四轴飞行器
- 格式:pdf
- 大小:898.87 KB
- 文档页数:17
四轴原理
四轴原理即为四旋翼飞行器的工作原理。
四旋翼飞行器由四个相对对称的旋翼组成,每个旋翼都由一个电动机驱动,并通过控制电路进行精确的调节。
四轴飞行器的飞行原理是通过对四个旋翼的转速进行精确控制,实现悬停、上升、下降、前进、后退、向左、向右平移以及旋转等多种飞行动作。
具体原理如下:
1. 升力平衡原理:四个旋翼产生的升力将飞行器维持在空中,飞行器的重力与升力平衡,实现悬停状态。
2. 空气动力学平衡原理:四个旋翼的转速可以通过电机转速控制器进行精确调节,进而调节各个旋翼产生的升力大小,实现空气动力学平衡。
3. 控制算法原理:通过搭载的传感器(如加速度计、陀螺仪、磁力计等)实时监测飞行器的姿态信息,将监测到的数据传输给飞行控制器。
飞行控制器根据姿态信息计算出相应的控制指令,通过电调调节四个旋翼的转速,控制飞行器的姿态。
如需向前飞行,则增加后面两个旋翼的转速,减小前面两个旋翼的转速,使飞行器倾斜向前。
类似地,对其他方向的飞行也是通过对相应旋翼转速的调节实现的。
4. 电源与电路原理:四轴飞行器通过电池为电动机提供能量,电路控制系统将飞行器的控制信号转化为电流和电压输出供电给电动机。
通过对四个旋翼的转速进行精确控制,在合适的气动力学平衡和姿态控制下,四轴飞行器能够实现精确悬停、稳定飞行及各种飞行动作,具有广泛的应用前景。
四轴飞行器设计概述四轴飞行器(Quadcopter)是一种多旋翼飞行器,由四个电动马达驱动,并通过电子系统控制飞行。
它具有垂直起降、悬停、平稳飞行等优点,广泛应用于无人机航拍、物流配送、农业植保等领域。
本文将对四轴飞行器的设计概述进行详细介绍。
第一部分:概述四轴飞行器的设计涉及到机械结构设计、电子系统设计和飞行控制算法设计等方面。
在机械结构设计中,需要考虑到飞行器的重量、稳定性和飞行效率等因素;在电子系统设计中,需要考虑到电机驱动、传感器测量和通信等因素;在飞行控制算法设计中,则需要考虑到姿态控制、导航定位和自主避障等因素。
第二部分:机械结构设计四轴飞行器的机械结构主要包括机体、四个电动马达和螺旋桨等部分。
机体通常采用轻质材料制造,如碳纤维复合材料,以降低飞行器的重量;电动马达通常采用无刷电机,以提高功率输出和效率;螺旋桨通常采用塑料或碳纤维材料制造,以提供升力。
此外,机械结构设计还需要考虑到四轴飞行器的重心位置和稳定性,通过调整电动马达和螺旋桨的布局来实现。
第三部分:电子系统设计四轴飞行器的电子系统设计主要包括电机驱动、传感器测量和通信等模块。
电机驱动模块用于控制电动马达的转速和方向,通常通过电调与飞控板连接;传感器测量模块用于测量飞行器的姿态、加速度、陀螺仪等参数,通常包括陀螺仪、加速度计和磁力计等;通信模块用于与地面控制台进行数据传输和指令接收,通常采用无线通信技术,如蓝牙或Wi-Fi等。
第四部分:飞行控制算法设计四轴飞行器的飞行控制算法设计主要包括姿态控制、导航定位和自主避障等模块。
姿态控制模块用于控制飞行器的姿态,通常采用PID控制算法,通过调节电动马达转速来实现;导航定位模块用于确定飞行器的位置和航向,通常采用GPS和惯性导航系统等;自主避障模块用于识别和规避障碍物,通常采用机器视觉技术和激光雷达等。
第五部分:总结四轴飞行器设计的关键环节包括机械结构设计、电子系统设计和飞行控制算法设计等。
四轴飞行器的飞行原理四轴飞行器,作为一种现代飞行器形式,具有独特的设计和飞行原理。
其飞行原理主要基于空气动力学和控制理论。
四轴飞行器采用四个旋翼组件来产生升力和推力,并通过控制这些旋翼的转速和角度来实现飞行动作。
升力产生四轴飞行器的主要飞行模式是垂直起降,因此需要产生足够的升力来使其脱离地面并维持空中飞行。
四轴飞行器的四个旋翼通过旋转产生气流,这些气流在旋翼叶片的空气动力学作用下产生升力。
旋翼的升力与其旋转的速度成正比,因此控制旋翼的转速可以调节飞行器的升力。
姿态控制除了产生升力,四轴飞行器还需要控制其姿态,即控制其在空中的方向和倾斜角度。
四轴飞行器通过调节各个旋翼的推力和速度来实现姿态控制。
例如,如果要向前飞行,可以增加后方旋翼的推力或减小前方旋翼的推力,以产生向前的倾斜力矩。
稳定性控制为了保持飞行器在空中的稳定性,四轴飞行器需要进行实时的稳定性控制。
通常采用陀螺仪和加速度计等传感器来监测飞行器的姿态和运动状态,然后通过飞行控制系统来计算并调节旋翼的转速和姿态,使飞行器保持平稳飞行。
飞行模式四轴飞行器可以实现多种飞行模式,如手动控制飞行、自动悬停和自动返航等。
在手动控制模式下,飞行器由操纵员通过遥控器进行操控。
在自动悬停和自动返航模式下,飞行器通过预先设定的飞行控制算法和传感器数据来实现自主飞行。
综上所述,四轴飞行器的飞行原理基于空气动力学和控制理论,并通过旋翼产生升力、姿态控制和稳定性控制来实现飞行动作。
其独特的设计和飞行原理使其成为一种灵活多用途的飞行器形式,广泛应用于航拍、搜救、科研等领域。
四轴飞行控制原理四轴飞行器是一种具有四个旋翼的飞行器,通过控制旋转速度和方向来实现飞行。
其控制原理包括传感器感知、飞行动力学建模、控制器设计和电机控制。
1.传感器感知四轴飞行器通常配备有陀螺仪、加速度计、磁力计和气压计等传感器。
陀螺仪用于测量飞行器的角速度,加速度计用于测量线性加速度,磁力计用于测量地磁场方向,气压计用于测量飞行器的高度。
这些传感器可以提供飞行器在空间中的姿态、位置和速度等信息。
2.飞行动力学建模通过传感器测量的数据,可以对飞行器的姿态进行估计。
姿态估计主要包括姿态角(滚转、俯仰和偏航)的估计和位置的估计。
将姿态和位置的估计值与期望值进行比较,可以得到姿态和位置的误差。
飞行动力学建模主要包括飞行器的动力学方程和状态方程,可以通过这些方程来描述飞行器的姿态、位置和速度等动态变化。
3.控制器设计控制器设计主要是设计一个控制算法来根据传感器测量的数据和期望的姿态和位置来控制飞行器的旋转速度和方向。
通常使用的控制算法包括PID控制器、模型预测控制器、自适应控制器等。
PID控制器是一种常用的控制算法,根据误差的大小和变化率来调整控制信号,从而使飞行器逐渐接近期望的姿态和位置。
4.电机控制四轴飞行器通常使用四个无刷电机来控制旋翼的转速和方向。
通过适当调整电机的转速,可以使飞行器产生所需的推力和力矩,从而实现期望的运动。
电机控制主要包括PWM控制信号的生成、电机转速的调节和电机的航向控制。
PWM控制信号的生成由控制器完成,根据控制器的输出调整电机转速,使旋翼产生所需的推力和力矩。
电机的航向控制通常通过改变电机的转速来实现。
总结:四轴飞行控制原理主要包括传感器感知、飞行动力学建模、控制器设计和电机控制。
通过传感器感知飞行器的角速度、线性加速度、地磁场方向和高度等信息,通过飞行动力学建模估计飞行器的姿态和位置,根据期望的姿态和位置与估计值的误差,设计控制算法来控制飞行器的旋转速度和方向,通过调整电机的转速,使飞行器产生所需的推力和力矩,从而实现期望的飞行。
四轴(多轴)飞行器概述一、简介四轴(多轴)飞行器也叫四旋翼(多旋翼)飞行器它有四个(多个)螺旋桨,四轴(多轴)飞行器也是飞行器中结构最简单的飞行器了。
前后左右各一个,其中位于中心的主控板接收来自于遥控发射机的控制信号,在收到操作者的控制后通过数字的控制总线去控制四个电调,电调再把控制命令转化为电机的转速,以达到操作者的控制要求,前后马达是顺时针转动,需要安装反桨,左右马达是逆时针转动,需要安装正桨,机械结构上只需保持重量分布的均匀,四电机保持在一个水平线上,可以说结构非常简单,做四轴的目的也是为了用电子控制把机械结构变得尽可能的简单。
二、控制原理四轴飞行器的控制原理就是,当没有外力并且重量分布平均时,四个螺旋桨以一样的转速转动,在螺旋桨向上的拉力大于整机的重量时,四轴就会向上升,在拉力与重量相等时,四轴就可以在空中悬停。
在四轴的前方受到向下的外力时,前方马达加快转速,以抵消外力的影响从而保持水平,同样其它几个方向受到外力时四轴也是可以通过这种动作保持水平的,当需要控制四轴向前飞时,前方的马达减速,而后方的马达加速,这样,四轴就会向前倾斜,也相应的向前飞行,同样,需要向后、向左、向右飞行也是通过这样的控制就可以使四轴往我们想要控制的方向飞行了,当我们要控制四轴的机头方向向顺时针转动时,四轴同时加快左右马达的转速,并同时降低前后马达的转速,因为左右马达是逆时针转动的,而左右马达的转速是一样,所以左右是保持平衡的,而前后马达是顺时针转动的,但前后马达的转速也是一样的,所以前后左右都是可以保持平衡,飞行高度也是可以保持的,但是逆时针转动的力比顺时针就大,所以机身会向反方向转动,从而达到控制机头的方向。
这也是为什么要使用两个反桨,两个正桨的原因。
三、电调我们平时用的商品电调是通过接收机上的油门通道进行控制的,这个接收机出来的控制信号一般都是20mS 间隔的PPM脉宽控制信号,而四轴为了提高响应的速度,需要控制命令的间隔更短-比如说5mS,所以就需要特殊的电调而不能用普通的商品电调,但是为什么要使用I2C总线跟电调连接呢,这个跟电路设计以及软件编写等有关,I2C总线在硬件连接上可以多个设备直接并连在总线上,它有相应的传输机制保证主机与各个从机之前顺畅沟通,这样连接就比较的方便,所以四个电调的控制线是并接在一起连到主控板上就可以了,这个也跟我们选用的芯片相关,很多单片机都有集成I2C总线的,软件设计起来也得心应手。
四轴飞行器控制原理简单介绍1.姿态控制姿态控制是指控制四轴飞行器所处的空中姿态,包括横滚、俯仰和偏航。
横滚是指四轴飞行器以机体中心线为轴心向左或向右旋转;俯仰是指四轴飞行器以机体前后中心线为轴心向前或向后倾斜;偏航是指四轴飞行器以竖直轴为轴心旋转。
姿态控制可以通过四个电动马达间的配合来实现。
例如,当四轴飞行器需要向左旋转时,右侧的两个电动马达通过提高转速而左侧的两个电动马达通过降低转速,使得产生的升力不均衡,从而导致飞行器向左旋转;同样的原理,可以实现向右、向前和向后的倾斜,从而实现横滚和俯仰的控制。
偏航控制则是通过改变对角电动马达的转速来实现的。
2.高度控制高度控制是指控制四轴飞行器的飞行高度。
通常,四轴飞行器通过改变电动马达的转速来控制升力,从而控制飞行高度。
当需要升高时,四个电动马达的转速同时提高,产生更大的升力,使得飞行器上升;当需要下降时,四个电动马达的转速同时降低,减小升力,使得飞行器下降。
3.位置控制位置控制是指控制四轴飞行器在空中的位置,通常使用GPS、惯性导航系统(INS)和视觉系统来获取实时位置信息,并通过控制四个电动马达的转速来调整飞行器的位置。
位置控制通常采用反馈控制的方法,在测量到的当前位置与目标位置之间存在偏差时,通过调整电动马达的转速来减小偏差,并使飞行器逐渐趋向于目标位置。
综上所述,四轴飞行器的控制原理涉及到姿态控制、高度控制和位置控制三个方面。
通过控制四个电动马达的转速来实现姿态控制和高度控制,通过GPS、INS和视觉系统来获取位置信息,并通过反馈控制来调整飞行器的位置。
这些控制原理的运用使得四轴飞行器能够实现精准、稳定的飞行。
四轴飞行器报告1. 前言四轴飞行器是一种无人机,由四个电动机驱动,具有稳定飞行的能力。
它在军事、民用及娱乐领域都有广泛的应用。
本报告将对四轴飞行器的结构、工作原理以及应用进行详细介绍。
2. 结构四轴飞行器主要由以下部件组成:•机架:提供了支撑和连接其他部件的框架结构,通常是以轻质材料如碳纤维制成。
•电动机:驱动飞行器飞行的关键部件,通常使用直流无刷电机。
•螺旋桨:由电动机驱动的旋转桨叶,用于产生升力和推力。
•电调:控制电动机的转速和方向,从而控制飞行器的姿态。
•飞控系统:负责接收和处理来自传感器的数据,计算飞行器的姿态和控制指令。
•电池:提供能量给电动机和其他电子设备。
3. 工作原理四轴飞行器的飞行原理基于牛顿第二定律。
通过调整四个电动机的转速和方向,可以控制飞行器的姿态和运动。
飞行器的姿态包括横滚、俯仰和偏航。
通过增加相对转速,可以产生横滚和俯仰的力矩,从而使飞行器向相应方向倾斜。
飞行器倾斜后,电动机产生的升力也会有所改变,使得飞行器能够前进、后退或悬停。
飞行器的稳定性是通过飞控系统来保证的。
飞控系统通过接收来自加速度计、陀螺仪和磁力计等传感器的数据,计算飞行器的姿态和运动状态,并根据用户的控制输入调整电动机的转速和方向,以保持飞行器的稳定。
4. 应用四轴飞行器在军事、民用及娱乐领域都有广泛的应用。
在军事领域,四轴飞行器可以用于侦查、监视和目标跟踪。
由于其小型化、高机动性和隐蔽性,可以在不可接近的区域执行任务,提供重要的情报支持。
在民用领域,四轴飞行器可以用于航拍、物流和巡检等任务。
航拍业务能够提供高质量的航空影像,广泛用于地理信息和城市规划等领域。
同时,四轴飞行器还可以用于运送货物,解决最后一公里的配送问题。
此外,四轴飞行器还可以用于巡检任务,如电力线路、管道和建筑物的巡检,提高作业效率和安全性。
在娱乐领域,四轴飞行器常被用作遥控飞行器,供爱好者进行操控和竞赛。
爱好者可以通过多种方式定制飞行器的外观和性能,提升飞行器的性能和飞行体验。
四轴飞行器知识什么是四轴飞行器?四轴飞行器也叫四旋翼飞行器。
通俗点说就是拥有四个独立动力旋翼的飞行器,有四个旋翼来悬停、维持姿态及平飞。
四轴飞行器是多轴飞行器其中的一种,常见的多轴飞行器有两轴,三轴,四轴,六轴,八轴或者更多轴。
四轴飞行器飞行原理重心的距离相等, 当对角两个轴产生的升力相同时能够保证力矩的平衡, 四轴不会向任何一个四轴飞行器有四个电机呈十字形排列,驱动四片桨旋转产生推力; 四个电机轴距几何中方向倾转; 而四个电机一对正转,一对反转的方式使得绕竖直轴方向旋转的反扭矩平衡,保证了四轴航向的稳定. 此飞行控制板规定四轴电机的排布方式相对应。
1,4号电机顺时针方向旋转, 2,3号电机逆时针方向旋转. 四个电机的转速做相应的变化即可实现四轴横向、纵向、竖直方向和偏航方向上的运动: 当四轴需要向前方运动时, 2,3号电机保持转速不变, 1号电机转速下降, 4号电机转速上升, 此时4号电机产生的升力大于1号电机的升力, 四轴就会沿几何中心向前倾转,桨叶升力沿纵向的分力驱动四轴向前运动. 当四轴要转向左转向时, 1,4号电机转速上升, 2,3号电机转速下降, 使向左的反扭距大于向右的反扭矩, 四轴在反扭距的作用下向左旋转.四个桨产生的推力, 超过或者低于四轴本身重力的时候能够实现竖直方向上升与下降的运动, 当桨的升力与四轴本身的重力相等的时候即实现悬停。
其他方式的运动原理与以上过程类似. 四轴飞行原理虽然简单, 但实现起来还需很多工作要做.四轴飞行器需要的零件无刷电机(4个)、电子调速器(简称电调,4个,)、螺旋桨(4个,需要2个正浆,2个反浆)、飞行控制板(常见有瑞伯达、KK等品牌)、电池(11.1v航模动力电池)、遥控器(最低四通道遥控器)、机架(非必选)、充电器(尽量选择平衡充电器)怎样知道是否能正常起飞?一切准备完毕,怎么知道可以试飞了呢,我个人建议为了避免匆忙上马,秒炸。
先拿手上试飞比较好,但要注意离身体距离。
四轴飞行器的工作原理
四轴飞行器是一种无人机,它由四个电动马达驱动的旋翼组件组成。
这些旋翼组件位于飞行器的四个角落,通过不同的旋翼速度和倾斜角度来实现飞行和悬停。
电调控制
每个电动马达通过电调来控制旋翼的转速和旋翼的倾斜角。
电调接收飞行控制器发送的指令,然后控制马达的速度以及旋翼的倾斜角度,从而使飞行器实现不同方向的飞行和悬停。
加速度计和陀螺仪
四轴飞行器还配备了加速度计和陀螺仪,这些传感器用来感知飞行器的姿态和位置。
加速度计测量飞行器的加速度,陀螺仪测量飞行器的旋转速度。
这些数据被发送到飞行控制器,用来调整电调的输出,从而维持飞行器的稳定飞行和悬停。
遥控器
飞行器的飞行可以通过遥控器来实现,飞行员通过遥控器发送指令给飞行器,从而控制飞行器的飞行方向、速度和高度。
遥控器通过无线信号和接收器连接到飞行控制器,将飞行员的指令转化为电调的控制参数。
姿态控制
四轴飞行器的飞行姿态通过电调控制四个旋翼的转速和倾斜角来实现。
在飞行过程中,加速度计和陀螺仪的反馈数据被飞行控制器实时处理,以保持飞行器的平稳飞行状态。
姿态控制是四轴飞行器能够实现精确悬停和各种飞行动作的基础。
总结
四轴飞行器的工作原理主要依靠电调、加速度计和陀螺仪、遥控器以及姿态控制系统。
通过这些关键组件的协同作用,四轴飞行器能够实现稳定的飞行和悬停,成为现代航空领域的重要应用之一。
四轴飞行原理是什么
四轴飞行器在近年来变得越来越流行,并被广泛应用于许多领域,但是你知道
它们是如何在空中飞行的吗?本文将介绍四轴飞行器的基本原理以及它们是如何实现飞行的。
四轴飞行器的组成
四轴飞行器由四个电动马达和螺旋桨组成。
这些电动马达驱动着螺旋桨旋转,
产生升力,使飞行器能够悬浮在空中。
此外,四轴飞行器通常还包括陀螺仪、加速度计和飞行控制器等组件,这些组件可以帮助飞行器保持平衡和稳定。
四轴飞行器的原理
四轴飞行器的飞行原理可以归结为动力平衡和姿态稳定两个方面。
动力平衡
四轴飞行器通过调节四个电动马达的转速来产生不同的升力,从而保持在空中
平稳飞行。
当需要向前飞行时,飞行器会增加前部的马达转速,从而倾斜飞行器并向前推进;同理,向左、向右或向下飞行也是通过调节对应的马达转速来实现的。
姿态稳定
为了保持飞行器在空中平稳,四轴飞行器需要能够稳定地控制飞行姿态。
这一
过程通过陀螺仪和加速度计实现。
陀螺仪可以检测飞行器的姿态变化并反馈给飞行控制器,而加速度计则可以测量飞行器的线性加速度。
飞行控制器通过分析陀螺仪和加速度计的数据,并对四个电动马达进行实时调整,以保持飞行器的平衡和稳定。
这种反馈控制系统使得四轴飞行器能够在不断变化的飞行环境中保持飞行姿态。
结语
通过这篇文章,我们了解了四轴飞行器的基本原理,包括动力平衡和姿态稳定。
四轴飞行器的飞行原理虽然复杂,但是通过合理的设计和控制,它们可以在空中实现各种飞行动作并广泛应用于无人机、科研和娱乐等领域。
希望本文能帮助您更深入地了解四轴飞行器的工作原理和飞行机制。
目录摘要 (2)第一章绪论 (3)1.1引言 (3)1.2 项目内容 (3)第二章四轴飞行器的基本介绍 (4)2.1 四轴飞行器的发明与发展 (4)2.2 四轴飞行器的功能与运用 (4)2.3 四轴飞行器的特点 (5)2.4 四轴飞行器的技术难点 (6)第三章四轴飞行器的原理 (7)3.1 四轴飞行器的基本构成 (7)3.2 四轴飞行器飞行原理 (8)3.3四轴飞行器的基本运动状态 (9)垂直运动 (9)俯仰运动 (9)滚转运动 (10)偏航运动 (10)前后运动 (11)侧向运动 (11)3.4 四轴飞行器陀螺仪原理 (11)第四章飞越FY999-1 四轴飞行器 (13)4.1 FY999-1规格参数 (13)4.2 FY999-1特点- (13)4.3 FY999-1重要机械构件 (13)第五章四轴飞行器的国内外 (16)5.1 国外运用 (16)5.2国内运用 (16)第六章结论以及存在问题 (17)摘要四轴飞行器(四旋翼飞行器)也称为四旋翼直升机,简称四轴、四旋翼,是一种有4个螺旋桨且螺旋桨呈十字形交叉的飞行器,运用陀螺仪保持平衡。
它是多旋翼飞行器中最基本的一种。
近几年,得益于微型自动控制系统的发展,四旋翼飞行器发展十分迅速。
现在更多厂家参加了对四轴飞行器的研发改进的队伍,它的作用也在近几年的航空,娱乐,勘察的可见一斑。
关键词:四轴飞行器姿态陀螺仪第一章绪论1.1引言四轴飞行器最开始是由军方研发的一种新式飞行器随着MEMS传感器、单片机、电机和电池技术的发展和普及,四轴飞行器成为航模界的新锐力量。
到今天,四轴飞行器已经应用到各个领域,如军事打击、公安追捕、灾害搜救、农林业调查、输电线巡查、广告宣传航拍、航模玩具等,已经成为重要的遥感平台。
以农业调查为例,传统的调查方式为到现场抽样调查或用航空航天遥感。
抽样的方式工作量大,而且准确性受主观因素影响;而遥感的方式可以大范围同时调查,时效性和准确性都有保证,但只能得到大型作物的宏观的指标,而且成本很高。
不连续的地块、小种作物等很难用上遥感调查。
因此,低空低成本遥感技术显得相当重要,而四轴飞行器正符合低空低成本遥感平台的要求。
目前应用广泛的飞行器有:固定翼飞行器和单轴的直升机。
与固定翼飞行器相比,四轴飞行器机动性好,动作灵活,可以垂直起飞降落和悬停,缺点是续航时间短得多、飞行速度不快;而与单轴直升机比,四轴飞行器的机械简单,无需尾桨抵消反力矩,成本低 [8]本文就小型电动四轴飞行器,介绍四轴飞行器的一种实现方案,重点讲解四轴飞行器的原理和用到的算法,并对几种姿态算法进行比较。
1.2 项目内容本文对四轴飞行器的重要软件和其基本运动方式,和其内在原理做分析说明。
第二章四轴飞行器的基本介绍2.1 四轴飞行器的发明与发展四轴飞行器是一种具有四个螺旋桨的飞行器并且四个螺旋桨呈十字形交叉结构,相对的四旋翼具有相同的旋转方向,分两组,两组的旋转方向不同。
与传统的直升机不同,四旋翼直升机只能通过改变螺旋桨的速度来实现各种动作。
四轴飞行器是微型飞行器的其中一种,也是一种智能机器人。
是最初是由航空模型爱好者自制成功,后来很多自动化厂商发现它可以用于多种用途而积极参于研制。
它利用有四个旋翼作为飞行引擎来进行空中飞行,它的尺寸较小、重量较轻、适合携带和使用的无人驾驶飞行器一样能够携带一定的任务载荷,具备自主导航飞行能力。
在复杂、危险的环境下完成特定的飞行任务。
同样也可以用于娱乐,比如弹钢琴曲,增强现实等虚拟游戏。
在大学里,一些对四旋翼直升机感兴趣的大学生将数学算法运用到机器当中,创造出了极富智能的四旋翼直升机,TED讲坛中有所诠释。
优酷搜索“TED -红遍全球的炫酷飞行器”。
2.2 四轴飞行器的功能与运用四轴飞行器四个螺旋桨,两个一组,同组的具有相同的旋转方向,通过改变螺旋桨的速度来完成各种动作和向某个方向飞行。
由于其体积小且具有可靠地稳定性和操控性。
人和机体的分离操控,一定特定的使用环境上可以忽略操作人员的安全问题,所以使其具有在多个领域具有较高的可用性。
在土建类工程中,由于其体积小,人机分离不局限于小空间。
四轴飞行器一般可用于桥梁检测,定点巡航等;在新闻行业,由于其稳定性可用于新闻的航拍,转播现场画面。
在娱乐行业,国外有玩家用四轴飞行器能在钢琴上方悬停,在黑白键中定位,弹出钢琴曲。
可做出许多高难度动作。
现在也有更多的玩具厂家在制造四轴飞行器的玩具供小孩玩乐。
在军事上,由于地域空间,安全性的限制,更多的国家开始重视四轴飞行器的开放,主要用于地域地形勘察,军事情报的收集。
2.3 四轴飞行器的特点1.时尚精美、做工精湛外观时尚精美,做工精湛,还拥集成了自身研发的飞行动力系统,并配置专业的无线电遥控系统。
2.集成易作、易维护的稳定设计集成易作、易维护的稳定设计,在出厂前已经设置并调试所有的飞行参数及功能,具有免安装、免调试的快速飞行模式。
携带方便,可以搭配微型相机录制空中视频。
3.自由切换多种飞行模式内置自身研发的飞行控制系统,具备多种飞行模式,您可以根据不同的飞行需要以及不同的飞行环境进行实时的智能切换以达到不一样的飞行体验。
4.方向控制灵活具备自身研发飞控系统,方向控制灵活。
在通常飞行过程中,可以根据玩家需要,进行灵活纵。
5.具备失控返航有的四轴飞行器还具备自身研发的多旋翼飞控系统的失控返航保护功能。
当飞行器与遥控器之间失去联系时,飞控系统将启动失控保护功能,自动触发自动返航安全着陆功能。
6.醒目LED指示灯每个旋翼下方都装有LED灯,通过指示灯的指引,可以清晰得分辨飞机的前后方向。
7.悬挂微型相机内可以装配摄像头,同时机身下方有可拆卸简易相机安装座,也可以搭配其他视频拍摄电子设备。
8.双电池仓设置,飞行时间长可以装置两块3S锂电池,一次巡航飞行时间能达到20~30分钟,让您畅享飞行乐趣。
2.4 四轴飞行器的技术难点首先,在飞行过程中它不仅受到各种物理效应的作用,还很容易受到气流等外部环境的干扰,很难获得其准确的性能参数。
其次,微型四旋翼无人飞行器是一个具有六个自由度,而只有四个控制输入的欠驱动系统。
它具有多变量、非线性、强耦合和干扰敏感的特性,使得飞行控制系统的设计变得非常困难。
再次,利用陀螺仪进行物体姿态检测需要进行累计误差的消除,怎样建立误差模型和通过组合导航修正累积误差是一个工程难题。
这三个问题解决成功与否,是实现微型四旋翼无人飞行器自主飞行控制的关键,具有非常重要的研究价值。
第三章四轴飞行器的原理3.1 四轴飞行器的基本构成四轴飞行器的实现可以分为硬件和软件两部分。
比起其他类型的飞行器,四轴飞行器的硬件比较简单,而把系统的复杂性转移到软件上。
硬件构成飞行器由机架、电机、螺旋桨和控制电路构成。
机械构成机架呈十字状,是固定其他部件的平台,本项目采用的是尼龙材料的机架。
电机采用无刷直流电机,固定在机架的四个端点上,而螺旋桨固定在电机转子上,迎风面垂直向下。
螺旋桨按旋转方向分正桨和反桨,从迎风面看逆时针转的为正桨,四个桨的中心连成的正方形,正桨反桨交错安装电气部分包括:控制电路板、电子调速器、电池,和一些外接的通讯、传感器模块。
控制电路板是电气部分的核心,上面包含MCU、陀螺仪、加速度计、电子罗盘、气压计等芯片,负责计算姿态、处理通信命令和输出控制信号到电子调速器。
电子调速器简称电调,用于控制无刷直流电机。
电气连接如图设计构造四轴飞行器其构造特点是在它的四个角上各装有一旋翼,由电机分别带动,叶片可以正转,也可以反转。
为了保持飞行器的稳定飞行,在四轴飞行器上装有3个方向的陀螺仪和3 轴加速度传感器组成惯性导航模块,它还通过电子调控器来保证其快速飞行。
如图所示,电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此当飞行器平衡飞行时,陀螺效应和空气动力扭矩效应均被抵消。
与电流直相比,四旋翼飞行器有下列优势:各个旋翼对机身所施加的反扭矩与旋翼的旋转方向相反,因此当电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,可以平衡旋翼对机身的反扭矩。
四旋翼飞行器在空间共有6个自由度(分别沿3个坐标轴作平移和旋转动作),这6个自由度的控制都可以通过调节不同电机的转速来实现。
3.2 四轴飞行器飞行原理a.飞行坐标飞行器涉及两个空间直角坐标系统:地理坐标系和机体坐标系。
地理坐标系是固连在地面的坐标系,机体坐标系是固连在飞行器上的坐标系。
四轴飞行器运动范围小,可以不考虑地面曲率,且假设地面为惯性系。
地理坐标系采用“东北天坐标系”,X轴指向东,为方便罗盘的使用,Y轴指向地磁北,Z轴指向天顶。
机体坐标系原点在飞行器中心,xy平面为电机所在平面,电机分布在{|x|=|y|,z=0}的直线上,第一象限的电机带正桨,z轴指向飞行器上方。
b.姿态的表示和运算飞行器的姿态,是指飞行器的指向,一般用三个姿态角表示,包括偏航角(yaw)、俯仰角(pitch)和滚转角(roll)。
更深一层,姿态其实是一个旋转变换,表示机体坐标系与地理坐标系的旋转关系,这里定义姿态为机体坐标系向地理坐标系的转换。
旋转变换有多种表示方式,包括变换矩阵、姿态角、转轴转角、四元数等。
C.动力学原理螺旋桨旋转时,把空气对螺旋桨的压力在轴向和侧向两个方向分解,得到两种力学效应:推力和转矩。
当四轴飞行器悬停时,合外力为0,螺旋桨的推力用于抵消重力,转矩则由成对的正桨反桨抵消。
当飞行器运动时,因为推力只能沿轴向,所以只能通过倾斜姿态来提供水平的动力,控制运动由控制姿态来间接实现。
3.3四轴飞行器的基本运动状态其有一下几种飞行状态:垂直运动,俯仰运动,滚转运动,偏航运动,前后运动,侧向运动。
垂直运动图(a)中,因有两对电机转向相反,可以平衡其对机身的反扭矩,当同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。
当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。
保证四个旋翼转速同步增加或减小是垂直运动的关键。
俯仰运动图(b)中,电机1的转速上升,电机3的转速下降,电机2、电机4的转速保持不变。
为了不因为旋翼转速的改变引起四旋翼飞行器整体扭矩及总拉力改变,旋翼1与旋翼3转速改变量的大小应相等。
由于旋翼1的升力上升,旋翼3的升力下降,产生的不平衡力矩使机身绕y轴旋转(方向如图所示),同理,当电机1的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。
滚转运动与图(b)的原理相同,在图(c)中,改变电机2和电机4的转速,保持电机1和电机3的转速不变,则可使机身绕x轴旋转(正向和反向),实现飞行器的滚转运动。