念由同一点(点光)发出的光线形成的投影叫做中心投影.(注意:中心投影的光是点光,它的光线相交于一点)【典例精讲】题型1 平行投影的应用【例1】如图所示,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB 和一段高度未知的电线杆 CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量;某一时刻,在太阳光照射下,旗杆落在围墙的影子 EF的长度为2米,落在地面上的影子BF的长度为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长度为5米. 依据这些数据,该小组的同学计算出了电线杆的高度.(1) 该小组的同学在这里利用的是投影的有关知识进行计算的.(2) 试计算出电线杆的高度,并写出计算过程.举一反三。
1. 如图所示,该小组发现8米高的旗杆DE 的影子 EF 落在了包含一圆弧形小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动. 小刚身高1.6米,测得其影长为2.4米,同时测得 EG的长为3米,HF 的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长度) 为2米,求小桥所在圆的半径.题型 2 中心投影的应用【例2】如图所示,不透明圆锥体 DEC 放在直线 BP 所在的水平面上且 BP 过圆锥底面的圆心,圆锥的高为23m,底面圆半径为2m,一点光位于点 A处,照射到圆锥体后,在水平面上留下的影长BE=4m.(1) 求∠ABC的度数;(2) 若∠ACP=2∠ABC, 求光A距水平面的高度.举一反三2. 小明现有一根2m长的竹竿,他想测出自家门口马路上一盏路灯的高度,但又不能直接测量,他采用了如下办法:①先走到路旁的一个地方,竖直放好竹竿,测量此时的影长为1m;②沿竹竿影子的方向向远处走了两根竹竿的长度4m,然后又竖直放好竹竿,测量此时竹竿的影子长正好为2m.小明说他可以计算出路灯的高度,他如何计算?题型3 盲区的实际应用问题【例3】如图所示,AB 表示一坡角为60°、高为2003米的山坡,一架距地面1000 米的飞机(点C)在山前飞行,此时从飞机看山顶A的俯角为30°.(1) 请在图中画出飞机向山后看的盲区的大小;(2) 求当飞机继续向高处飞多少米时向山后看无盲区?举一反三3. 如图所示,左边的楼高,AB=60m,右边的楼高CD=24m,且BC=30m,地面上的目标P 位于距C点 15m处.(1) 请画出从A 处能看到的地面上距离点 C 最近的点,这个点与点C之间的距离为多少?(2) 从A 处能看见目标P吗? 为什么?题型 4 几何知识型问题【例4】如图所示,已知一纸板ABCD的形状为正方形,其边长为10cm,AD,BC与投影面β平行,AB,CD与投影面β不平行,正方形在投影面β上的正投影为. A₁B₁C₁D₁,若∠ABB₁=45°,求正投影A₁B₁C₁D₁的面积.举一反三4. 如图所示,在Rt△ABC中,∠C=90°,在阳光的垂直照射下,点C 落在斜边AB上的点 D.(1) 试探究线段AC,AB和AD 之间的关系,并说明理由;(2) 线段BC,AB和BD之间也有类似的关系吗?专题二视图【知识聚焦】对同一个物体从不同方向看,可以得到不同的视图,画一个物体的三视图(主视图、俯视图、左视图)是有具体规定的.主视图、俯视图:长对正;主视图、左视图:高平齐;俯视图、左视图:宽相等.可简单记为口诀:主、俯长对正;主、左高平齐;俯、左宽相等.其次是:看得见,画实线;看不见,画虚线.有了三视图,我们既可以由几何体画出其三视图,也可以由物体的三种视图还原几何体的形状,从而求出几何体的表面积和体积.【典例精讲】题型1 物体三视图【例1】如图所示是一个螺母的示意图,它的俯视图是 ( )举一反三1. 如图所示的几何体的俯视图是 ( )题型 2 组合体识别型应用问题【例2】图中的三视图所对应的几何体是( )举一反三2. 如图所示的几何体的三视图是 ( )题型3 截面三视图识别型应用问题【例3】如图所示,一个正方体被截去四个角后得到一个几何体,它的俯视图是 ( )举一反三3. 如图所示是一个正方体截去一角后得到的几何体,它的主视图是( )题型4 三视图与几何体求解型应用问题【例4】如图是某几何体的三视图,则该几何体的体积是( )A.183B.543C.1083D.2163举一反三4. 如图所示是某几何体的三视图,根据图中数据,该几何体的体积为( )A. 60πB. 70πC. 90πD. 160π题型5 组合体计数型应用问题【例5】如图所示是由一些完全相同的小立方块搭成的几何体的三视图,那么搭成这个几何体所用的小立方块的个数是 ( )A. 9个B. 8个C. 7个D. 6个举一反三5. 如图所示是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要个小立方块.题型6 规律探究思想型问题【例6】(1)如图1是用积木摆放的一组图案,观察图案并探索:第五个图案中共有块积木,第n个图案中共有块积木.(2)一样大小的小立方体,如图2所示那样,堆放在房间一角,若按此规律一共垒了十层,这十层中看不见的木块共有多少个?举一反三6. 如图1是棱长为a的小正方体,图2和图3是由这样的小正方体摆放而成的几何体. 按照这样的方法继续摆放,自上而下分别叫第1层、第2层……第n层.(1) 用含n的代数式表示第n层的小正方体的个数;(2) 求第10层小正方体的个数.。
数学北师大版九年级上册第五章投影与视图:《视图》教案第1课时(含答案)第五章投影与视图5.2 视图第1课时一、教学目标1.了解视图及主视图、左视图、俯视图的概念.2.会画圆柱、圆锥、球的三种视图,并能判定简单物体的视图.3.经历有关视图的观察、操作、分析、抽象、概括、想象、推理、交流等过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念.二、教学重点及难点重点:从投影的角度加深对三视图的理解,会画简单几何体的三视图.难点:对三视图的理解.三、教学用具多媒体课件、直尺或三角板.四、相关资源《三视图》微课.五、教学过程【情境引入】横看成岭侧成峰,远近高低各不同;不识庐山真面目,只缘身在此山中.这首诗正是诗人从不同方向看同一物体看到了不同的景观,我们这节课也学着诗人的眼光从不同方向看同一物体,一起来看看我们会有哪些新发现.设计意图:通过熟悉的诗引出课题,能够激发学生的学习兴趣,也能很好地反映本节课的主题.【探究新知】想一想如图,假设有一束平行光线从正面投射到图中的物体上,你能想象出它在这束平行光线下的正投影吗?把你想象的正投影画出来,并与同伴交流.如果平行光线从左面投射到图中的物体上,情况又如何?如果平行光线从上面投射到图中的物体上呢?师生活动:教师出示问题,学生思考、讨论,教师先讲解一些概念,然后引导学生完成本题.教师讲解:用正投影的方法绘制的物体在投影面上的图形,称为物体的视图.在实际生活和工程中,人们常常从正面、左面和上面三个不同方向观察一个物体,分别得到这个物体的三个视图,这样大体上就把一个物体的形状特征用平面图形表示出来了.通常我们把从正面得到的视图叫做主视图,从左面得到的视图叫做左视图,从上面得到的视图叫做俯视图.解:上图所示的物体的主视图、左视图和俯视图分别是:设计意图:在学生思考、讨论的基础上,引入视图和三种视图的概念.议一议(1)下图中物体的形状分别可以看成什么样的几何体?(2)在下图中分别找出上述几何体的主视图.(3)上述各物体的左视图是什么?俯视图呢?师生活动:教师出示问题,学生思考、讨论,最后得出答案.答:(1)(甲)物体可以看成圆柱;(乙)物体可以看成圆锥;(丙)物体可以看成球.(2)圆柱的主视图是图(A),圆锥的主视图是图(E),球的主视图是图(C).(3)(甲)(乙)(丙)三物体的三种视图如下:设计意图:首先让学生经历把实物抽象成几何体的过程,然后通过辨认找出主视图,在此基础上让学生动手画出它们的左视图和俯视图,从而经历由圆柱、圆锥和球到其三种视图的转化过程,发展学生的空间观念.【典例精析】例下图是一个蒙古包的照片,小明认为这个蒙古包可以看成下图右边所示的几何体,你能帮小明画出这个几何体的三种视图吗?师生活动:教师出示问题,学生思考、讨论、动手画图.解:这个几何体的主视图、左视图和俯视图如下图所示.设计意图:一方面使学生巩固对圆锥、圆柱三种视图的认识,另一方面也使学生初步认识简单组合体的三种视图.【课堂练习】1.将两个圆盘、一个茶叶桶、一个皮球和一个蒙古包模型按如图所示的方式摆放在一起。
第五章投影与视图第4讲投影与视图一.知识梳理(一)投影【一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面】1.中心投影(1)定义:由同一点(点光源)发出的光线形成的投影叫做中心投影,如物体在灯泡发出的光照射下形成影子就是中心投影.【在中心投影中,同一灯光下,改变物体的位置和方向,其投影也跟着发生变化;固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也要发生变化】(2)中心投影具有以下特点:①中心投影的投影线交于一点;②一个点光源把一个图形照射到一个平面上,这个图形的影子就是它在这个平面上的中心投影;③平面为投影面,各射线为投影线;④空间图形经过中心投影后,直线变成直线,但平行线可能变成了可以相交的直线;⑤中心投影后的图形与原图形相比虽然改变较多,但直观性强,看起来与人的视觉效果一致;⑥如果一个平面图形所在的平面与投射面平行,那么中心投影后得到的图形与原图形也是平行的,并且中心投影后得到的图形与原图形相似.名师点金:中心投影的三个特点:(1)等高物体垂直地面放置:①离点光源越近,影子越短;②离点光源越远,影子越长.(2)等长物体平行地面放置:①离点光源越近,影子越长;②离点光源越远,影子越短,但不会小于物体本身的长度.(3)点光源、物体边缘的点以及其在物体的影子上的对应点在同一条直线上.2.平行投影(1)定义:在一束平行光线(如阳光)照射下形成的投影叫做平行投影。
【在平行投影中,同一时刻改变物体的方向和位置,其投影也跟着发生变化】(2)分类平行投影法又分为斜投影法和正投影法。
①斜投影法:投射线倾斜于(<90°)投影面,所得投影称为斜投影,如图所示.②正投影法:投射线垂直于投影面,所得投影称为正投影,如图所示.(3)性质①不垂直于投影面的直线或线段的正投影仍是直线或线段;②垂直于投影面的直线或线段的正投影是点;倾斜于投影面的线段,其正投影仍为线段,但比实际长度要短.③垂直于投影面的平面图形的正投影是直线或线段的一部分.(4)特点①平行直线的投影仍是平行或重合直线.②平行于投射面的线段,它的投影与这条线段平行且相等.③与投影面平行的图形,它的投影与这个图形全等;倾斜于投影面的平面图形,其投影仍为一平面图形.④在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比.名师点金:平行投影的特征及画法:(1)特征:①平行投影中,形成影子的光线是平行的,平行物体在地面上形成的影子平行或在同一直线上;②同一时刻,太阳光下,物高与影长成正比例;(2)画法:连接物体顶端与影子顶端得到形成影子的光线,过物体顶端作已知光线的平行线得到物体的影子.补充:在北半球,太阳一天中的朝向变化:东→东南→南→西南→西;在北半球,影子一天中的朝向变化和长短变化:朝向变化:西→西北→北→东北→东;长短变化:长→较长→短→较长→长.(二)三视图【能够正确反映物体长、宽、高尺寸的正投影工程图(主视图,俯视图,左视图三个基本视图)为三视图】•主视图—从正面看到的图左视图—从左面看到的图俯视图—从上面看到的图•画物体的三视图时,要符合如下原则:大小:长对正,高平齐,宽相等.•虚实:在画图时,看的见部分的轮廓通常画成实线,看不见部分的轮廓线通常画成虚线.二.实战演练考点一中心投影与平行投影(一)中心投影例1:(1)小刚走路时发现自己的影子越走越长,这是因为()A.从路灯下走开,离路灯越来越远B.走到路灯下,离路灯越来越近C.人与路灯的距离与影子长短无关D.路灯的灯光越来越亮(2)如图,一球吊在空中,当发光的手电筒由远及近时,落在竖直木板上的影子会逐渐______.例2:某公司的外墙壁贴的是反光玻璃,晚上两根木棒的影子如图(短木棒的影子是玻璃反光形成的),请确定图中路灯灯泡所在的位置.例3:如图所示,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米.求路灯A的高度AB.典例分析(二)平行投影例1:如图:(A)(B)(C)(D)是一天中四个不同时刻的木杆在地面上的影子,将它们按时间先后顺序进行排列,为______.例2:已知两个电线杆在太阳光下形成两条不同的线段,那么这两条线段可能______,也可能______.例3:春分这一天,小彬上午9:00出去,测量了自己的影长,出去一段时间后回来时,发现这时的影长和上午出去时的影长一样长,则小明出去的时间大约为______小时.例4:某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同时刻测量旗杆影长时,因旗杆靠近一幢楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为21米,留在墙上的影高为2米(如图),求旗杆的高度.例5:如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长2米,在同时刻测量旗杆的影长时,旗杆的影子一部分落在地面上(BC),有一部分落在斜坡上(CD),他测得落在地面上影长为10米,留在斜坡上的影长为2米,∠DCE为45°,则旗杆的高度约为多少米?(参考数据:2≈1.4,3≈1.7)例6:如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12m,塔影长DE=18m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为____m.考点二视图例1:(1)如图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是()(2)如图,图1是一个底面为正方形的直棱柱,现将图1切割成图2的几何体,则下列选项图是图2的俯视图是()例2:画出如图所示几何体的三视图.例3:根据如图所示的三种视图,画出相应的几何体.例4:如图,给出的是一个由若干相同的小正体搭成的立体图形的主视图和左视图,则图中最少有___个小正方体,最多有___个小正方体.1.晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是()A.变长B.变短C.先变长后变短D.先变短后变长2.某一同学在上午上学路上和下午放学路上都看不到自己的影子,则该同学的家在学校的() A.东边 B.南边 C.西边 D.北边3.正方形纸片在阳光下的投影不可能是下列那些?①正方形②矩形③菱形④梯形⑤线段⑥平行四边形4.下列图中是在太阳光下形成的影子的是()5.如图,是由三个相同的小正方体组成的几何体,该几何体的俯视图是()课后作业6.由若干个小正方体构成的几何体的主视图和左视图都是如图所示,则该几何体最多有_____个小正方体,最少有_____个小正方体.7.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为()A.11.5米 B.11.75米C.11.8米D.12.25米8.画出如图所示几何体的三视图.9.根据如图所示的三种视图,你能想象出相应几何体的形状吗?(画出几何体的草图)10.晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞,小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高,于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长,已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ,请你根据以上信息,求出小军身高BE的长(结果精确到0.01米)11.“未爱广场”旗杆AB旁边有一个半圆的时钟模型,如图,时钟的9点和3点的刻度线刚好和地面重合,半圆的半径2米,旗杆的底端A到钟面9点刻度C的距离为5米,一天小明观察到阳光下旗杆顶端B的影子刚好投到时钟的11点的刻度上,同时测得一米长的标杆的影长1.6米,求旗杆AB的高度?1.在同一时刻,两根长度不等的竿子置于阳光之下,但看到它们的影长相等,那么这两根竿子的相对位置是()A.两竿都垂直于地面 B.两竿平行斜插在地上C.两根竿子不平行D.一根竿倒在地上2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长3.(1)如图,是一个由相同小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置上的小正方体的个数,则这个几何体的左视图是()(2)如图,正四棱锥的俯视图是选项中的()直击中考4.一个几何体的三视图如图所示,它的俯视图为菱形,,该几何体的侧面积是____cm².5.画出下列几何体的三视图6.已知某立体图形的三视图如下,请你画出这个立体图形.7.一天晚上,李明和张龙利用灯光下影子的长来测量一路灯D高度,如图,当李明走到点A 处时,张龙测得李明直立时身高AM与其影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m.求路灯的高CD的长.(结果精确到0.1m)。