专题四 第2讲 点、线、平面之间的位置关系
- 格式:doc
- 大小:186.50 KB
- 文档页数:5
点、直线、平面之间的位置关系一、线、面之间的平行、垂直关系的证明书中所涉及的定理和性质可分为以下三类:1、平行关系与平行关系互推;2、垂直关系与垂直关系互推;线面垂直判定定理线面垂直的定义两平面的法线垂直则两平面垂直面面垂直判定定理线面平行判定定理线面平行性质定理线面平行转化面面平行判定定理面面平行性质定理3、平行关系与垂直关系互推。
以线或面为元素,互推的本质是以某一元素为中介,通过另外两元素与中介元素的垂直或平行关系,推导出该两元素的关系,总共有21种情况,能得出结论的有以下9种情况。
线线平行传递性:;b c c a b a //////⇒⎭⎬⎫面面平行传递性:;γαβγβα//////⇒⎭⎬⎫线面垂直、线面垂直线面平行:;⇒ααββα//a a a ⇒⎪⎭⎪⎬⎫⊄⊥⊥线面垂直线线平行(线面垂直性质定理):;⇒b a b a //⇒⎭⎬⎫⊥⊥αα线面垂直面面平行:;⇒βαβα//⇒⎭⎬⎫⊥⊥a a 线面垂直、面面平行线面垂直:;⇒βαβα⊥⇒⎭⎬⎫⊥a a //线线平行、线面垂直线面垂直:;⇒αα⊥⇒⎭⎬⎫⊥b a b a //线面垂直、线面平行面面垂直:。
⇒βααβ⊥⇒⎭⎬⎫⊥a a //备注:另外证明平行关系时可以从最基本的定义交点入手,证明垂直关系时可以从最基本的定义角度入手。
符号化语言一览表①线面平行;;;ααα////a a b b a ⇒⎪⎭⎪⎬⎫⊄⊂αββα////a a ⇒⎭⎬⎫⊂ααββα//a a a ⇒⎪⎭⎪⎬⎫⊄⊥⊥②线线平行:;;;;////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭ b a b a //⇒⎭⎬⎫⊥⊥αα////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭b c c a b a //////⇒⎭⎬⎫③面面平行:;;;,////,//a b a b O a b αααβββ⊂⊂⎫⎪=⇒⎬⎪⎭βαβα//⇒⎭⎬⎫⊥⊥a a γαβγβα//////⇒⎭⎬⎫④线线垂直:;b a b a ⊥⇒⎭⎬⎫⊂⊥αα⑤线面垂直:;;,,a b a b O l l a l b ααα⊂⊂⎫⎪=⇒⊥⎬⎪⊥⊥⎭,l a a a l αβαββα⊥⎫⎪=⇒⊥⎬⎪⊂⊥⎭ ;;βαβα⊥⇒⎭⎬⎫⊥a a //αα⊥⇒⎭⎬⎫⊥b a b a //⑥面面垂直:二面角900; ;;βααβ⊥⇒⎭⎬⎫⊥⊂a a βααβ⊥⇒⎭⎬⎫⊥a a //二、立体几何中的重要方法1、求角:(步骤-------Ⅰ找或作角;Ⅱ求角)⑴异面直线所成角的求法:①平移法:平移直线,构造三角形;②补形法:补成正方体、平行六面体、长方体等,发现两条异面直线间的关系.注:还可用向量法,转化为两直线方向向量的夹角.⑵直线与平面所成的角:①直接法(利用线面角定义);②先求斜线上的点到平面距离h ,与斜线段长度作比,得sin ;③三线三角公式.θ12cos cos cos θθθ=注:还可用向量法,转化为直线的方向向量与平面法向量的夹角.⑶二面角的求法:①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;②垂面法:作面与二面角的棱垂直; ③投影法(三垂线定理);④面积摄影法.注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;还可用向量法,转化为两个班平面法向量的夹角.2、求距离:(步骤-------Ⅰ找或作垂线段;Ⅱ求距离)⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;或转化为线面距离、点面距离;⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;⑶点到平面的距离:①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;②等体积法;还可用向量法:.||n d =3、证明平行、垂直的理论途径:①证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点(定义);(2)转化为两直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.②证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点(定义);(2)转化为线线平行;(3)转化为面面平行.③证明平面与平面平行的思考途径:(1)转化为判定两平面无公共点(定义);(2)转化为线面平行;(3)转化为线面垂直.④证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直.⑤证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直(定义);(2)转化为该直线与平面内相交的两条直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面交线垂直.⑥证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直.。
点线面的位置关系在几何学中,点、线和面是最基本的几何概念。
它们之间存在着一种特殊的位置关系,即点线面的位置关系。
本文将从不同角度来探讨这种位置关系,以加深我们对几何学的理解。
1. 点与线的位置关系在几何学中,点是最基本的元素。
它没有长度、宽度或高度,仅有一个位置。
而线则是由一系列相邻点组成,具有长度但没有宽度。
点与线之间的位置关系主要有以下几种情况:- 点在线上:当一个点的位置恰好与一条线上的点重合时,我们说这个点在这条线上。
- 点在线的延长线上:当一个点的位置在一条线的延长线上时,我们说这个点在这条线的延长线上。
延长线是指无限延伸的线段,即线上的点外面的点。
- 点在线的两侧:当一个点的位置不在一条线上,但在这条线的两侧时,我们说这个点在这条线的两侧。
2. 点与面的位置关系与点与线的位置关系类似,点与面的位置关系也有多种情况:- 点在面上:当一个点的位置恰好与一个面上的点重合时,我们说这个点在这个面上。
- 点在面的内部:当一个点的位置在一个面的内部时,我们说这个点在这个面的内部。
面的内部是指位于面的边界所围成的区域内的点。
- 点在面的外部:当一个点的位置不在一个面上,且在这个面的外部时,我们说这个点在这个面的外部。
即位于面的边界以外的点。
3. 线与线的位置关系线与线之间的位置关系可以分为以下几种情况:- 相交:当两条线交于一点时,我们说这两条线相交。
- 平行:当两条线的方向相同且不相交时,我们说这两条线平行。
平行线永远不会相交。
- 重合:当两条线的位置相同且方向相同时,我们说这两条线重合。
重合的线是完全重合,始终重合。
4. 线与面的位置关系线与面之间的位置关系也有多种情况:- 相交:当一条线与一个面相交于一点时,我们说这条线与这个面相交。
- 平行:当一条线与一个面平行时,我们说这条线与这个面平行。
平行线永远不会与相同平面内的面相交。
- 垂直:当一条线与一个面垂直相交时,我们说这条线与这个面垂直。
点线面之间的位置关系(一)平面:1、平面的两个特征:①无限延展 ②平的(没有厚度)2、平面的画法:通常画平行四边形来表示平面3、平面的表示:(1)用一个小写的希腊字母α、β、γ等表示,如平面α、平面β; (2)用表示平行四边形的两个相对顶点的字母表示,如平面AC考点一、点线面的位置关系表示点A 在直线a 上(或直线a 经过点A ) A ∈a 元素与集合间的关系点A 在直线a 外(或直线a 不经过点A )A ∉a 点A 在平面α内(或平面α经过点A )A ∈α点A 在平面α外(或平面α不经过点A )A ∉α例1 如图10,用符号语言表示下列图形中点、直线、平面之间的位置关系.变式训练1.画图表示下列由集合符号给出的关系: (1)A ∈α,B ∉α,A ∈l,B ∈l;(2)a ⊂α,b ⊂β,a ∥c,b∩c=P,α∩β=c.例6.A 、B 、C 表示不同的点,a 、l 表示不同的直线,α、β表示不同的平面,下列推理不正确的是 ( ) ()A ααα⊂⇒∈∈∈∈l B l B A l A ,,,()B βα∈∈A A ,,AB B B =⇒∈∈βαβα ,直线 ()C αα∉⇒∈⊄A l A l ,()D α∈C B A ,,,β∈C B A ,,且C B A ,,不共线α⇒与β重合考点2.直线与直线的位置关系1.空间两条直线的位置关系:(1)相交直线——有且仅有一个公共点;(2)平行直线——在同一平面内,没有公共点;(3)异面直线——不同在任何一个平面内,没有公共点。
相交直线和平行直线也称为共面直线.异面直线的画法常用的有下列三种:2. 平行直线:在平面几何中,平行于同一条直线的两条直线互相平行,这个结论在空间也是成立的。
即公理4:平行于同一条直线的两条直线互相平行。
3.等角定理等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等.a b a b ab βααα推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.4.异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线推理模式:,,,A B a B a ααα∉∈⊂∉⇒AB 与a 是异面直线例1.若直线a 与b 是异面直线,直线b 与c 是异面直线,则直线a 与c 的位置关系是 .例2.已知a ,b 是异面直线,直线c ∥直线a,则c 与b 的位置关系 . ①一定是异面直线 ②一定是相交直线 ③不可能是平行直线 ④不可能是相交直线例3.若P 是两条异面直线l 、m 外的任意一点,则说法错误的有 (填序号). ①过点P 有且仅有一条直线与l 、m 都平行 ②过点P 有且仅有一条直线与l 、m 都垂直 ③过点P 有且仅有一条直线与l 、m 都相交 ④过点P 有且仅有一条直线与l 、m 都异面例4. 如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.图6求证:四边形EFGH是平行四边形.例5.如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点且AC=BD. 求证:四边形EFGH是菱形.例4 如图7,已知正方体ABCD—A′B′C′D′.图7(1)哪些棱所在直线与直线BA′是异面直线?(2)直线BA′和CC′的夹角是多少?(3)哪些棱所在直线与直线AA′垂直?例5.如图8,已知正方体ABCD —A′B′C′D′.图8(1)求异面直线BC ′与A′B′所成的角的度数; (2)求异面直线CD′和BC′所成的角的度数.例6.在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成的角的大小 .变式训练1.下列四个命题:(1)分别在两个平面内的两条直线是异面直线 (2)和两条异面直线都垂直的直线有且只有一条 (3)和两条异面直线都相交的两条直线必异面(4)若a 与b 是异面直线,b 与c 是异面直线,则a 与c 也异面 其中真命题个数为 ( )()A 3 ()B 2 ()C 1 ()D 02.在正方体-ABCD ''''D C B A 中,M 、N 分别是棱'AA 和AB 的中点,P 为上底面ABCD 的中心,则直线PB 与MN 所成的角为( ) ()A 300 ()B 450 ()C 600 ()D3.已知直线a ,如果直线b 同时满足条件:①a 、b 异面②a 、b 所成的角为定值③a 、b 间的距离为定值,则这样的直线b 有( )()A 1条 ()B 2条 ()C 4条 ()D 无数条4.正四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为 .考点三.直线与平面的位置关系(二)三公理三推论:公理1:若一条直线上有两个点在一个平面内,则该直线上所有的点都在这个平面内.A l ∈,B l ∈,A α∈,B α∈⇒α⊂l公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
的位置关系-@>% )一平面1.平面的概念平面是一个只描述而不加定义的最基本的原始概念,常见的桌面㊁黑板面㊁海面都给我们以平面的形象.立体几何里所说的平面就是从这样一些物体中抽象出来的.但是几何里所说的平面是无限延展的.2.平面的基本性质三个公理及公理2的三个推论如下:公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内.公理2:经过不在同一条直线上的三点有且只有一个平面.推论1:经过一条直线和直线外的一点有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面.公理3:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线.二空间两条直线的位置关系1.空间两条直线的位置关系(1)相交直线:在同一平面内,有且仅有一个公共点.(2)平行直线:在同一平面内,没有公共点.(3)异面直线:不同在任何一个平面内,没有公共点.(4)异面直线所成的角:如图51所示,直线a ,b是异面直线,经过空间一点O ,分别引直线a 'ʊa ㊁b 'ʊb ,相交直线a ',b '所成的锐角(或直角)叫作异面直线a ,b 所成的角.如果两条异面直线所成的角是直角,则称这两条异面直线互相垂直.abαabαOOaa b图512.平行公理与等角定理(1)平行公理(公理4):平行于同一直线的两条直线相互平行.(2)等角定理:空间中如果一个角的两边和另一个角的两边分别对应平行,那么这两个角相等或互补.三直线和平面、平面和平面的位置关系1.一条直线和一个平面的位置关系有且只有以下三种:(1)直线在平面内 有无数个公共点;(2)直线和平面相交 有且只有一个公共点;(3)直线和平面平行 没有公共点.2.两个平面的位置关系只有两种(1)平行 没有公共点;(2)相交 有一条公共直线.四直线和平面平行的判定与性质1.直线和平面平行的判定定理(1)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(2)判定定理的符号表示:a⊄α}⇒aʊαb⊂αaʊb2.直线和平面平行的性质定理(1)性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和两平面的交线平行.(2)性质定理的符号表示aʊαa⊂βαɘβ=b}⇒aʊb五平面与平面平行的判定与性质1.平面与平面平行的判定定理(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.(2)判定定理的符号表示:a⊂αb⊂αaɘb=A aʊβbʊβüþýïïïïïï⇒αʊβ2.平面与平面平行的性质定理(1)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(2)性质定理的符号表示:αʊβγɘα=a γɘβ=b }⇒a ʊb 六直线和平面垂直的判定与性质1.直线和平面垂直的定义如果一条直线l 和一个平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直,记作l ʅα,直线l 叫作平面α的垂线,平面α叫作直线l 的垂面.2.直线和平面垂直的判定(1)直线和平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与这个平面垂直.判定定理的符号表示:a ⊂αb ⊂αa ɘb =P l ʅal ʅbüþýïïïïïï⇒l ʅα(2)如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,即a ʊba ʅα}⇒b ʅα3.直线和平面垂直的性质(1)直线和平面垂直的性质定理:垂直于同一个平面的两条直线平行.性质定理的符号表示:a ʅαb ʅα}⇒a ʊb(2)如果一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意一条直线.(3)过一点有且只有一条直线和已知平面垂直;过一点有且只有一个平面和已知直线垂直.(4)如果一条直线与两个平面都垂直,那么这两个平面平行.七平面与平面垂直的判定与性质1.两个平面垂直的定义(1)二面角:从一条直线出发的两个半平面所形成的空间图形叫作二面角.这条直线叫作二面角的棱,两个半平面叫作二面角的面.(2)二面角的平面角:在二面角α-l -β的棱l 上任取一点O ,以O 为垂足,在两个半平面内分别作垂直于棱的射线O A 和O B ,则射线O A 和O B 所成的角øA O B叫作二面角α-l -β的平面角.(3)直二面角:平面角是直角的二面角叫作直二面角(4)两个平面垂直的定义:两个平面相交,如果它们所成的二面角是直二面角,那么就说这两个平面互相垂直.2.两个平面垂直的判定定理(1)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.(2)判定定理的符号表示:a ⊂αa ʅβ}⇒αʅβ3.两个平面垂直的性质定理(1)性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.(2)性质定理的符号表示:αʅβ,αɘβ=l b ⊂α,b ʅl}⇒b ʅβ。
点线面的位置关系在几何学中,点、线和面是基本的几何元素。
它们之间的位置关系是我们研究几何学的基础。
本文将详细探讨点线面之间的位置关系,并从几何学的角度解释这些关系。
一、点与线的位置关系在平面几何中,点是最简单的几何元素。
它没有长度、面积和方向。
而线则是由无数个点组成的,具有长度但没有宽度。
点与线之间有以下几种位置关系:1. 点在线上:当一个点正好在一条线上时,我们说这个点在这条线上。
这意味着点与线上的所有点重合。
2. 点在线的两侧:如果一个点不在一条线上,并且离线的两侧距离都不为零,则我们说这个点在这条线的两侧。
3. 点在线的延长线上:如果一个点不在一条线上,并且它在这条线的延长线上,则我们说这个点在线的延长线上。
延长线是指将线无限延长的线段。
二、点与面的位置关系与点与线的位置关系类似,点与面之间也有几种不同的位置关系:1. 点在面上:当一个点正好在一个平面上时,我们说这个点在这个平面上。
这意味着点与面上的所有点重合。
2. 点在面的上方或下方:如果一个点不在一个平面上,并且它在这个平面的上方或下方,则我们说这个点在这个平面的上方或下方。
3. 点在面的边界上:如果一个点在一个平面的边界上,则我们说这个点在这个平面的边界上。
三、线与面的位置关系线与面之间的位置关系也是几何学中重要的内容,它们之间有以下几种位置关系:1. 线在面上:当一条线正好在一个平面上时,我们说这条线在这个平面上。
这意味着线上的所有点都在这个平面上。
2. 线与面相交:如果一条线与平面有一个或多个公共点,则我们说这条线与这个平面相交。
3. 线平行于面:如果一条线与平面上的所有点都不相交,则我们说这条线平行于这个平面。
4. 线垂直于面:如果一条线与平面的交点为一点,并且与平面上的所有其他点都垂直,则我们说这条线垂直于这个平面。
综上所述,点线面之间的位置关系是几何学的重要内容,它们的不同位置关系可以通过几何学的方法进行判断和描述。
通过研究这些位置关系,我们可以更好地理解几何学的基本概念,并应用于实际生活和工作中。
第一讲 点、线、面的位置关系【知识梳理】1.平面的基本性质(平面是平的;无厚薄;可无限延展)公理1.如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
即:,,,A l B l A B l ααα∈∈∈∈⇒⊂公理2.过不在一条直线上的三点,有且只有一个平面。
(不共线三点确定一个平面)推论1:一条直线和直线外一点确定一个平面。
推论2:两条相交直线确定一个平面。
推论3:两条平行直线确定一个平面。
公理3.如果两个不重合的平面有一个公共点,那么它们有且只有一条经过该点的公共直线。
即: ,P P l P l αβαβ∈∈⇒=∈ 且且P l ∈2.空间两直线(1)位置关系:⎧⎧⎪⎨⎨⎩⎪⎩相交直线:在同一平面内,有且只有一个公共点共面直线平行直线:在同一平面内,没有公共点异面直线:不同在任何一个平面内,没有公共点(2)公理4:平行于同一条直线的两条直线互相平行(平行线的传递性)。
即://////a b a c b c ⎫⇒⎬⎭(3)等角定理:空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补。
(同向或反向时相等)(4)异面直线:不同在任何一个平面内的两条直线。
①异面直线的判定:定义法:反证法;结论法:平面内一点与平面外一点的连线与平面内不过该点的直线是异面直线。
②异面直线所成的角:设,a b 是两条异面直线,经过空间任一点O 作直线//a a ',//b b ',把,a b ''所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角)。
其范围是(0,]2π③两异面直线垂直:所成的角是直角的异面直线,a b ,记作a b ⊥。
3.直线与平面的位置关系: ⎧⎪⎨⎪⎩直线在平面内:直线与平面有无数个公共点直线与平面相交:直线与平面有且只有一个公共点直线与平面平行:直线与平面没有公共点4.平面与平面的位置关系:⎧⎨⎩两个平面平行:没有公共点两个平面相交:有一条公共直线5.共点(线,面)问题的证明方法(1)共点问题:证明123,,l l l 三线共点,一般先证12l l A = ,再证点3A l ∈即可。
点线面的位置关系知识点在几何学中,点、线和面是三个基本的几何概念,它们之间存在着一系列的位置关系。
这些位置关系的理解对于解决几何问题以及应用几何知识有着重要的意义。
本文将介绍点线面的位置关系的几个重要知识点。
一、点与直线的位置关系1. 在直线上:当一个点恰好位于一条直线上时,我们可以说这个点在直线上。
例如,点A在直线AB上。
2. 在直线的两侧:如果一个点既不在直线上,也不在直线的延长线上,我们可以说这个点在直线的两侧。
例如,点C在直线AB的两侧。
3. 在直线的延长线上:如果一个点不在直线上,但位于直线的延长线上,我们可以说这个点在直线的延长线上。
例如,点D在直线AB的延长线上。
4. 平行于直线:如果一条直线与给定直线没有任何交点,我们可以说这条直线平行于给定直线。
例如,直线CD平行于直线AB。
二、点与平面的位置关系1. 在平面上:当一个点位于一个平面内部时,我们可以说这个点在平面上。
例如,点A在平面P上。
2. 不在平面上:如果一个点既不在平面上,也不在平面的延长线上,我们可以说这个点不在平面上。
例如,点B不在平面P上。
3. 在平面的延长线上:如果一个点不在平面上,但位于平面的延长线上,我们可以说这个点在平面的延长线上。
例如,点C在平面P的延长线上。
4. 垂直于平面:如果一条直线与给定平面的任意一条线都垂直,我们可以说这条直线垂直于给定平面。
例如,直线EF垂直于平面P。
三、直线与平面的位置关系1. 相交于一点:当一条直线与平面有且仅有一个交点时,我们可以说这条直线与平面相交于一点。
例如,直线L与平面P相交于点A。
2. 平行于平面:如果一条直线与给定平面的任意一条线都平行,我们可以说这条直线平行于给定平面。
例如,直线M平行于平面P。
3. 包含于平面:当一条直线上的所有点都位于给定平面上时,我们可以说这条直线被包含于给定平面中。
例如,直线N被包含于平面P 中。
4. 相交于一条线:当一条直线与平面有无穷多个交点时,我们可以说这条直线与平面相交于一条线。
高中数学必修2《点、直线、平面之间的位置关系》知识点第二章点、直线、平面之间的位置关系一、平面及其表示平面是指在三维空间中的一个无限大的平面,可以用点和直线来表示。
平面的基本性质可以通过三条公理来描述:①公理1:如果一个点A在直线l上,另一个点B也在直线l上,且A在平面α上,那么B也在平面α上。
②公理2:如果三个不共线的点A、B、C确定一个平面α,那么这三个点必在平面α上。
③公理3:如果一个点P在平面α上,又在平面β上,那么P一定在它们的交线l上。
二、点与面、直线位置关系1、点与平面有两种位置关系:①点A在平面α上;②点B不在平面α上。
2、点与直线有两种位置关系:①点A在直线l上;②点B不在直线l上。
三、空间中直线与直线之间的位置关系1、异面直线是指不在同一平面内的两条直线。
2、直线与直线的位置关系包括相交、共面和平行三种情况。
3、公理4和定理:如果两个角的两边分别对应平行,那么这两个角相等或互补。
四、空间中直线与平面之间的位置关系直线与平面的位置关系可以分为三种情况:直线在平面内、直线与平面相交、直线与平面平行。
五、空间中平面与平面之间的位置关系平面与平面的位置关系可以分为平行和相交两种情况。
其中,平行的两个平面没有公共点,而相交的两个平面有一条公共直线。
直线、平面平行的判定及其性质直线与平面平行的判定方法有三种:利用定义、利用判定定理、利用面面平行的性质。
其中,面面平行的性质可以推导出直线与平面平行的性质。
证明面面平行的常用方法有以下几种:①利用面面平行的定义,一般与反证法结合使用;②利用判定定理;③证明两个平面垂直于同一个平面;④证明两个平面同时平行于第三个平面。
直线与平面垂直的判定方法如下:若直线l与平面α所成角α∈(0,90),则PO⊥α,AO为___在平面α上的投影,故∠α为直线l与平面α所成角。
二面角α-l-β的平面角为∠___,其中BO⊥l,___。
线面垂直的判定方法如下:___⊥α,___α,且a∩b=A,则___⊥α。
一、选择题
1.(2011·温州模拟)设a 、b 是两条不同的直线,α、β是两个不同的平面,则下列四个命题:
①若a ⊥b ,a ⊥α,b ⊄α,则b ∥α;
②若a ∥α,a ⊥β,则α⊥β;
③若a ⊥β,α⊥β,则a ∥α或a ⊂α;
④若a ⊥b ,a ⊥α,b ⊥β,则α⊥β.
其中正确命题的个数为( )
A .1
B .2
C .3
D .4
解析:利用线面、面面平行、垂直的判定及性质可推断①②③④均正确.
答案:D
2.(2011·浙江金华)已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:
①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β;④l ⊥m ⇒α⊥β,其中正确的命题是( )
A .①②
B .①③
C .②④
D .③④
解析:① ⎭
⎬⎫ ⎭⎪⎬⎪⎫α∥βl ⊥α⇒l ⊥β m ⊂β⇒l ⊥m ,故①正确;
②中l 与m 相交、平行、异面均有可能,故②错误;
③ ⎭
⎬⎫ ⎭⎪⎬⎪⎫l ∥m l ⊥α⇒m ⊥α m ⊂β⇒α⊥β,故③正确;
④中α与β可能平行,也可能相交,故④错误.
答案:B
3.(2011·湖州模拟)设a ,b ,c 是三条不同的直线,α,β是两个不同的平面,则a ⊥b 的一个充分条件是( )
A .a ⊥c ,b ⊥c
B .α⊥β,a ⊂α,b ⊂β
C .a ⊥α,b ∥α
D .a ⊥α,b ⊥α
解析:对于选项C ,在平面α内作c ∥b ,因为a ⊥α,所以a ⊥c ,故a ⊥b ;A ,B 选项中,直线a ,b 可能是平行直线,也可能是异面直线;D 选项中一定有a ∥b .
答案:C
4.(2011·全国卷)已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则CD =( )
A .2
B. 3
C. 2 D .1
解析:依题意得,AC ⊥β,AC ⊥BC ,BC =AB 2-AC 2=3,CD =BC 2-BD 2= 2. 答案:C
二、填空题
5.对于平面α和共面的直线m ,n ,下列命题是真命题的是________.
①若m ,n 与α所成的角相等,则m ∥n ;
②若m ∥α,n ∥α,则m ∥n ;
③若m ⊥α,m ⊥n ,则n ∥α;
④若m ⊂α,n ∥α,则m ∥n .
解析:若m ,n 与α所成的角相等,则m 与n 平行、相交,应排除①;若m ∥α,n ∥α,则m 与n 平行、相交,应排除②;若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,应排除③.
答案:④
6.(2011·福建高考)如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点
E 为AD 的中点,点
F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长
度等于________.
解析:因为直线EF ∥平面AB 1C ,EF ⊂平面ABCD ,且平面AB 1C ∩
平面ABCD =AC ,所以EF ∥AC .又因为点E 是DA 的中点,所以F 是DC 的中点.由中位
线定理可得:EF =12
AC .又因为在正方体ABCD -A 1B 1C 1D 1中,AB =2,所以AC =22,所以EF = 2. 答案: 2
7.如图,边长为a 的正△ABC 中线AF 与中位线DE 相交于G ,已
知△A ′ED 是△AED 绕DE 旋转过程中的一个图形,现给出下列命题,
其中正确的命题有______(填上所有正确命题的序号).
(1)动点A ′在平面ABC 上的射影在线段AF 上;
(2)三棱锥A ′-FED 的体积有最大值;
(3)恒有平面A ′GF ⊥平面BCED ;
(4)异面直线A ′E 与BD 不可能互相垂直.
解析:由题意知AF ⊥DE ,
∴A ′G ⊥DE ,FG ⊥DE ,
∴DE⊥平面A′FG,DE⊂面ABC,
∴平面A′FG⊥平面ABC,交线为AF,
∴(1)(3)均正确.
当A′G⊥面ABC时,A′到面ABC的距离最大.
故三棱锥A′-FED的体积有最大值.
故(2)正确.
当A′F2=2EF2时,EF⊥A′E,∵BD∥EF.
∴BD⊥A′E,故(4)不正确.
答案:(1)(2)(3)
三、解答题
8.如图,在直三棱柱ABC-A1B1C1中,AC=BC,
点D是AB的中点.
(1)求证:CD⊥平面A1ABB1;
(2)求证:AC1∥平面CDB1.
证明:(1)∵ABC-A1B1C1是直三棱柱,
∴平面ABC⊥平面A1ABB1,
∵AC=BC,点D是AB的中点,
∴CD⊥AB,
∵平面ABC∩平面A1ABB1=AB,
∴CD⊥平面A1ABB1.
(2)连接BC1,设BC1与B1C的交点为E,连接DE,则E为BC1
的中点.
∵D是AB的中点,E是BC1的中点,∴DE∥AC1.
∵DE⊂平面CDB1,AC1⊄平面CDB1,
∴AC1∥平面CDB1.
9.(2011·海淀模拟)如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,AC∩BD=O,
侧棱AA1⊥BD,点F为DC1的中点.
(1)证明:OF∥平面BCC1B1;
(2)证明:平面DBC1⊥平面ACC1A1.
证明:(1)∵四边形ABCD为菱形且AC∩BD=O,
∴O是BD的中点.
又点F为DC1的中点,
∴在△DBC1中,OF∥BC1,
∵OF⊄平面BCC1B1,BC1⊂平面BCC1B1,
∴OF∥平面BCC1B1.
(2)∵四边形ABCD为菱形,
∴BD⊥AC,
又BD⊥AA1,AA1∩AC=A,且AA1,AC⊂平面ACC1A1,
∴BD⊥平面ACC1A1.
∵BD⊂平面DBC1,
∴平面DBC1⊥平面ACC1A1.
10.(2011·山东高考)如图,在四棱台ABCD-A1B1C1D1中,
D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=
A1B1,∠BAD=60°.
(1)证明:AA1⊥BD;
(2)证明:CC1∥平面A1BD.
证明:(1)法一:因为D1D⊥平面ABCD,且BD⊂平面ABCD,所以D1D⊥BD.
又因为AB=2AD,∠BAD=60°,
在△ABD中,由余弦定理得
BD2=AD2+AB2-2AD·AB cos60°=3AD2,
所以AD2+BD2=AB2.
因此AD⊥BD.
又AD∩D1D=D,所以BD⊥平面ADD1A1.
又AA1⊂平面ADD1A1,故AA1⊥BD.
法二:因为D1D⊥平面ABCD,且BD⊂平面ABCD,
所以BD⊥D1D.
取AB的中点G,连接DG,
在△ABD中,由AB=2AD得AG=AD,
又∠BAD=60°,所以△ADG为等边三角形.
因此GD=GB,故∠DBG=∠GDB,
又∠AGD=60°,所以∠GDB=30°.
故∠ADB=∠ADG+∠GDB=60°+30°=90°.
所以BD⊥AD.
又AD∩D1D=D,所以BD⊥平面ADD1A1·
又AA1⊂平面ADD1A1,
故AA1⊥BD.
(2)连接AC,A1C1.
设AC∩BD=E,连接EA1,
因为四边形ABCD为平行四边形,
所以EC=1
2AC.
由棱台定义及AB=2AD=2A1B1知,A1C1∥EC且A1C1=EC,所以四边形A1ECC1为平行四边形.
因此CC1∥EA1.
又因为EA1⊂平面A1BD,CC1⊄平面A1BD,
所以CC1∥平面A1BD.。