初一数学应用题
- 格式:doc
- 大小:27.00 KB
- 文档页数:5
初一数学追及应用题一、基础追及问题(1 - 10题)1. 甲、乙两人相距20千米,甲以每小时4千米的速度先走1小时后,乙从同一地点出发,以每小时6千米的速度追赶甲,乙几小时后能追上甲?- 解析:- 甲先走1小时,先走的距离为4×1 = 4千米。
- 此时两人相距20 - 4=16千米。
- 甲乙的速度差为6 - 4 = 2千米/小时。
- 根据追及时间=路程差÷速度差,可得追及时间为16div2 = 8小时。
2. 甲、乙两人在同一条路上,前后相距9千米。
他们同时向同一个方向前进。
甲在前,以每小时5千米的速度步行;乙在后,以每小时6千米的速度骑自行车追赶甲。
几小时后乙能追上甲?- 解析:- 甲乙的速度差为6 - 5=1千米/小时。
- 路程差为9千米。
- 根据追及时间 = 路程差÷速度差,可得追及时间为9div1 = 9小时。
3. 小明和小红在环形跑道上跑步,跑道一圈长400米,小明每秒跑6米,小红每秒跑4米。
如果他们同时同地同向出发,经过多少秒小明第一次追上小红?- 解析:- 小明每秒比小红多跑6 - 4 = 2米。
- 因为是环形跑道同向出发,当小明第一次追上小红时,小明比小红多跑了一圈,即400米。
- 根据追及时间 = 路程差÷速度差,可得追及时间为400div2 = 200秒。
4. 一辆汽车和一辆摩托车同时从相距180千米的两地出发,汽车每小时行40千米,摩托车每小时行60千米,摩托车在汽车后面,几小时后摩托车可以追上汽车?- 解析:- 摩托车与汽车的速度差为60 - 40 = 20千米/小时。
- 路程差为180千米。
- 根据追及时间 = 路程差÷速度差,可得追及时间为180div20 = 9小时。
5. 甲、乙两人分别从A、B两地同时出发,同向而行,乙在前,甲在后。
已知A、B两地相距20千米,甲的速度是每小时15千米,乙的速度是每小时10千米,甲几小时后能追上乙?- 解析:- 甲、乙的速度差为15 - 10 = 5千米/小时。
七年级数学应用题带答案应用题是我们学习数学的时候会学到的,下面是店铺帮大家整理的七年级数学应用题带答案,希望对大家有所帮助。
七年级数学应用题带答案篇1【题目1】B处的兔子和A处的狗相距56米。
兔子从B处逃跑,狗同时从A处跳出追兔子,狗一跳2米,狗跳3次的时间和兔子跳4次的时间相同。
兔子跳出112米后被狗追上,问兔子一跳多少米?【解答】狗和兔子的速度比是(112+56):112=3:2,狗跳3次跳了2×3=6米,兔子就跳6×2/3=4米,所以兔子每跳一次4÷4=1米【题目2】甲乙两车分别从A、B两地同时开出,相对而行,4小时后甲车行了全程的1/4,乙车行的路程比全程的12.5%少60千米,甲乙两车继续行驶735千米相遇。
求AB两地相距多少千米?【解答】735-60=675千米占全程的1-1/4-12.5%=5/8,所以两地之间的距离是675÷5/8=1080千米。
【题目3】火车每分钟行1050米,从车头与一个路标并列到车尾离开这个路标3分钟后一辆摩托车以每分钟1200米的速度从这个路标出发,摩托车出发25分钟后,与火车的车头正好并列,求这列火车的长。
【解答】摩托车行了1200×25=30000米,车尾行了1050×(25+3)=29400米。
所以火车长30000-29400=600米。
【题目4】在同一路线上有ABCD四个人,每人的速度固定不变。
已知A在12时追上C,14时时与D迎面相遇,16时时与B迎面相遇。
而B在17时时与C迎面相遇,18时追上D,那么D在几时迎面遇到C。
【解答】把12时AB的距离看作单位1,四人速度分别用ABCD 来表示。
A+B=1/4,B+C=1/5。
2(A+D)+6(B-D)=4(A+B),得出B-D=1/2(A+B)=1/2×1/4=1/8,12时C和D相距2×(1/4-1/8)=1/4,C+D=1/5-1/8=3/40,所以需要的时间是1/4÷3/40=10/3小时,即在15时20分的时候C和D相遇。
初一上册数学应用题一、小明买了5支铅笔和3块橡皮,共花费10元。
已知每支铅笔比每块橡皮贵0.5元,问每支铅笔的价格是?A. 1元B. 1.5元C. 2元D. 2.5元(答案:C)二、某班级进行数学测试,平均分是75分,其中男生平均分78分,女生平均分72分,若男生人数是女生的1.5倍,问班级总人数是多少?A. 30人B. 40人C. 50人D. 60人(答案:D)三、一列火车以60km/h的速度从A地开往B地,同时另一列火车以80km/h的速度从B地开往A地,两列火车在途中相遇。
若A、B两地相距400km,问它们相遇时各自行驶了多少时间?A. 2小时B. 2.5小时C. 3小时D. 3.5小时(答案:A)四、某果园有苹果树和梨树共100棵,其中苹果树的数量是梨树的3倍多10棵。
问苹果树有多少棵?A. 60棵B. 70棵C. 75棵D. 80棵(答案:C)五、小李计划用20元买笔记本和铅笔,已知每本笔记本3元,每支铅笔1元,且买的铅笔数比笔记本数的2倍少1。
问小李最多能买几本笔记本?A. 3本B. 4本C. 5本D. 6本(答案:B)六、一个水池有甲、乙两个进水管,单独开放甲管6小时可以注满水池,单独开放乙管8小时可以注满。
若两管同时开放,问多少小时可以注满水池?A. 3小时B. 3.4小时C. 4.8小时D. 5小时(答案:C)七、小张和小王同时从家出发去学校,小张步行的速度是5km/h,小王骑自行车的速度是15km/h。
小王到校后发现忘记带作业,立即以原速返回,途中与小张相遇。
若他们家到学校的距离是6km,问他们相遇时小王已经骑行了多远?A. 9kmB. 12kmC. 15kmD. 18km(答案:A)八、某商店进行打折促销,原价为x元的商品打八折后售价为y元,则y与x的关系式为?A. y = 0.8xB. y = x - 0.8C. y = x + 0.2D. y = 0.8 - x(答案:A)。
初一数学应用题题库一、列方程或列方程组解应用题:1、某厂向工商银行申请甲、乙两种贷款,共计20万元,每年需付利息2.7万元.甲种贷款年利率为12%,乙种贷款年利率为14%.甲、乙两种贷款的金额各多少?2、某商贩以每件135元售出两件衣服,按成本计算,第一件盈利25%,第二件亏损25%.那么该商贩的这笔生意赚(或亏)了多少?3、一家公司向银行贷款1200万元,年利率为10%(不计复利).用这笔贷款购买一套进口设备,生产某商品,每箱商品的生产成本为100元.销售价为150元,综合税率为售价的10%,预计每年能产销80000箱.若用所得纯利润偿还贷款本利,需要几年才能还清?4、某人储蓄100元钱,当时一年息为7.47%,三年息为8.28%(均不计复利).甲种存法:先存一年,到期后连本带利再存一年,到期后再连本带利存一年;乙种存法:存三年;哪种存法盈利多?多多少?5、两个班的学生72人去工地参加挖土和运土的义务劳动,如果每人每天平均挖土3方或运土5方,那么应怎样分配挖土和运土的人数,正好使挖出的土及时运走?6、某车间有工人42名,每人每分能生产2个螺栓或3个螺帽,应分配多少工人生产螺栓,多少工人生产螺帽,才能使生产出的螺栓和螺帽恰好配套(一个螺栓配两个螺帽)?7、某厂三个车间的工人数分别为26,39,65,现在招来40个合同工,应如何分配,才能使各车间的工人的比例与原来一样?8、有盐的质量分数为15%的盐水20千克,要使盐的质量分数提高到20%,需要加盐多少千克?9、有水的质量分数为5%的盐水60克,应加水多少克才能得到盐的质量分数10%的盐?10、从盐的质量分数为 12.5%的盐水40千克里蒸发掉多少千克的水后,可以制成盐的质量分数为20%的盐水?11、要得到盐的质量分数为16%的盐水1000克,需要盐的质量分数为10% 和25%的盐水各多少克?12、在盐的质量分数为20%的盐水中放入20克盐,得到盐的质量分数为25% 的盐水.原有的盐水多少克?13、要配制纯硫酸的质量分数为10%的硫酸1000千克,已有纯硫酸的质量分数为60%的硫酸85千克,还需要纯硫酸的质量分数为98%的硫酸和水各多少千克?14、某工人原计划在限定的时间内加工一批零件,如果每时加工10个零件,就可以超额完成3个;如果每时加工11个零件,就可以提前1时完成,问这批零件有多少个?按原计划需多少时间完成?15、甲、乙两人一起生产一批零件,经20天完成任务,但乙曾在中途请假5天已知甲每天比乙多做3个,于是乙做的零件恰好是甲的一半,求这批零件的总件数。
初一数学应用题试题及答案试题:1. 某中学为了丰富学生的课余生活,计划购买一批篮球和排球。
已知篮球每个的价格为80元,排球每个的价格为50元。
学校计划花费不超过2000元,并且购买的篮球和排球总数不超过40个。
如果学校购买了x个篮球和y个排球,求x和y的可能值。
2. 某工厂生产一批零件,每个零件的成本为5元,销售价格为10元。
工厂计划在一个月内生产并销售这批零件,预计总收入为20000元。
如果工厂每天生产零件的数量相同,求工厂每天需要生产多少个零件。
3. 一个长方形的长是宽的两倍,如果长增加2米,宽增加1米,面积就增加了12平方米。
求原长方形的长和宽。
答案:1. 解:设学校购买了x个篮球和y个排球,根据题意可列出以下方程组:\[ 80x + 50y \leq 2000 \]\[ x + y \leq 40 \]由第二个方程可得 \( y \leq 40 - x \),代入第一个方程得:\[ 80x + 50(40 - x) \leq 2000 \]简化得:\[ 30x \leq 2000 \]\[ x \leq \frac{2000}{30} \]\[ x \leq 66.67 \]因为x和y都是整数,所以x的可能值为0到66,但是还要满足x+y≤40,所以x的可能值范围是0到39。
对于每一个x的值,y的可能值可以通过 \( y = 40 - x \) 计算得出。
2. 解:设工厂每天需要生产n个零件,根据题意可得:\[ 10n \times 30 = 20000 \]简化得:\[ n = \frac{20000}{10 \times 30} \]\[ n = \frac{2000}{30} \]\[ n = 66.67 \]由于零件的数量必须是整数,工厂每天需要生产67个零件。
3. 解:设原长方形的宽为a米,那么长为2a米。
根据题意可得:\[ (2a + 2)(a + 1) - 2a \cdot a = 12 \]简化得:\[ 2a^2 + 3a + 2 - 2a^2 = 12 \]\[ 3a + 2 = 12 \]\[ 3a = 10 \]\[ a = \frac{10}{3} \]\[ a = 3.33 \]因此,原长方形的宽为3.33米,长为 \( 2 \times 3.33 = 6.67 \) 米。
初一数学应用题及答案初一数学应用题及答案篇(一):初一数学应用题练习1.甲、乙两地相距189千米,一列快车从甲地开往乙地每小时行72千米,一列慢车从乙地去甲地每小时行54千米。
若两车同时发车,几小时后两车相距31.5千米?2.一个筑路队要筑1680米长的路。
已经筑了15天,平均每天筑60米。
其余的12天筑完,平均每天筑多少米?3.学校买来6张桌子和12把椅子,共付215.40元,每把椅子7.5元。
每张桌子多少元?4.菜场运来萝卜25筐,黄瓜32筐,共重1870千克。
已知每筐萝卜重30千克,黄瓜每筐重多少千克?5.用两段布做相同的套装,第一段布长75米,第二段长100米,第一段布比第二段布少做10套。
每套服装用布多少米?6.红光农具厂五月份生产农具600件,比四月份多生产25%,四月份生产农具多少件?7.红星纺织厂有女职工174人,比男职工人数的3倍少6人,全厂共有职工多少人?8.蓓蕾小学三年级有学生86人,比二年级学生人数的2倍少4人,二年级有学生多少人?9.某校有男生630人,男、女生人数的比是7∶8,这个学校女生有多少人?10.张华看一本故事书,第一天看了全书的15%少4页,这时已看的页数与剩下页数的比是1∶7。
这本故事书共有多少页?11.一个书架有两层,上层放书的本数是下层的3倍;如果把上层的书取30本放到下层,那么两层书的本数正好相等。
原来两层书架上各有书多少本?12.第一层书架放有89本书,比第二层少放了16本,第三层书架上放有的书是一、二两层和的1.5倍,第三层放有多少本书?艺书的本数与其他两种书的本数的比是1∶5,工具书和文艺书共有180本。
图书箱里共有图书多少本?13.有甲、乙两个同学,甲同学积蓄了27元钱,两人各为灾区人民捐款15元后,甲、乙两个同学剩下的钱的数量比是3∶4,乙同学原来有积蓄多少元?14.小红和小芳都积攒了一些零用钱。
她们所攒钱的比是5∶3,在“支援灾区”捐款活动中小红捐26元,小芳捐10元,这时她们剩下的钱数相等。
一、利润问题(1)利润=售价-进价(2)利润率=进价利润=进价进价售价- (3)打折销售中的售价=标价×10折数 (4)售价=成本+利润+成本×(1+利润率)(5)利润=利润率×成本(6)利息=本金×利率1.商店将进价为600元的商品按标价的8折销售,仍可获利120元,则商品的标价是多少元?解析:售价=标价⨯打折利润=售价-进价设商品的标价是x 元0.8x -600=120x =900答:商品的标价为900元2.某商品的进价是2000元,标价为3000元,商品要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?解析:售价=标价⨯打折利润=售价-进价设可以打x 折出售3000 ⨯10x -2000=2000 ⨯5% x =7答:售货员最低可以打7折出售3.一家商店某种裢子按成本价提高50%后标价,又以8折优惠卖出,结果每条裤子获利10元,试求每条裤子的成本价是多少元?解析:售价=标价⨯打折利润=售价-进价设这条裤子的成本价为x元x(1+50%)⨯0.8-x=10x=50答:成本价为50元4.某商场甲、乙两个柜组1月份营业额共64万元,2月份甲增长了20%,乙增长了15%,营业额共达到75万元,试求两柜组2月份各增长多少万元?解析:设1月份甲柜x万元,则乙柜(64- x)万元x(1+20%)+(64- x)(1+15%)=75x=2864-x=64-28=36(万元)甲增长:28 ⨯20%=5.6(万元)乙增长:36 ⨯15%=5.4(万元)答:甲增长5.6万元,乙增长5.4万元。
5.某商店对一种商品调价,按原价的八折出售,打折后的利润率是20﹪,已知该商品的原价是63元,求该商品的进价。
解析:售价=标价⨯打折利润=售价-进价设进价x元63⨯0.8- x=20% xx=42答:商品的进价为42元。
6.国家规定存款的纳税办法是:利息税=利息×20﹪,银行一年定期储蓄的年利率为2.25﹪,现在小明取出一年到期的本金和利息时,交纳了利息税4.5元,则小明一年前存入银行的钱为多少元?解析:利息=本金×利率设小明一年前存入银行的钱为x元2.25%x⨯20%=4.5x=1000答:小明一年前存入银行的钱为1000元。
数学初一应用题及答案1. 问题:小明的爸爸给他买了一辆自行车,原价为500元,现在商店打8折出售,小明的爸爸实际支付了多少钱?答案:首先,我们需要计算打折后的价格。
原价为500元,打8折,即支付原价的80%。
计算方法如下:500元× 80% = 500元× 0.8 = 400元所以,小明的爸爸实际支付了400元。
2. 问题:一个长方形的长是15米,宽是10米,求这个长方形的面积。
答案:长方形的面积可以通过长乘以宽来计算。
计算方法如下:面积 = 长× 宽 = 15米× 10米 = 150平方米所以,这个长方形的面积是150平方米。
3. 问题:一个班级有40名学生,其中男生人数是女生人数的1.5倍,求这个班级男生和女生各有多少人?答案:首先,我们设女生人数为x,那么男生人数就是1.5x。
根据题意,男生和女生的总人数为40人。
我们可以列出方程:x + 1.5x = 402.5x = 40x = 40 ÷ 2.5 = 16所以,女生有16人,男生有1.5x = 1.5 × 16 = 24人。
4. 问题:小华家离学校的距离是2公里,小华每天骑自行车上学,他的速度是每小时5公里。
求小华每天骑自行车上学需要多少时间?答案:首先,我们需要计算小华骑自行车上学的总时间。
已知距离是2公里,速度是每小时5公里。
计算方法如下:时间 = 距离÷ 速度 = 2公里÷ 5公里/小时 = 0.4小时所以,小华每天骑自行车上学需要0.4小时。
5. 问题:一个数的3倍加上4等于20,求这个数。
答案:设这个数为x,根据题意,我们可以得到方程:3x + 4 = 203x = 20 - 43x = 16x = 16 ÷ 3x = 5.33(保留两位小数)所以,这个数是5.33。
初一数学应用题带答案题目一某购物网站上,一件衣服的原价为200元,现在打8折优惠,请问现在的价格是多少?解答:打8折优惠意味着价格打八折,即原价乘以0.8。
所以现在的价格为200元 * 0.8 = 160元。
题目二小明从家到学校的距离是2.5公里,他每小时可以步行5公里。
请问他需要多长时间才能到达学校?解答:小明每小时可以步行5公里,所以他需要2.5公里 / 5公里/小时 = 0.5小时,即30分钟才能到达学校。
题目三某商店举办促销活动,原价一盒牛奶是8元,现在买5盒牛奶只需要38元。
请问买一盒牛奶需要多少钱?解答:买5盒牛奶只需要38元,所以一盒牛奶的价格为38元 / 5盒 = 7.6元。
题目四小明爸爸开车从家到公司,全程共25公里,他每小时行驶的平均速度是50公里。
请问他需要多长时间才能到达公司?解答:小明爸爸的平均时速是50公里/小时,所以他需要25公里/ 50公里/小时 = 0.5小时,即30分钟才能到达公司。
题目五某商店举办活动,原价一瓶果汁是15元,现在打75折。
请问现在的价格是多少?解答:打75折意味着价格打七五折,即原价乘以0.75。
所以现在的价格为15元 * 0.75 = 11.25元。
题目六小明爸爸每个月的工资是5000元,他每个月要扣除房租400元和水电费200元。
请问他每个月能够剩下多少钱?解答:小明爸爸每个月的工资是5000元,他每个月扣除房租400元和水电费200元,所以他每个月能够剩下的钱是5000元 - 400元 - 200元 = 4400元。
题目七某书店卖一本书的原价是50元,现在打8折出售。
请问现在出售的价格是多少?解答:打8折意味着价格打八折,即原价乘以0.8。
所以现在出售的价格为50元 * 0.8 = 40元。
题目八小明每天晚上睡觉需要8小时,现在已经过了11点,请问他几点起床才能保证能够睡足8小时?解答:小明已经过了11点,他需要睡足8小时,所以他应该在11点加上8小时,即11点 + 8小时 = 19点,也就是晚上7点才能够保证能够睡足8小时。
初一数学应用题带答案1. 问题:小明骑自行车去上学,他的速度是每小时15公里。
如果他骑了40分钟,那么他骑了多远?答案:首先,我们需要将40分钟转换为小时,因为速度的单位是公里/小时。
40分钟等于2/3小时。
然后,我们使用公式:距离 = 速度× 时间。
所以,小明骑的距离是 15公里/小时× 2/3小时 = 10公里。
2. 问题:一个长方形的长是宽的两倍,如果宽是5米,那么长方形的周长是多少?答案:首先,我们知道长方形的长是宽的两倍,所以长是5米× 2 = 10米。
长方形的周长公式是:周长= 2 × (长 + 宽)。
将已知的长和宽代入公式,我们得到周长= 2 × (10米 + 5米) = 2 × 15米 = 30米。
3. 问题:一个班级有40名学生,如果每名学生需要2本练习册,那么总共需要多少本练习册?答案:根据题目,每名学生需要2本练习册。
所以,总共需要的练习册数量是 40名学生× 2本/学生 = 80本。
4. 问题:一个游泳池的长是25米,宽是10米,如果游泳池的水深是2米,那么游泳池的容积是多少立方米?答案:游泳池的容积可以通过体积公式计算,即体积 = 长× 宽× 高。
将游泳池的尺寸代入公式,我们得到体积 = 25米× 10米× 2米 = 500立方米。
5. 问题:一个苹果的重量是150克,如果一箱苹果有20个,那么一箱苹果的总重量是多少克?答案:一箱苹果的总重量可以通过将单个苹果的重量乘以苹果的数量来计算。
所以,总重量 = 150克/个× 20个 = 3000克。
6. 问题:一个工厂每天生产500个零件,如果一周工作5天,那么一周内工厂生产了多少个零件?答案:一周内工厂生产的零件数量可以通过将每天生产的零件数量乘以一周的工作天数来计算。
所以,一周内生产的零件数量 = 500个/天× 5天 = 2500个。
初一数学应用题10道及答案简单1.一列火车通过一座长300米的铁桥,完全通过所用的时间为30秒,完全在桥上的时间为10秒,邱火车的车长以及它的速度。
解:l+300=30v300-l=10vv=15m/sl=150m答:车长150m,速度15m/s。
2、某班同学去18千米的北山郊游。
只有一辆汽车,需分两组,甲组先乘车,乙组步行。
车行至A处,甲组下车步行,车返回接乙组,最后两组同时到达北山。
已知汽车速度是60km/h,步行速度是4km/h.求A点距北山的距离。
设甲的速度为x,乙的速度为y80x+80y=40080y-80x=400所以x=0 y=5(这道题时间为80秒与实际不符)3、设A点距北山的距离为x,车返回到乙组时,乙距出发点距离为y那么[x-4*(18-x-y)/60]/4=(18-y)/60y/4=(18-x)/60+(18-x-y)/60所以x=2 y=2A点距离北山为2km3. 牡丹杯足球赛11轮(即每个队均需比赛11场),胜一场得3分,平一场得一分,负一场得0分.国兴三高俱乐部队所胜场数是所负场数的4倍,结果共得25分,此次杯赛该球队胜\负\平各几场?设胜x场,负y场,则平11-x-y场x=4y3x+11-x-y=25x=8y=2胜8场,负2场,平1场4.课外活动中一些同学分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少了2组,问这些同学共有多少人?设原来有x组。
所以人数是8x(x-2)12=8xx=6共有48人。
5.在地表上方10千米高空有一条高速风带.假设有两架速度相同的飞机在这个风带飞行,其中一架飞机从A地飞往B地,距离是4000米,需要6.5时;同时另一架飞机从B地飞到A地,只花5.2时.问飞机和风的平均速度各是多少?设飞机的平均速度为xkm/h,风速为ykm/h。
由题意可知,从A地到B地逆风,从B地到A地顺风。
可列方程:x+y=4/5.2x-y=4/6.5解得:x=9/13,y=1/136.一支队伍以5千米/小时的速度行进,20分钟后,一通讯员打的以15千米/小时的速度追赶队伍,那他多少小时后追上队伍?5*(1/3)+5*X=15*Xx=1/66. 一收割机每天收割小麦12公顷,割完麦地的2/3后,效率提高到原来的5/4倍,因此比预定时间提早1天完成,问麦地共有多少公顷?设麦地有x公顷,因为已割完了2/3,所以还剩1/3,得方程:(1/3)x/12=(1/3)x/[12*(5/4)]+1化简得:(5/3)x=(4/3)x+60(1/3)x=60x=180所以麦地有180公顷.7.甲、乙两人按2:5的比例投资开办了一家公司,约定出去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,那么甲、乙两人分别应分得多少元?列【方程组】解答解:设每分为X2X+5X=140007X=14000X=20002X=40005X=10000所以甲分到4000元,乙分到10000元8.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的15%购买行李票.一名旅客带了35千克行李乘机,机票连同行李票共付1323元,求该旅客的机票票价.请列方程解应用题设票价为x元x+(35-20)*1.5%x=1323 x=1080(应该是每千克按1.5%收费,不是15%) 不可能收费这样高,如果这样高,计算结果不是整数,不符合机票现实中的收费,如果按15%,答案就是他们说的407,如果按1.5%,那答案就是我说的1080,是个整数,也符合现实情况.9.商店在销售二种售价一样的商品时,其中一件盈利25%,另一件亏损25%,卖这两件商品总的是盈利还是亏损?解:设这两件商品售价都为x元因为进价为,x/(1+25%)+x/(1-25%)=4/5x+4/3x=32/15x售价为,x+x=2x32/15x>2x 即进价>售价所以亏损10.一列火车通过一座长300米的铁桥,完全通过所用的时间为30秒,完全在桥上的时间为10秒,邱火车的车长以及它的速度。
初一数学应用题60题1. 某车厂生产了600辆汽车,其中三分之一是轿车,四分之一是SUV,其余是面包车。
请问生产了多少辆面包车?解析:轿车的数量为600辆×三分之一=200辆;SUV的数量为600辆×四分之一=150辆。
那么面包车的数量为600辆-200辆-150辆=250辆。
2. 小明买了某商品,原价为160元,打了八折,最后花了多少钱?解析:八折即打折8折,也就是原价×80%。
所以小明最终花的钱为160元×80%=128元。
3. 某班级共有40名同学,其中女生占总人数的四分之三,男生占总人数的几分之几?解析:女生人数为40名同学×四分之三=30人。
男生人数为40名同学-30人=10人。
所以男生占总人数的十分之一。
4. 甲乙两个工程队共修建了120米的路段,甲队修建了其中的三分之一,乙队修建了其中的五分之二。
请问甲队修建了多少米的路段?解析:甲队修建的路段长度为120米×三分之一=40米。
5. 某电商平台进行促销活动,某商品原价为160元,打了三折又减去20元,最后售价为多少?解析:先打三折即为原价×30%。
然后再减去20元。
所以最后的售价为160元×30%-20元=28元。
6. 小明去超市买了一袋米,重5千克,他拿出一半的重量煮饭吃了,还剩下多少克?解析:小明煮饭吃掉了一半的重量,即5千克的一半。
所以还剩下的重量为5千克的一半=2.5千克(或2500克)。
7. 甲乙两个人一起行走,甲每走30步,乙走5步。
假设甲走了180步,乙走了多少步?解析:由甲每走30步,乙走5步,可得出他们的步数比为30:5。
所以乙走的步数为180步÷30步×5步=30步。
8. 小明参加了一次考试,满分为100分,他得了85分,占了多少百分比?解析:小明得分占满分的百分比即为85分÷100分×100%=85%。
初一数学应用题练习一、相遇问题1.小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,几分钟后两人相遇?2.小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米?3.王强和赵文从相距2280米的两地出发相向而行,王强每分行60米,赵文每分行80米,王强出发3分钟后赵文出发,几分钟后两人相遇?4.两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每小时行40千米,乙车出发几小时两车相遇?5.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?6.甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。
7.甲乙二人从相距100千米的两地出发相向而行,甲先出发1小时,他们在乙出发4小时后相遇,已知甲比乙每小时多行2千米,求两人的速度。
8.AB两地相距900米。
甲乙二人同时从A点出发,同向而行,甲每分行70米,乙每分行50米,甲到达A点后马上返回与乙在途中相遇,两人从出发到相遇一共用了多少时间?9.甲乙两地相距640千米。
一辆客车和一辆货车同时从甲地出发,同向而行,客车每小时行46千米,货车每小时34千米,客车到达乙地后马上返回与货车在途中相遇,问从出发到相遇一共用了多少时间?1.乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100米/分,乙的速度是甲速度的32倍。
问(1)经过多少时间后两人首次相遇?(2)第二次相遇呢?2. 一条环形的跑道长800米,甲练习骑自行车平均每分钟行500米,乙练习赛跑,平均每分钟跑200米,两人同时同地出发。
(1)若两人背向而行,则他们经过多少时间首次相遇?(2)若两人同向而行,则他们经过多少时间首次相遇?3.张明每天去体育场晨练,都见到一位田径队的叔叔也在锻炼,两人沿400米跑道跑步,每次总是张明跑2圈的时间,叔叔跑3圈。
初一数学应用题题目背景初一的数学学习中,可以通过应用题来培养学生的逻辑思维能力和数学解决问题的能力。
本文将提供一些关于初一数学应用题的例子,帮助学生巩固所学的知识并应用到实际生活中。
题目一:购物计算在超市购物中,小明买了3袋饼干,每袋饼干价格为5元,他还买了2桶牛奶,每桶牛奶价格为8元。
如果小明支付了一张100元的钞票,他将会找回多少钱?解答过程首先计算小明购买饼干的总价,即 3 袋饼干 * 5 元/袋 = 15 元。
然后计算小明购买牛奶的总价,即 2 桶牛奶 * 8 元/桶 =16 元。
接下来,计算小明总共需要支付的金额,即 15 元 + 16 元 = 31 元。
由于小明支付了一张100元的钞票,需要找回的金额为 100 元 - 31 元 = 69 元。
所以,小明将会找回69元。
答案小明将会找回69元。
题目二:图书馆借书小华在图书馆借了3本书,每本书借阅费用是2元。
如果小华支付了一张10元的钞票,他将会找回多少钱?解答过程首先计算小华借书的总费用,即 3 本书 * 2 元/本 = 6 元。
接下来,计算小华总共需要支付的金额,即 6 元。
由于小华支付了一张10元的钞票,需要找回的金额为 10 元 - 6 元 = 4 元。
所以,小华将会找回4元。
答案小华将会找回4元。
题目三:公交车乘坐张明从家乘坐公交车去学校,车票价格为2元。
如果张明每周5天上学且每天来回一次,一个月的公交车费用是多少?解答过程首先计算张明每天的公交车费用,即 2 元/次。
然后计算张明每周上学的总费用,即 5 天/周 * 2 元/次 = 10 元/周。
接下来,计算一个月的公交车费用,即 10 元/周 * 4 周/月= 40 元/月。
所以,一个月的公交车费用是40元。
答案一个月的公交车费用是40元。
结论通过解答以上应用题,我们巩固了初一数学中的数学运算和应用能力。
这些题目涉及到购物计算、借书费用和公交车费用等实际生活问题,帮助我们将数学知识应用到日常生活中,提高了数学解决问题的能力。
初一数学应用题1.比例应用题:(1)小明去超市买牛奶,买了2瓶牛奶,共花费16元。
如果他再买4瓶牛奶,需要花费多少元?(2)某工厂生产1.2万个产品,需要使用10吨原材料。
如果要生产3.6万个产品,需要使用多少吨原材料?(3)某学校有400名学生,其中男生和女生的比例为2:3。
女生有多少人?2.空间几何应用题:(1)有一条长为20cm的直线段,在该直线段上取3个点,要求它们两两之间的距离都相等,这个距离是多少?(2)某地市政府要在一片草坪上建造一个圆形花坛,该草坪长40m,宽20m。
如果要建造一个直径为6m的圆形花坛,需要从草坪上割去多少面积?(3)一个圆形沙坑的直径为10m,深度为3m,每立方米的沙子的重量为1.5吨,这个沙坑里有多少吨沙?3.函数应用题:(1)一枚铜币直径是2.5cm,它的表面积是多少?(2)一张矩形桌子长2.4m,宽1.2m,它的表面积是多少?(3)一辆汽车行驶了200km,每小时的平均速度是80km/h,这辆汽车行驶了多长时间?4.相关问题应用题:(1)甲、乙两人从A地出发,相向而行,甲每小时走10km,乙每小时走15km。
如果A地离他们的相遇点有60km,他们相遇需要多长时间?(2)从A到B有60km,从B到C有40km,从C到D有80km,从D到E有100km。
如果一辆汽车从A出发,依次到达B、C、D、E,沿途行驶速度为每小时40km、60km、30km、50km,到达E需要多长时间?(3)一条小溪宽20m,A、B两点在河岸上相距40m。
一只鸟从A 点出发,先向河心飞行30m,然后沿河流方向飞行,最后在B点上岸。
如果这(3)一条小溪宽20m,A、B两点在河岸上相距40m。
一只鸟从A点出发,先向河心飞行30m,然后沿河流方向飞行,最后在B点上岸。
如果这只鸟飞行的速度是每秒10m,那么这只鸟从A点出发到B 点上岸所需要的时间是多少?5.概率应用题:(1)一枚骰子被投掷4次,每次所得点数相加。
初一数学10 道应用题一、行程问题1. 甲、乙两人分别从相距60 千米的A、B 两地同时出发,相向而行,甲每小时行8 千米,乙每小时行7 千米,问经过几小时两人相遇?-解析:设经过x 小时两人相遇。
根据路程=速度×时间,可列方程8x + 7x = 60,15x = 60,解得x = 4。
所以经过4 小时两人相遇。
二、工程问题2. 一项工程,甲单独做需要10 天完成,乙单独做需要15 天完成,两人合作需要几天完成?-解析:设两人合作需要x 天完成。
把这项工程的工作量看成单位“1”,甲每天的工作效率是1/10,乙每天的工作效率是1/15,可列方程(1/10 + 1/15)x = 1,通分后得(3/30 + 2/30)x = 1,5/30x = 1,1/6x = 1,解得x = 6。
所以两人合作需要6 天完成。
三、利润问题3. 某商品进价为80 元,按标价的八折出售,仍可获利20%,求该商品的标价是多少元?-解析:设该商品的标价为x 元。
售价为标价的八折即0.8x,利润=售价-进价,根据获利20%可列方程0.8x - 80 = 80×20%,0.8x - 80 = 16,0.8x = 96,解得x = 120。
所以该商品的标价是120 元。
四、年龄问题4. 今年父亲的年龄是儿子年龄的3 倍,5 年前父亲的年龄比儿子年龄的4 倍还大1 岁,求今年父子俩的年龄各是多少岁?-解析:设今年儿子的年龄为x 岁,则父亲的年龄为3x 岁。
5 年前儿子的年龄是x - 5 岁,父亲的年龄是3x - 5 岁,可列方程3x - 5 = 4(x - 5) + 1,3x - 5 = 4x - 20 + 1,3x - 5 = 4x - 19,4x - 3x = 19 - 5,解得x = 14。
则父亲的年龄为3×14 = 42 岁。
所以今年儿子14 岁,父亲42 岁。
五、数字问题5. 一个两位数,十位上的数字比个位上的数字小2,若这个两位数在40 至60 之间,求这个两位数。
数学初一应用题及答案数学初一应用题及答案导语:数学应用就是指单独的数量关系,构成的题目,没有涉及到真正实量的存在及关系。
下面由店铺为大家整理的数学初一应用题及答案,希望可以帮助到大家!数学初一应用题及答案篇11、为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。
若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?设总用电x度:[(x-140)*0.57+140*0.43]/x=0.50.57x-79.8+60.2=0.5x0.07x=19.6x=280再分步算: 140*0.43=60.2(280-140)*0.57=79.879.8+60.2=1402、某大商场家电部送货人员与销售人员人数之比为1:8。
今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。
结果送货人员与销售人数之比为2:5。
求这个商场家电部原来各有多少名送货人员和销售人员?设送货人员有X人,则销售人员为8X人。
(X+22)/(8X-22)=2/55*(X+22)=2*(8X-22)5X+110=16X-4411X=154X=148X=8*14=112这个商场家电部原来有14名送货人员,112名销售人员3、现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?设:增加x%90%*(1+x%)=1解得: x=1/9所以,销售量要比按原价销售时增加11.11%4、甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少?设甲商品原单价为X元,那么乙为100-X(1-10%)X+(1+5%)(100-X)=100(1+2%)结果X=20元甲100-20=80 乙5、甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。
列方程解应用题,是初中数学的重要内容之一。
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。
因此我们要努力学好这部分知识。
一、列方程解应用题的主要步骤:
1、认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系;
2、用字母表示题目中的未知数,并用这个字母和已知数一起组成表示各数量关系的代数式;
3、利用这些代数式列出反映某个等量关系的方程(注意所使用的单位一定要统一);
4、求出所列方程的解;
5、检验所求的解是否使方程成立,又能使应用题有意义,并写出答案。
二、对常见应用题的解法分析
1、和、差、倍、分问题;这类问题主要应搞清各量之间的关系,注意关键词语。
(1)倍数关系:通过关键词语"是几倍,增加几倍,增加到几倍,增加百分之几,增长率……"来体现。
(2)多少关系:通过关键词语"多、少、和、差、不足、剩余……"来体现。
例1、某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?
例2、旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?
2、等积变形问题:
"等积变形"是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。
例3、现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?
3、劳力调配问题:
这类问题要搞清人数的变化,常见题型有(1)既有调入又有调出。
(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。
例4、有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的,应从乙队调多少人到甲队?
例5、甲、乙两个工程队分别有188人和138人,现需要从两队抽出116人组成第三个队,并使甲、乙两队剩余人数之比为2:1,问应从甲、乙两队各抽出多少人?
例6、李明今年8岁,父亲是32岁,问几年以后父亲的年龄为李明的3倍。
4、比例分配问题:
这类问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
例7、甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?
5、数字问题:
要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c。
例8、一个2位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的和比这个2位数的大6,求这个2位数。
6、工程问题:
工程问题中的三个量及其关系为:工作总量=工作效率×工作时间
经常在题目中未给出工作总量时,设工作总量为单位1。
例9、一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
例10、一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?
7、行程问题:
[解题指导]
(1)行程问题中的三个基本量及其关系:路程=速度×时间。
(2)基本类型有
1)相遇问题;
2)追及问题;常见的还有:相背而行;行船问题;环形跑道问题。
(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
例11:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?
(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
例12:甲、乙二人同时从A地去往相距51千米的B地,甲骑车,乙步行,甲的速度比乙的速度快3倍还多1千米/时,甲到达B地后停留1 小时,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好6个小时,求二人速度各是多少?
例13:某船从A码头顺流而下到达B码头,然后逆流返回,到达A、B两码头之间的C码头,一共航行了7小时,已知此船在静水中的速度为7.5千米时,水流速度为2.5千米/时。
A、C两码头之间的航程为10千米,求A、B两码头之间的航程。
例14:环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度的3 倍,环城一周是20千米,求两个人的速度。
8、配套问题:
[解题指导]:这类问题的关键是找对配套的两类物体的数量关系。
例15:某车间有工人85人,平均每人每天可以加工大齿轮8个或小齿轮10个,又知1个大齿轮和三个小齿轮配为一套,问应如何安排劳力使生产的产品刚好成套?
9、其他实际应用问题:
[解题指导]这类问题的关键是理解所给问题中的实际关系
例16:银行定期壹年存款的年利率为2.5%,某人存入一年后本息922.5元,问存入银行的本金是多少元?
例17:某商品的进价为1600元,原售价为2200元因库存积压需降价出售,若每件商品仍想获得10%的利润需几折出售。
例18:已知甲、乙两种商品的原单价和为100元。
因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商
品的原单价各是多少?
注意:虽然我们分了9种类型,对应用题进行了研究,但实际生活中的问题是千变万化的,远不止这9类问题。
因此我们要想学好列方程解应用题,就要学会观察事物,关心日常生产生活中的各种问题,如市场经济问题等等,要会具体情况具体分析,灵活运用所学知识,认真审题,适当设元,寻找等量关系,从而列出方程,解出方程,使问题得解。