七年级数学一元一次方程应用题
- 格式:doc
- 大小:175.50 KB
- 文档页数:9
完整版七年级数学一元一次方程应用题专题练习七年级数学一元一次方程应用题专题练1.分配问题例题1:某班学生阅读图书,每人分3本,则剩余20本;每人分4本,则还缺25本。
问这个班有多少学生?解析:设班级人数为x,则根据题意,可以列出如下方程组:3x + 20 = 4x - 25解得:x = 45,因此这个班有45名学生。
变式1:某校组织师生春游,只租用45座客车,刚好坐满;只租用60座客车,可少租一辆,且余30个座位。
请问参加春游的师生共有多少人?解析:设参加春游的师生共有x人,则根据题意,可以列出如下方程组:45x = 60(x-1) + 30解得:x = 36,因此参加春游的师生共有36人。
2.调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解析:设生产甲零件的天数为x,生产乙零件的天数为y,则根据题意,可以列出如下方程组:3x + 2y = 30120x + 100y = 最大值解得:x = 10,y = 0或y = 15.因此,在30天内生产最多的成套产品的方法是:连续生产10天甲零件,再连续生产15天乙零件。
变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解析:设制盒身的张数为x,制盒底的张数为y,则根据题意,可以列出如下方程组:x + 3y = 1002x = y解得:x = 20,y = 40.因此,应该用20张铁片制盒身,40张铁片制盒底。
变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米。
如何分配挖土和运土人数,使挖出的土能及时运走?解析:设运土工人的人数为x,挖土工人的人数为y,则根据题意,可以列出如下方程组:3y + 5x = 800x + y = 200解得:x = 100,y = 100.因此,应该让100名工人运土,100名工人挖土。
1.一块石头从高处自由下落,下落时间t与下落距离h之间的关系可以用一元一次方程表示为h=5t。
如果已知下落时间为2s,则求下落距离。
解:将已知条件代入方程中,得到h=5*2=10,所以下落距离为10米。
2.一家利用机器生产玩具,生产每个玩具需要2元的原材料费和3元的人工费。
如果每天生产了x个玩具,总成本为10x+6元。
求每天生产的玩具个数。
解:成本等于每个玩具的原材料费和人工费之和,所以可以列出方程10x+6=2x+3x,化简得到10x+6=5x,再化简得到5x=6,解得x=6/5=1.2、所以每天需要生产1.2个玩具。
3.一辆汽车每小时行驶a千米,行驶x小时后剩余距离为b千米。
如果已知汽车行驶总里程为100千米,求未知数a、b和x的值。
解:根据已知条件可列出方程ax + b = 100。
由于未指定具体数值,无法求得具体解。
4.一块土地在过去10年内每年平均涨价100元,现在的价格是1000元。
求10年前这块土地的价格。
解:设10年前土地价格为x元。
根据题意可列出方程x+10*100=1000,解得x=1000-1000=0。
所以10年前这块土地的价格为0元。
5.甲、乙两人一起做作业,甲一小时能做1/3份,乙一小时能做1/4份。
如果两人共用4小时做完了作业,求甲和乙一共做了多少份。
解:设甲共做了x份,乙共做了y份。
根据每个人的工作效率可列出方程x/1/3+y/1/4=4,化简得到4x/3+4y/4=4,化简得到4x+3y=12、由于只有一个方程无法求得具体解。
6.一个数的三倍减去7等于25,求这个数。
解:设这个数为x。
根据题意可列出方程3x-7=25,化简得到3x=32,解得x=32/3=10.67、所以这个数约为10.677.一个角的度数减去30等于它的三分之一,求这个角的度数。
解:设这个角的度数为x。
根据题意可列出方程x-30=x/3,化简得到3x-90=x,解得2x=90,解得x=45、所以这个角的度数为45度。
列方程解应用题第一讲和、差、倍、分,盈亏等实际问题的解法1.和、差、倍、分问题例1 小明做了一个实验,把黄豆育成豆芽后,重量可以增加7.5倍,如果小明想要得到3400千克黄豆芽,需要多少千克黄豆?2.盈亏问题例2 用化肥若干千克给一块麦田追肥,每公顷6kg还差17 kg;每公顷5kg就余下3kg.问这块麦田有多少公顷?共有化肥多少千克?3.劳力调配问题例3 在甲处劳动的有52人,在乙处劳动的有23人,现从甲、乙两地共调12人到丙处劳动,使在甲处劳动的人数是在乙处劳动人数的2倍,求应该从甲、乙两处各调走多少人?4.产品配套问题例4星光服装厂接受生产一些某种型号的学生服装的订单,已知每3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750 m长的这种布料生产学生服。
应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套5.比赛积分问题例5 在一次有12队参加的足球循环赛(每两个队之间赛且只赛一场),规定胜一场计3分,平一场计1分,负一场计0分,某队在这次循环赛中胜场比负场多2场,结果共积18分,问该队战平几场?6.容积(体积)问题例6 一个容器装47 L水,另一个容器装58 L水。
如果将第二个容器的水倒满第一个容器,那么第二个容器剩下的水相当于这个容器容量的一半;如果将第一个容器的水倒满第二个容器,那么第一个容器的水相当于这个容器容积的三分之一,求这两个容器的容量各是多少?基础达标演练l.一桶油连桶重8 kg,油用去一半后连桶重4.5 kg,则桶中原有油多少?2.在甲处工作的有272人,在乙处工作的有196人,如果乙处工作人数是甲处工作人数的1/3,应从乙处调多少人到甲处?3.某课外兴趣小组的女生占全组人数的1/3,再加人6名女生后,女生人数就占原来的一半,问此课外兴趣小组原有多少人?4.甲、乙两仓共有大米50 t,从甲仓取出1/10,从乙仓取出2/5,则两仓所剩大米相等。
2023-2024年人教版七年级上册数学期末一元一次方程应用题专题训练1.一艘船在甲码头到乙码头顺流行驶,用了2小时;再从乙码头返回甲码头逆水行驶,用了3小时,已知这艘船在静水中航行的速度为15千米/小时,则水流的速度为多少千米每小时?2.一艘船从甲码头到乙码头顺流而行,用了2.5 h;从乙码头返回甲码头逆流而行,用了3 h.已知水流的速度是2 km/h,求船在静水中的平均速度.3.某中学学生步行到郊外旅行,七年级(1)班学生组成前队,步行速度为4千米/小时,七(2)班的学生组成后队,速度为6千米/小时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/小时.(1)后队追上前队需要多长时间?(2)后队追上前队的时间内,联络员走的路程是多少?(3)七年级(1)班出发多少小时后两队相距2千米?4.鄞州公园计划在园内的坡地上栽种树苗和花圃,树苗和花苗的比例是1:25,已知每人每天种植树苗3棵或种植花苗50棵,现有15人参与种植劳动.(1)怎样分配种植树苗和花苗的人数,才能使得种植任务同时完成?(2)现计划种植树苗60棵,花苗1500棵,要求在3天内完成,原有人数能完成吗?如果完成,请说明理由;如不能完成,请问至少派多少人去支援才能保证3天内完成任务?5.某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件?(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗?说明理由(3)若把块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出所满足的条件.6.红星纺织厂为了应对疫情需求,安排甲、乙两个车间生产防疫口罩.第一周甲、乙两个车间各生产5天后,乙车间周六加班多生产1天,结果两个车间生产的口罩数量一样多:第二周甲、乙两个车间各生产4天后乙车间又多生产口罩3000个,结果甲车间比乙车间仍多生产口罩1000个.(1)甲、乙两车间每天生产口罩各多少个?(2)第三周,纺织厂又接到生产40000个口罩的订单,且要求必须4天完成任务,同时甲车间要抽调一半的工人去生产防护服,因此,甲车间生产口罩的效率只有原来的一半,厂部要求乙车间必须提高口罩生产效率,保证按时完成任务,乙车间生产效率提高的百分比是多少?7.请根据图中提供的信息,回答下列问题:(1)一个水瓶是多少元?(2)商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买个水瓶和个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)n n 520要2个桶底才能构成一个铁桶,为使每天生产的桶身和桶底刚好配套,应该安排生产桶身和桶底的工人各多少名?15.某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,并且付给他每天10元生活补助费,现有三种修理方案, A 方案:由甲单独修理;B 方案:由乙单独修理;C 方案:甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?16.某超市进行新年促销活动,将某种年货礼包按原价的9折销售,此时的利润率为12.5%.若这种年货礼包的进价为每个80元(1)年货礼包的原售价是多少元?(2)开展促销活动后,实际销量为按原价销售时的3倍,则实际利润和未开展促销活动时相比,是增多,不变,还是减少?请通过计算说明.17.某工厂中秋节前要制作一批盒装月饼,每盒装4块大月饼和6块小月饼,制作1块大月饼要用面粉,1块小月饼要用面粉.(1)若制作若干盒月饼共用了面粉,请问制作大小两种月饼各用了多少面粉?(2)在(1)的条件下,已知制作一个精美月饼包装盒的成本为5元,面粉的进价为25元/千克,在不计其它成本的情况下,工厂想达到的利润率,则应如何制定每盒月饼的出厂价?18.为进一步加强居民对电信诈骗的防范意识,提高对电信诈骗的鉴别、自我保护能力,营造全民反诈的浓厚氛围,我校志愿者积极配合社区开展反诈骗宣传工作,志愿者们准备印制一些反诈骗宣传小册子,利用中秋国庆假期到公园里开展防诈骗、反诈骗宣传活0.05kg 0.02kg 640kg 50%参考答案:13.(1)48(2)该户居民3月份用水4t ,4月份用水11t 14.(1)(2)30名工人生产桶身,36名工人生产桶底15.(1)该中学库存桌椅960套.(2)选择C 方案省时又省钱.16.(1)100元(2)增多17.(1)制作大月饼用了面粉,制作小月饼用了面粉(2)每盒月饼的出厂价应定为26元18.(1)印刷册,两家的印刷总费用是相等(2)乙店是打七五折优惠19.(1),(2)若交费时间为1年,选择方案一更合适,(3)交费时间为10个月时,两种方案费用相同20.(1)这个公司要加工960件新产品(2)该公司应选择第③种方案,由两个工厂合作同时完成时,既省钱,又省时间18400kg 240kg 403004000M x =+6001000N x =+。
一元一次方程应用题行程问题:例1.甲、乙两地相距416千米,一辆汽车从甲地开往乙地,每小时行32千米,汽车开出半小时后,一辆摩托车从乙地开往甲地,速度是汽车的1.5倍,问摩托车开出几小时后才能与汽车相遇?例2.一只轮船,在甲、乙两地之间航行,顺水用8小时,逆水比顺水多30分钟,已知轮船在静水中速度是每小时26千米,求水流的速度?例3.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时。
已知水流速度是3千米/时,求船在静水中的平均速度。
例4.有A、B、C三个码头,BC相距24km,某船从B顺水而下到达A后,立即逆水而上到达C。
共用8h,已知水流速度为5km/h,船在静水中的速度为20km/h,求A、B之间的距离。
例5.船在静水中的速度是14km/h,水流速度是2km/h,船先顺流由一码头开出,再逆流返回,若要船在3h30min内返回,那么船最远能开出多远?例6.甲船从A地顺流下行,乙船同时从B地逆水上行,12h后相遇,此时甲船已走了全程的一半多9km,甲船在静水中的速度是每小时4km,乙船在静水的速度是每小时5km,求水流的速度。
例7.一条山路,从山下到山顶,走了1小时还差1千米,从山顶到山下,50分钟可以走完,已知下山速度是上山速度的1.5倍,上山、下山每小时各走了多少千米?这条山路有多少千米?例8.甲、乙两人沿一公路自西向东前进,速度分别为3千米/小时和5千米/小时,甲于中午12时经过A地,乙于下午2时经过A地,则乙追上甲时离A地多远?例9.A、B两地相距20千米,甲、乙两人分别从A、B两地同时出发,相向而行,2小时后两人在途中相遇,相遇后甲立即返回A地,乙仍向A地前进,待甲回到A地时,乙离A地还有2千米,求两人的速度各是多少?例10.一列客车和一列货车在平行的轨道上同向而行,客车的长度是200米,货车的长度是280米,客车与货车的速度比是5:3,客车赶上货车的交叉时间是1分钟,求每个车的速度?若两用人才相向而行,它们的交叉时间需要多少?课堂练习题1.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则m ,n ,k 的大小关系为( )A .m n k >>B .n k m >>C .k m n >>D .m k n >>2.方程880m m +++=的解的个数为( )A .2个B .3个C .无数个D .无数个3.如图,某人沿着边长为90米的正方形,按A →B →C →D →A …方向,甲从A 以65米/分的速度,乙从B 以72米/分的速度行走,当乙第一次迫上甲时在正方形的( ).A .AB 边上 B .DA 边上C .BC 边上D .CD 边上4.已知08)1()1(22=++--x m x m 是关于x 的一元一次方程,则代数式m m x x m +-+)2)((199=5.当k= 时,关于x 的方程6623--=+x kx k kx 有无数个解。
一元一次方程应用题知识点一:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B.80%×(1+45%)x-x=50C.x-80%×(1+45%)x=50D.80%×(1-45%)x-x=504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知识点点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元, 经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨, 但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜, 在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。
2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题1.某中学学生步行到郊外旅行.七(1)班学生组成前队,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员骑车的路程是多少千米?2.某开发公司生产出若干件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂每天分别能加工这种产品16件和24件,已知甲单独加工这批产品比乙单独加工这批产品要多用20天,又知若由甲厂单独做,公司需付甲厂每天加工费用80元;若由乙厂单独做,公司需付乙厂每天加工费用120元。
(1)求这批新产品共有多少件?(2)若公司董事会制定了如下方案:可以由每个工厂单独完成,也可以由两个工厂合作完成,但在加工过程中,公司需派一名工程师到工厂进行技术指导,并由公司为其提供每天10元的午餐补助,请你帮助公司选择一种既省时又省钱的加工方案,并通过计算说明理由.3.某中学将举行“歌唱祖国”主题歌咏比赛,七年级需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,两家文具店的标价相同,每袋贴纸价格比每袋小红旗价格少5元,且4袋贴纸与3袋小红旗价格相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果购买贴纸和小红旗共90袋,给每位演出学生分发国旗图案贴纸2张、小红旗1面,恰好全部分完,请问贴纸和小红旗各多少袋?某校七年级(1)和(2)班共105人去游玩,其中七(1)班40多人不足50人,经计算,如果两个班都以班为单位购票,则一共应付1401元.(1)两班各有多少人?(2)如果两班联合起来,作为一个团体购票,能省多少钱?7.某中学举行校运会,初一(1)班同学准备用卡纸制成乒乓球拍和小旗作道具.若一张卡纸可以做3个球拍或6面小旗,用21张卡纸,刚好能够让每位同学拿一个球拍和一面小旗.(1)应用多少张卡纸做球拍,多少张卡纸做小旗?(2)若每个人的工作效率都相同,一个人完成道具制作要6个小时,先安排2个人做半小时,再增加几个人做1小时可以刚好完成?8.一段道路,甲工程队单独铺设需10天完成,乙工程队单独铺设需15天完成.(1)若两队自始至终合作铺设, 天可以完成;(2)实际由甲工程队先单独铺设几天后,为了加快进度,余下的部分由甲乙两个工程队合作完成,共用8天铺设完成了这段道路.甲工程队先铺设了几天道路?9. “双十二”期间,某个体商户在网上购进某品牌A 、B 两款羽绒服来销售,若购进3件A 和4件B 需支付2400元,若购进1件A 和1件B 则需支付700元.(1)求A 、B 两款羽绒服在网上的售价分别是每件多少元?(2)若个体商户把网上购买的A 、B 两款羽绒服各10件,均按每件600元进行销售,销售一段时间后,把剩下的羽绒服按6折销售完,若总获利为3800元,求个体商户打折销售的羽绒服是多少件?10.下雪了,学校七年级准备为同学们定制一批冬帽,现有甲、乙两个工厂都想加工这 批冬帽,已知甲工厂每天能加工这种冬帽20件,乙工厂每天能加工这种冬帽30件,且单独加工这批冬帽甲厂比乙厂要多用16天.(1)求这批冬帽共有多少件?(2)为了尽快完成这批冬帽,若先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,由乙工厂单独完成剩余部分,为此乙工厂每天的生产速度也提高20%.已知乙工厂的全部工作时间是甲工厂工作时间的2倍还少2天,求乙工厂共加工多少天?11.一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形.(1)设长方形的长为cm x ,请列出关于x 的方程.(2)说明8x =是(1)中所列方程的解,而10x =不是它的解.(3)设长方形的宽是cm y ,请列出关于y 的方程.(1)若小泮购买了25千克的柑橘,则他需要付多少元?(2)若小钱一次购买柑橘共付了200元,则小钱购买柑橘多少千克?(3)小王分两次共购买了柑橘90千克,第二次购买的数量要多于第一次购买的数量,共付出376元,请问小王第一次、第二次分别购买柑橘多少千克?14.某校开展劳动教育,在植树节当天组织植树活动,该校七年级共有120人参加活动,分成树苗保障组和种植组,种植组的人数是树苗保障组人数的2倍.(1)求树苗保障组的人数;(2)已知种植点有甲、乙两处,种植组在甲处有a人.①用含a的代数式表示种植组在乙处的人数;a ,树苗保障组人员在运送完树苗后全部去支援种植组,使在甲处种植的人数②若46是乙处种植人数的2倍,问应调往甲、乙两处各多少人?15.甲、乙两地相距72km ,一辆工程车和一辆洒水车上午6时同时从甲地出发,分别以1km/h v 、2km/h v 的速度匀速驶往乙地.工程车到达乙地后停留了2h ,沿原路以原速返回,中午12时到达甲地,此时洒水车也恰好到达乙地.(1)1v =______,2=v ______;(2)求出发多长时间后,两车相遇?(3)求出发多长时间后,两车相距30km ?(直接写出答案)______16.某同学进入初中后,家长为他买了一个电话手表.现从某电信运营商那里了解到,有两种电话卡,A 类卡收费标准如下:无月租,每通话1分钟交费0.6元;B 类卡收费标准如下:月租费15元,每通话1分钟交费0.3元.(1)若每月平均通话时间为100分钟,他应该选择哪类卡?(2)如果这位同学这个月预交话费120元,按A 、B 两类卡收费标准分别可以通话多长时间?(3)根据一个月的通话时间,你认为选择哪种卡更实惠?17.用80m 的篱笆围成一个长方形场地.(1)如果长比宽多6m ,求这个长方形的面积;(2)如果一边靠墙,墙长为32m ,长比宽多11m (长边与墙平行),这样设计是否可行?请说明理由.18.请列一元一次方程解决下面的问题:某超市计划购进甲、乙两种型号的钢笔共900支,这两种钢笔的进价、售价如下表:(1)如果进货款恰好为28500元,那么可以购进甲、乙两种型号的钢笔各多少支?(2)售完这批钢笔一共可以获利多少元钱?参考答案:1.(1)2小时(2)20千米2.(1)这批新产品共有960件.(2)甲、乙合作同时完成时,既省钱又省时间,理由见解析.3.(1)每袋国旗图案贴纸和每袋小红旗的价格各是15和20元(2)购买贴纸40袋,购买小红旗50袋4.(1)买卡合算,小张能节省400元(2)这台冰箱的进价是2480元5.(1)第一批购进文具盒40个,则第二批购进文具盒30个.(2)第二批文具盒中按标价售出的有7个.6.(1)七年级(1)班47人,(2)班58人(2)两个班联合起来,作为一个团体购票,可省351元7.(1)用14张卡纸做球拍,7张卡纸做小旗;(2)再增加3个人做1小时可以刚好完成8.(1)6(2)5天9.(1)A、B两款羽绒服在网上的售价分别是每件400元,300元(2)个体商户打折销售的羽绒服是5件10.(1)这批冬帽共有960件(2)乙工厂共加工22天(2)售完这批钢笔一共可以获利7500元钱。
七年级一元一次方程应用题例题
例题一:
问题描述:
某家庭共有父亲和儿子两人,父亲今年26岁,比儿子年龄大30岁。
求儿子目前的年龄。
解题过程:
设儿子目前的年龄为x岁,根据题意,可以得到方程:父亲的年龄 = 儿子的年龄 + 30 26 = x + 30 通过移项和化简方程,可以得到: x = 26 - 30 x = -4 即儿子目前的年龄为负4岁,这显然不符合实际情况。
因此,儿子目前的年龄无解。
例题二:
问题描述:
小红和小明共有零花钱190元,如果小红的零花钱是小明的2倍,求小红和小明各自的零花钱数。
解题过程:
设小红的零花钱为x元,小明的零花钱为y元,根据题意,可以得到方程: x + y = 190 x = 2y 将第二个方程代入第一个方程,得到: 2y + y = 190 3y = 190 y = 190 / 3 y = 63.33 小明的零花钱不能是小数,因此我们重新计算小明的零花钱: y = 63 代入第二个方程,计算小红的零花钱: x = 2*63 x = 126 因此,小红的零花钱为126元,小明的零花钱为63元。
通过以上两个例题,我们可以看到在解决一元一次方程应用题时,需要仔细分析题意,建立与变量的关系,并逐步求解方程,最终得到问题的答案。
希望同学们在做题时能够灵活运用方程求解的方法,解决实际问题。
采购烟花,爆竹,年货的初一一元一次方程应用题
春节即将来临,某公司计划采购烟花、爆竹和年货。
为了解这个问题,我们可以用一元一次方程来建立数学模型。
假设公司计划采购的烟花数量为x 箱,爆竹数量为y 箱,年货数量为z 箱。
根据题目,我们可以建立以下方程:
1. 采购烟花的总费用是 20x 元(因为每箱烟花20元)。
2. 采购爆竹的总费用是 30y 元(因为每箱爆竹30元)。
3. 采购年货的总费用是 50z 元(因为每箱年货50元)。
4. 公司计划的总预算是 1000 元。
因此,总预算方程可以表示为:20x + 30y + 50z = 1000。
由于采购的烟花、爆竹和年货的数量都是整数,我们需要找到满足这些条件的整数解。
现在我们要来解这个方程,找出 x、y 和 z 的值。
计算结果为: [{x: 10 - y - z/2, z: 2y}]
所以,公司应该采购的烟花数量为:10 - y - z/2 箱,爆竹数量为:y 箱,年货数量为:2y 箱。
七年级一元一次方程应用题
在学习一元一次方程时,我们不仅要掌握基本的解方程方法,还需要学会将所学知识应用到实际问题中。
本文将提供一些七年级水平的一元一次方程应用题,帮助同学们更好地理解和掌握这一知识点。
问题一
某商场举办促销活动,对进口手机进行降价处理。
原来一部手机的售价为300元,现在降价100元出售。
假设降价后售价为x元,一位顾客买了y部手机,他总共花了650元。
请你列出方程并求解出x和y的值。
问题二
某班学生共有36人,其中男生和女生的比例为3:2。
如果男生再增加5人,女生减少5人,那么男生和女生的人数将会相等。
求解出原来男生和女生的人数各是多少。
问题三
某球队参加篮球比赛,已知队员两人一组比赛,如果分成4组正好参赛,如果队员再增加3人就能正好凑成5组比赛。
求解这个球队有多少名队员。
问题四
小明存款1000元,存入银行既定利率为5%,定期存款一年,到期后本息总共1100元。
请你列出并解决这个关于存款利率的一元一次方程。
通过以上几个问题的练习,希望同学们能够掌握如何应用一元一次方程解决实际问题,同时也能够提高解决问题的能力和思维灵活性。
祝学习顺利!。
一元一次方程应用题一、选择题1、一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 502、某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x为()A、700元B、约733元C、约736元D、约856元3、某人按定期2年向银行储蓄1500元,假设每年利率为3%(不计复利)到期支取时,扣除利息所得税(税率为20%)此人实得利息为()A、1272元B、36元C、72元D、1572元4、某商品的售价是32元,比原来售价降低了20%,则原来的售价是()A、35元B、40元C、48元D、60元二、解答题5、一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离。
6、车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10个,又知两个大齿轮与三个小齿轮酿成一套,问应如何安排工人才能使生产的产品刚好成套?7、某商品进价是1000元,标价为1500元,商品要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?(6分)8、有一个只允许单向通行的狭窄道口,通畅情况下每分钟可以通过9人,一天,王老师过道口时发现,由于拥挤每分钟只能有3人通过道口。
此时,他面前还有36人等待通过(假定先到的先过,王老师过通道口的时间忽略不计)。
在王老师等人的维持下,秩序很快恢复正常(维持秩序期间,每分钟仍有3人通过道口),结果王老师比拥挤的情况下提前6min 通过道口,问维持秩序的时间是多少?9、张叔叔用若干元人民币购买了一种年利率为10% 的一年期债券,到期后他取出本金的一半用作购物,剩下的一半和所得的利息又全部买了这种一年期债券(利率不变),到期后得本息和1320元。
问张叔叔当初购买这咱债券花了多少元?10、李阿姨购买了25000元某公司1年期的债券,一年后扣除20%的利息税之后得到本息和为26000元,这种债券的年利率是多少?11、观察下列数:4,9,14,19,24,29,…,依次规律,在此数列中有没有2004这个数?若有这个数,是第几个数;若没有,请说明理由。
12、小刚为书房买灯。
现有两种灯可供选购,其中一种是9瓦的节能灯,售价为49元/盏,另一种是40瓦的白炽灯,售价为18元/盏。
假设两种灯的照明效果一样,使用寿命都可以达到2800小时。
已知小刚家所在地的电价是每千瓦时0.5元。
(1)设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯和用一盏白炽灯的费用。
(费用=灯的售价+电费)(2)小刚想在这两种灯中选购一盏。
①当照明时间是多少时,使用两种灯的费用一样多?②试用特殊值判断:照明时间在什么范围内,选用白炽灯费用低?照明时间在什么范围内,选用节能灯费用低?(3)小刚想在这种灯中选购两盏。
假定照明时间是3000小时,使用寿命都是2800小时。
请你设计一种费用最低的选灯照明方案,并说明理由。
13、KTNG公司生产有A、B两种刹车片,现在对同一种高速行驶的赛车实施刹车实验,实验数据如下表:根据数据表回答下面的问题:1、请根据配A种刹车片的赛车的实验数据规律推算出5秒后的车速并填入相应表格中。
2、请用所学的知识归纳出两种刹车片的减速规律(t秒后的车速与t 的关系)并分别填入表格的最后一处。
3、实验时赛车是从速度为_________米/秒时开始减速的。
4、请通过计算说明:配A种刹车片的赛车从刹车开始经过多少秒后才能停稳?答案:1、B 2、A 3、C 4、B5、80千米6、大的25人、小的60人7、7折8、3分钟9、22000元10、百分之五11、第401个12、0.005x+49 0.02x+18 200013、60 12.5 100-8t 200-2t100第二章一元一次方程江苏省赣榆县沙河中学张庆华【课标要求】【知识梳理】1.会对方程进行适当的变形解一元一次方程:解方程的基本思想就是转化,即对方程进行变形,变形时要注意两点,一时方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程的解可能不同;二是去分母时,不要漏乘没有分母的项,一元一次方程是学习二元一次方程组、一元二次方程、一元一次不等式及函数问题的基本内容。
2.正确理解方程解的定义,并能应用等式性质巧解考题:方程的解应理解为,把它代入原方程是适合的,其方法就是把方程的解代入原方程,使问题得到了转化。
3.理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:(1)a≠0时,方程有唯一解x=;(2)a=0,b=0时,方程有无数个解;(3)a=0,b≠0时,方程无解。
4.正确列一元一次方程解应用题:列方程解应用题,关键是寻找题中的等量关系,可采用图示、列表等方法,根据近几年的考试题目分析,要多关注社会热点,密切联系实际,多收集和处理信息,解应用题时还要注意检查结果是否符合实际意义。
【能力训练】一、填空题(本题共20分,每小题4分):1.x=时,代数式与代数式的差为0;2.x=3是方程4x-3(a-x)=6x-7(a-x)的解,那么a=;3.x=9 是方程的解,那么,当1时,方程的解; 4.若是2ab2c3x-1与-5ab2c6x+3是同类项,则x=;5.x=是方程|k|(x+2)=3x的解,那么k=.二、解下列方程(本题50分,每小题10分):1.2{3[4(5x-1)-8]-20}-7=1;2.=1;3.x-2[x-3(x+4)-5]=3{2x-[x-8(x-4)]}-2;4.;5..三解下列应用问题(本题30分,每小题10分):1.用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40 m3, 第一架工作16小时,第二架工作24小时,共掘土8640 m3,问每架掘土机每小时可以掘土多少 m3?2.甲、乙、丙三个工厂共同筹办一所厂办学校,所出经费不同,其中甲厂出总数的,乙厂出甲丙两厂和的,已知丙厂出了16000元.问这所厂办学校总经费是多少,甲乙两厂各出了多少元?3.一条山路,从山下到山顶,走了1小时还差1km,从山顶到山下,用50分钟可以走完.已知下山速度是上山速度的1.5倍,问下山速度和上山速度各是多少,单程山路有多少km.参考答案:一、填空题:1.9;2.;3.或;4.x=;5.;二、解方程:1.x=1;2.;3.x=6;4.;5.三、应用题:1.第一架掘土机每小时掘土240立方米,第二架掘土机每小时掘土200 m32.总经费42000元,甲厂出12000元,乙厂出14000元3.上山速度为每小时4 km ,下山速度为每小时6 km ,单程山路为5 km .第三章 一元一次方程水平测试B一、填得圆圆满满(每小题3分,共30分) 1.关于x 的方程230m mx m ++-=是一个一元一次方程,则m =_______.2.关于x 的方程()112436x x m +=-+的解是116-,则()20021m -=_______. 3.关于x 的方程39x =与4x k +=解相同,则代数式212kk-的值为_______. 4.假定每个工人的工作效率相同,如果x 个工人y 天生产m 支牙刷,那么y 个工人做x 支牙刷要_______天.5.若关于x 的方程()23202k x kx -+-=k 是一元一次方程,则k =_______,方程的解为_______.6.校办厂2004年的产值为a 万元,2005年的产值预计比2004年增长10%,则2005年的产值为_______万元. 7.当x =_______时,代数式12x -与113x +-的值相等. 8.解方程132x-=,则x =_______. 9.翻开数学书,连续看了3页,这三页页码和为453,则这3页的页码分别是第_______页. 10.甲水池有31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,_______小时后,甲池的水与乙池的水一样多.二、做出正确选择(每小题3分,共24分) 1.已知方程112332x x x ---=+-与方程2224334kx xk +--=-的解相同,则k 的值为( ) A.0B.2 C.1D.1-2.若m 使得代数式()2135m --取得最大值,则关于x 的方程54320m x -=+的解是( )A.79x =B.97x =C.79x =-D.97x =- 3.一项工程,甲单独做需x 天完成,乙单独做需y 天完成,两人合做这项工程所需天数为( ) A.1x y+ B.11x y+ C.1xyD.111x y+4.一个两位数,个位与十位上的数字之和为12,如果交换个位与十位数字,则所得新数比原数大36,则原两位数为( )A.39 B.93 C.48 D.845.已知方程233mx x -=+的解满足10x -=,则m 的值是( ) A.6- B.12- C.6-或12- D.任何数6.已知当1a =,2b =-时,代数式10ab bc ca ++=,则c 的值为( ) A.12 B.6 C.6- D.12-7.某件商品连续两次9折隆价销售,降价后每件商品售价为a 元,则该商品每件原价为( ) A.0.92a 元B.1.12a 元C.1.12a元 D.0.81a元 三、用心解答(共66分) 1.(8分)解关于x 的方程()0b x x aa b a b+-=≠≠.2.(10分)已知2ym my m +=-. (1)当4m =时,求y 的值; (2)当4y =时,求m 的值.3.(10分)王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/秒的速度跑了多少米? 4.(12分)某公司向银行贷款40万元,用来生产某种产品,已知该贷款的利率为15%(不计复利,即还贷款前两年利息不计算),每个新产品的成本是2.3元,售价是4元,应纳税款是销售额的10%,如果每年生产该种产品20万个,并把所得利润(利润=销售额-成本-应纳税款)用来归还贷款,问需要几年后才能一次性还清? 5.(12分)某商场在元旦其间,开展商品促销活动,将某型号的电视机按进价提高35%后,打9折另送50元路费的方式销售,结果每台电视机仍获利208元,问每台电视机的进价是多少元? 6.(14分)某牛奶加工厂有鲜奶9吨.若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨.受人员限制,两种加工方式不可同时进行.受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多,为什么?。