2018年高考理科数学考前集训:离散型随机变量及其分布限时规范训练(解析版
- 格式:docx
- 大小:41.90 KB
- 文档页数:8
专题20 随机变量及其散布列1.若是X 是一个离散型随机变量,那么以下命题中为假命题的是 ( ) A . X 取一个可能值的概率是非负实数 B . X 取所有可能值的概率之和为1C . X 取某两个可能值的概率等于别离取其中两个值的概率之和D . X 在某一范围内取值的概率大于它取那个范围内各个值的概率之和 【答案】D点睛:离散型随机变量的散布列的性质要紧有三方面的作用: (1)利用“总概率之和为1”能够求相关参数的取值范围或值;(2)利用“离散型随机变量在一范围内的概率等于它取那个范围内各个值的概率之和”求某些特定事件的概率; (3)能够依照性质判定所得散布列结果是不是正确.2.假设随机变量X 的概率散布如下表所示,那么表中的a 的值为 ( )X 1 2 3 4P12 16 16a A . 1 B . 2 C . 13 D . 16【答案】D 【解析】111112666a a +++=∴=,选D . 3.抛掷2颗骰子,所得点数之和ξ是一个随机变量,那么P (ξ≤4)等于 ( ) A .16 B . 13 C . 12 D . 23【答案】A 【解析】点数之和ξ可能取值有2,3,4,,12,因此P(ξ≤4)()()()12312343636366p p p ξξξ=+=+==++=,选A . 4.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上查验发觉是假钞,那么第2张也是假钞的概率为( ) A .119 B . 1718 C . 419 D . 217【答案】D【解析】设“抽到的两张至少一张假钞”为事件A “抽到的两张都是假钞”为事件B()()221552220201C C P A P AB C C ∴=-=,()()()252202152202171CP AB CP B ACP AC∴===-故答案选D5.设随机变量X的散布列为P(X=k)=23km⎛⎫⎪⎝⎭,k=1,2,3,那么m的值为 ( )A.1718B.2738C.1719D.2719【答案】B6.—个摊主在一旅行景点设摊,在不透明口袋中装入除颜色外无不同的2个白球和3个红球.游客向摊主付2元进行1次游戏.游戏规那么为:游客从口袋中随机摸出2个小球,假设摸出的小球同色,那么游客取得3元励;假设异色那么游客取得1元奖励.那么摊主从每次游戏中取得的利润(单位:元)的期望值是( )A. 0.2 B. 0.3 C. 0.4 D. 0.5【答案】A【解析】游客摸出的2个小球同色的概率为22232525C CC+=,因此摊主从每次游戏中取得的利润散布列为,因此23110.255EX=-⨯+⨯=7.已知随机变量iξ知足()1i iP pξ==,()01i iP pξ==-,1,2i=.假设12112p p<<<,那么()A.()()12E Eξξ<,()()12D Dξξ< B.()()12E Eξξ<,()()12D Dξξ>C.()()12E Eξξ>,()()12D Dξξ< D.()()12E Eξξ>,()()12D Dξξ>【答案】B【解析】随机变量散布为“两点散布”,因此(),1i i i i iE p D p pξξ==-(相当于ip的二次函数,对称轴为12),又因为12112p p<<<,因此()()12E Eξξ<,()()12D Dξξ>8.随机变量的散布列如下:X-1 0 1P a13b若3EX=,那么DX的值是()A .19 B . 29 C . 49 D . 59【答案】D 【解析】由题设可得2111,,3362a b b a a b +=-=⇒==, ()()221221()01,3339E X E X =⨯+⨯==所以由数学期望的计算公式可得,因此由随机变量的方差公式可得()()225()9DX E X E X =-=,应选答案D .9.已知随机变量X 服从正态散布()23,N σ,且()40.84P X ==,那么(24)P X <<=( ) A . 0.16 B . 0.32 C . 0.68 D . 0.84 【答案】C点睛:正态散布是典型的随机变量的概率散布之一,求解这种问题时先弄清楚其对称性,然后再依据题设条件解答所要解决的问题.求解此题时先依据其对称性求出()410.840.16P X >=-=,依照对称性可得()20.16P X <=,然后再运用对立事件的概率公式求出()()(24)14210.160.160.68P X P X P X <<=->-<=--=.10.已知随机变量X 的散布列为()13kP X k ==, 1,2,,k =⋯则()35P X ≤<等于( ) A . 316 B . 127 C . 13243 D . 481【答案】D【解析】∵()13k P X k ==, 1,2,,k =⋯,∴3411435343381P X P X P X ≤<==+==+=()()(),应选D . 点睛:此题考查离散型随机变量的散布列的应用,考查互斥事件的概率,是一个比较简单的散布列问题,这种题目若是显现那么是一个送分题目;依照随机变量的散布列,写出变量等于3,和变量等于4的概率,要求的概率包括两种情形这两种情形是互斥的,依照互斥事件的概率公式取得结果. 11.设随机变量X 的散布列为()()1,2,32iP X i i a===,那么()2P X ≥= ( ) A .16 B . 56 C . 13 D . 23【答案】B【解析】由概率和为1,可知1231222a a a ++=,解得3a =, ()P X 2≥= ()()23523666P X P X =+==+=选B .12.已知在10件产品中可能存在次品,从中抽取2件检查,第二品数为ξ,已知P (ξ=1)=,且该产品的次品率不超过40%,那么这10件产品的次品率为( )A . 10%B . 20%C . 30%D . 40% 【答案】B。
【三维设计】2018届高考数学 第十章第八节离散型随机变量的均值与方差课后练习 理 人教A 版一、选择题1.若随机变量X 的分布列如下表,则E (X )等于( )A.118B.19C.209D.920解析:由分布列的性质可得2x +3x +7x +2x +3x +x =1,∴x =118.∴E (X )=0×2x +1×3x+2×7x +3×2x +4×3x +5x =40x =209.答案:C2.(2018·潍坊模拟)设X 为随机变量,X ~B ⎝ ⎛⎭⎪⎫n ,13,若随机变量X 的数学期望E (X )=2,则P (X =2)等于( )A.1316 B.4243 C.13243D.80243解析:∵X ~B ⎝ ⎛⎭⎪⎫n ,13,∴E (X )=n 3=2.∴n =6. ∴P (X =2)=C 26⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫234=80243.答案:D3.已知随机变量X ~B (6,22),则P (-2≤X ≤5.5)=( ) A.78B.18C.6364D.3132解析:依题意,P (-2≤X ≤5.5)=P (X =0,1,2,3,4,5)=1-P (X =6)=1-C 66×(22)6=78. 答案:A4.已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的左侧.其中a ,b ,c ∈{-3,-2,-1,0,1,2,3},在这些抛物线中,若随机变量X =|a -b |的取值,则X 的数学期望E (X )=( )A.89B.35C.25D.13解析:对称轴在y 轴的左侧(a 与b 同号)的抛物线有2C 13C 13C 17=126条,X 的可能取值有0,1,2.P (X =0)=6×7126=13,P (X =1)=8×7126=49,P (X =2)=4×7126=29,E (X )=89. 答案:A5.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,a 、b 、c ∈(0,1),且无其他得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为( )A.148 B.124 C.112D.16解析:依题意得3a +2b +0×c =1,∵a >0,b >0,∴3a +2b ≥26ab ,即26ab ≤1,∴ab ≤124.当且仅当3a =2b 即a =25,b =35时等式成立.答案:B 二、填空题6.某射手射击所得环数ξ的分布列如下:已知ξ的期望E (ξ)=8.9,则y 的值为________.解析:依题意得⎩⎪⎨⎪⎧x +0.1+0.3+y =1,7x +0.8+2.7+10y =8.9,即⎩⎪⎨⎪⎧x +y =0.6,7x +10y =5.4,由此解得y =0.4.答案:0.47.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量X 表示选出的志愿者中女生的人数,则数学期望E (X )=________(结果用最简分数表示).解析:首先X ∈{0,1,2}. ∵P (X =0)=C 25C 7=1021,P (X =1)=C 12C 15C 27=1021,P (X =2)=C 22C 27=121.∴E (X )=0×1021+1×1021+2×121=1221=47.答案:47三、解答题8.某品牌汽车的4S 店,对最近100位采用分期付款的购车者进行了统计,统计结果如下表所示:已知分3期付款的频率为0.2,且4S 店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元.用η表示经销一辆汽车的利润.(1)若以频率作为概率,求事件A :“购买该品牌汽车的3位顾客中,至多有1位采用分3期付款”的概率P (A );(2)求η的分布列及其数学期望E (η).解:(1)由题意可知“购买该品牌汽车的3位顾客中有1位采用分3期付款”的概率为0.2,所以P (A )=0.83+C 13×0.2×(1-0.2)2=0.896.(2)由a100=0.2得a =20,∵40+20+a +10+b =100,∴b =10. 记分期付款的期数为ξ,依题意得:P (ξ=1)=40100=0.4,P (ξ=2)=20100=0.2,P (ξ=3)=20100=0.2,P (ξ=4)=10100=0.1,P (ξ=5)=10100=0.1. 由题意知η的可能取值为:1,1.5,2(单位:万元).P (η=1)=P (ξ=1)=0.4,P (η=1.5)=P (ξ=2)+P (ξ=3)=0.4;P (η=2)=P (ξ=4)+P (ξ=5)=0.1+0.1=0.2.∴η的分布列为:∴η的数学期望E (η)=1×0.4+1.5×0.4+2×0.2=1.4(万元).9.(2018·广州调研)某商店储存的50个灯泡中,甲厂生产的灯泡占60%,乙厂生产的灯泡占40%,甲厂生产的灯泡的一等品率是90%,乙厂生产的灯泡的一等品率是80%.(1)若从这50个灯泡中随机抽取出一个灯泡(每个灯泡被取出的机会均等),则它是甲厂生产的一等品的概率是多少?(2)若从这50个灯泡中随机抽取出两个灯泡(每个灯泡被取出的机会均等),这两个灯泡中是甲厂生产的一等品的个数记为ξ,求E (ξ)的值.解:(1)法一:设事件A 表示“甲厂生产的灯泡”,事件B 表示“灯泡为一等品”,依题意有P (A )=0.6,P (B |A )=0.9,根据条件概率计算公式得P (AB )=P (A )·P (B |A )=0.6×0.9=0.54.法二:该商店储存的50个灯泡中,甲厂生产的灯泡有50×60%=30个,乙厂生产的灯泡有50×40%=20个,其中是甲厂生产的一等品有30×90%=27个,故从这50个灯泡中随机抽取出一个灯泡,它是甲厂生产的一等品的概率为2750=0.54.(2)依题意,ξ的取值为0,1,2,P (ξ=0)=C 223C 250=2531 225,P (ξ=1)=C 127C 123C 250=6211 225,P (ξ=2)=C 227C 250=3511 225,∴ξ的分布列为∴E (ξ)=0×2531 225+1×6211 225+2×3511 225=1.18.10.(2018·冀州模拟)今天你低碳了吗?近来,国内网站流行一种名为“碳排放计算器”的软件,人们可以由此计算出自己每天的碳排放量.例如:家居用电的碳排放量(千克)=耗电度数×0.785,汽车的碳排放量(千克)=油耗公升数×0.785等.某班同学利用寒假在两个小区逐户进行了一次生活习惯是否符合低碳观念的调查.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”.这二族人数占各自小区总人数的比例P 数据如下:(1)如果甲、乙来自A 小区,丙、丁来自B 小区,求这4人中恰有2人是低碳族的概率; (2)A 小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后随机地从A 小区中任选25人,记ξ表示25个人中低碳族人数,求E (ξ).解:(1)记这4人中恰好有2人是低碳族为事件A ,P (A )=12×12×15×15+4×12×12×45×15+12×12×45×45=33100.(2)设A 小区有a 人,2周后非低碳族的概率P =a ×12-152a=825, 2周后低碳族的概率P =1-825=1725, 依题意ξ~B (25,1725),所以E (ξ)=25×1725=17.。
考点48 离散型随机变量及其分布列、离散型随机变量的均值与方差一、选择题1.(2018年浙江高考T7)设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时, ()A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小【命题意图】考查期望与方差的性质.【试题解析】选D.由分布列可知E(ξ)=0×+1×+2×=p+,所以方差D(ξ)=×+×+×=-p2+p+,所以D(ξ)是关于p的二次函数,开口向下,所以D(ξ)先增大后减小.二、解答题2.(本小题12分)(2018年北京高考理科·T17)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率.(2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率.(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“ξk=1”表示第k类电影得到人们喜欢,“ξk=0”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差Dξ1,Dξ2,Dξ3,Dξ4,Dξ5,Dξ6的大小关系.【命题意图】考查统计与概率知识中的古典概型,事件的运算,以及方差的计算,意在考查,培养学生的实际应用能力、逻辑推理能力,体现了数学抽象、数学建模、数学运算、数据分析的数学素养.【试题解析】(1)由表知,电影公司收集的电影部数为140+50+300+200+800+510=2000,获得好评的第四类电影部数为200×0.25=50,所以所求概率为=0.025.(2)记“从第四类电影中随机选取的1部获得好评”为事件A,记“从第五类电影中随机选取的1部获得好评”为事件B,则事件“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”可表示为A+B,由表知,P(A)=0.25,P(B)=0.2,所有电影是否获得好评相互独立,所以P()=1-P(A)=0.75,P()=1-P(B)=0.8,P(A+B)=P(A)+P(B)=P(A)P()+P()P(B)=0.25×0.8+0.75×0.2=0.35,即所求概率为0.35.(3)由表及已知,P(ξ1=1)=0.4,P(ξ1=0)=1-0.4=0.6,P(=1)=P(ξ1)=0.4,P(=0)=P(ξ1=0)=0.6,.4+0×0.6=0.4,E=0.4,所以EξE-(Eξ1)2=0.4-0.42=0.24.DξE-(Eξ2)2=0.2-0.22=0.16,同理,DξE-(Eξ3)2=0.15-0.152=0.1275,DξE-(Eξ4)2=0.25-0.252=0.1875.DξE-(Eξ5)2=0.2-0.22=0.16,DξE-(Eξ6)2=0.1-0.12=0.09,Dξ所以Dξ6<Dξ3<Dξ2=Dξ5<Dξ4<Dξ1.3.(本小题13分)(2018年北京高考文科·T17)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率.(2)随机选取1部电影,估计这部电影没有获得好评的概率.(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【命题意图】考查统计与概率知识中的古典概型、事件的运算、以及方差的计算,意在考查、培养学生的实际应用能力、逻辑推理能力,体现了数学抽象、数学建模、数学运算、数据分析的数学素养.【试题解析】(1)由表知,电影公司收集的电影部数为140+50+300+200 +800+510=2000,获得好评的第四类电影部数为200×0.25=50,所以所求概率为=0.025.(2)方法一:记“随机选取的1部电影没有获得好评”为事件A,由表知,没有获得好评的电影部数为140×(1-0.4)+50×(1-0.2)+300×(1-0.15)+200×(1-0.25)+800×(1-0.2)+510×(1-0.1)=1628,所以P(A)==0.814,即所求概率为0.814.方法二:记“随机选取的1部电影获得好评”为事件A,则“随机选取的1部电影没有获得好评”为事件,由表知,获得好评的电影部数为140×0.4+50×0.2+300×0.15+200×0.25 +800×0.2+510×0.1=372,所以P(A)==0.186,所以P()=1-P(A)=0.814,即所求概率为0.814.(3)由表及已知,第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,符合要求.4.(本小题满分13分)(2018年天津高考理科·T16)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(Ⅰ)应从甲、乙、丙三个部门的员工中分别抽取多少人?(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(ⅰ)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ⅱ)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.【命题意图】本小题主要考查随机抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力.【试题解析】(Ⅰ)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(ⅰ)随机变量X的所有可能取值为0,1,2,3.P(X=k)=(k=0,1,2,3).所以,随机变量X的分布列为随机变量X的数学期望E(X)=0×+1×+2×+3×=.(ⅱ)设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=B∪C,且B与C互斥,由(i)知,P(B)=P(X=2)=, P(C)=P(X=1)=,故P(A)=P(B∪C)=P(X=2)+P(X=1)=.所以,事件A发生的概率为.。
规范答题示例10 离散型随机变量的分布列典例10 (12分)2015年,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖.以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法.目前,国内青蒿人工种植发展迅速.调查表明,人工种植的青蒿的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x,y,z,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标ω=x +y+z的值评定人工种植的青蒿的长势等级:若ω≥4,则长势为一级;若2≤ω≤3,则长势为二级;若0≤ω≤1,则长势为三级.为了了解目前人工种植的青蒿的长势情况,研究人员随机抽取了10块青蒿人工种植地,得到如下结果:(1)在这10块青蒿人工种植地中任取两地,求这两地的空气湿度的指标z相同的概率;(2)从长势等级是一级的人工种植地中任取一块,其综合指标为m,从长势等级不是一级的人工种植地中任取一块,其综合指标为n,记随机变量X=m-n,求X的分布列及其期望.审题路线图(1)对事件进行分解―→求出从10块地中任取两块的方法总数―→求出空气湿度指标相同的方法总数―→利用古典概型求概率(2)确定随机变量X的所有取值―→计算X取各个值的概率―→写分布列―→求期望评分细则 (1)第(1)问中,列出空气湿度相同的情况给2分;计算概率只要式子正确给2分;(2)第(2)问中,列出长势等级的给2分,只要结果正确无过程不扣分;计算概率的式子给3分;分布列正确写出给1分.跟踪演练10 (2017·山东)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与期望E (X ). 解 (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M , 则P (M )=C 48C 510=518.(2)由题意知X 的可能取值为0,1,2,3,4,则 P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X的分布列为所以X的期望E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0+1×521+2×1021+3×521+4×142=2.。
第6讲 离散型随机变量及其分布列最新考纲 1.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;2.理解超几何分布及其导出过程,并能进行简单应用.知 识 梳 理1.离散型随机变量随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量. 2.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表的概率分布列. (2)离散型随机变量的分布列的性质:①p i ≥0(i =1,2,…,n );②p 1+p 2+…+p n =1 3.常见离散型随机变量的分布列(1)两点分布:若随机变量X 服从两点分布,其分布列为,其中p =P (X =1)(2)超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M≤N,n,M,N∈N*,称随机变量X服从超几何分布.1.判断正误(在括号内打“√”或“×”)(1)离散型随机变量的概率分布列中,各个概率之和可以小于1.( )(2)离散型随机变量的各个可能值表示的事件是彼此互斥的.( )(3)如果随机变量X的分布列由下表给出,则它服从两点分布.( )(4)从4名男演员和3名女演员中选出4名,其中女演员的人数X服从超几何分布.( )解析对于(1),离散型随机变量所有取值的并事件是必然事件,故各个概率之和等于1,故(1)不正确;对于(3),X的取值不是0,1,故不是两点分布,所以(3)不正确.答案(1)×(2)√(3)×(4)√2.袋中有3个白球、5个黑球,从中任取两个,可以作为随机变量的是( )A.至少取到1个白球B.至多取到1个白球C.取到白球的个数D.取到的球的个数解析选项A,B表述的都是随机事件,选项D是确定的值2,并不随机;选项C是随机变量,可能取值为0,1,2.答案 C3.(选修2-3P49A4改编)设随机变量X的分布列如下:则p 为( ) A.16B.13C.14D.112解析 由分布列的性质,112+16+13+16+p =1, ∴p =1-34=14.答案 C4.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么n =______. 解析 由于随机变量X 等可能取1,2,3,…,n .所以取到每个数的概率均为1n.∴P (X <4)=P (X =1)+P (X =2)+P (X =3)=3n=0.3,∴n =10.答案 105.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是( ) A.ξ=4 B.ξ=5 C.ξ=6D.ξ≤5解析 “放回五个红球”表示前五次摸到黑球,第六次摸到红球,故ξ=6. 答案 C6.从装有3个红球,2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X =1的概率为________.解析 P (X =1)=C 13C 12C 25=610=35.答案35考点一 离散型随机变量分布列的性质【例1】设离散型随机变量X的分布列为求:(1)2X+1(2)|X-1|的分布列.解由分布列的性质知:0.2+0.1+0.1+0.3+m=1,∴m=0.3.首先列表为(1)2X+1的分布列(2)|X-1|规律方法(1)此时要注意检验,以保证两个概率值均为非负数.(2)若X 是随机变量,则η=|X -1|等仍然是随机变量,求它的分布列可先求出相应随机变量的值,再根据互斥事件概率加法求对应的事件概率,进而写出分布列.【训练1】 (2017·丽水月考)设随机变量X 的概率分布列如下表,则P (|X -2|=1)=( )A.712B.2C.12D.16解析 由|X -2|=1得X =1或3,m =1-⎝ ⎛⎭⎪⎫16+14+13=14,∴P (|X -2|=1)=P (X=1)+P (X =3)=16+14=512.答案 C考点二 离散型随机变量的分布列【例2】 (2016·天津卷节选)某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列.解 (1)由已知,有P (A )=C 13C 14+C 23C 210=13.所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2.P (X =0)=C 23+C 23+C 24C 210=415, P (X =1)=C 13C 13+C 13C 14C 210=715,P(X=2)=C13C14C210=415.所以,随机变量X的分布列为规律方法(1)找出随机变量X的所有可能取值x i(i=1,2,3,…,n);(2)求出各取值的概率P(X=x i)=p i;(3)列成表格并用分布列的性质检验所求的分布列或某事件的概率是否正确. 提醒求离散型随机变量的分布列的关键是求随机变量所有取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.【训练2】某商店试销某种商品20天,获得如下数据:试销结束后(商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=14;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三超几何分布【例3】(2017·嘉兴模拟)某外语学校的一个社团中有7名同学,其中2人只会法语;2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.(1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X的分布列.解(1)设事件A:选派的三人中恰有2人会法语,则P(A)=C25C12C37=47.(2)依题意知X的取值为0,1,2,3,P(X=0)=C34C37=435,P(X=1)=C24C13C37=1835,P(X=2)=C14C23C37=1235,P(X=3)=C33C37=135,∴X的分布列为规律方法的个数.超几何分布的特征是:(1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考查某类个体数X的概率分布.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.【训练3】(2017·昆明调研)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于 2.5微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2013年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:量达到一级的概率;(2)从这10天的数据中任取3天数据,记X表示抽到PM2.5监测数据超标的天数,求X的分布列.解(1)记“从10天的PM2.5日均值监测数据中,随机抽出3天,恰有一天空气质量达到一级”为事件A,则P(A)=C13·C27C310=2140.(2)依据条件,X服从超几何分布,其中N=10,M=3,n=3,且随机变量X的可能取值为0,1,2,3.P(X=k)=C k3·C3-k7C310(k=0,1,2,3).∴P(X=0)=C03C37C310=724,P(X=1)=C13C27C310=2140,P(X=2)=C23C17C310=740,P(X=3)=C33C07C310=1120.因此X的分布列为[思想方法]1.对于随机变量X 的研究,需要了解随机变量取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X 的取值范围以及取这些值的概率.2.求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率. [易错防范]掌握离散型随机变量的分布列,须注意:(1)分布列的结构为两行,第一行为随机变量X 所有可能取得的值;第二行是对应于随机变量X 的值的事件发生的概率.看每一列,实际上是上为“事件”,下为“事件发生的概率”,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率. (2)要会根据分布列的两个性质来检验求得的分布列的正误.(3)超几何分布是一种常见的离散型随机变量的概率分布模型,要会根据问题特征去判断随机变量是否服从超几何分布,然后利用相关公式进行计算.基础巩固题组 (建议用时:40分钟)一、选择题1.某射手射击所得环数X 的分布列为A.0.28B.0.88C.0.79D.0.51解析 P (X >7)=P (X =8)+P (X =9)+P (X =10)=0.28+0.29+0.22=0.79.答案 C2.设X 是一个离散型随机变量,其分布列为:则q 的值为( ) A.1 B.32±336 C.32-336D.32+336解析由分布列的性质知⎩⎪⎨⎪⎧2-3q ≥0,q 2≥0,13+2-3q +q 2=1,解得q =32-336.答案 C3.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( ) A.0B.12C.13D.23解析 由已知得X 的所有可能取值为0,1, 且P (X =1)=2P (X =0),由P (X =1)+P (X =0)=1, 得P (X =0)=13.答案 C4.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C 47C 68C 1015的是( )A.P (X =2)B.P (X ≤2)C.P (X =4)D.P (X ≤4)解析X服从超几何分布P(X=k)=C k7C10-k8C1015,故k=4.答案 C5.从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是( )A.435B.635C.1235D.36343解析如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布问题,故所求概率为P=C23C14C37=1235.答案 C二、填空题6.(2017·金华调研)设离散型随机变量X的分布列为(1)则m=________(2)若随机变量Y=|X-2|,则P(Y=2)=________.解析由分布列的性质,知0.2+0.1+0.1+0.3+m=1,∴m=0.3.由Y=2,即|X-2|=2,得X=4或X=0,∴P(Y=2)=P(X=4或X=0)=P(X=4)+P(X=0)=0.3+0.2=0.5.答案(1)0.3 (2)0.57.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量X,则P(X≤6)=________.解析P(X≤6)=P(取到3只红球1只黑球)+P(取到4只红球)=C34C13C47+C44C47=1335.答案13 358.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,写出这两次取出白球数η的分布列为________.解析η的所有可能值为0,1,2.P(η=0)=C11C11C12C12=14,P(η=1)=C11C11×2C12C12=12,P(η=2)=C11C11C12C12=14.∴η的分布列为答案三、解答题9.(2017·浙江三市十二校联考)某高校一专业在一次自主招生中,对20名已经选拔入围的学生进行语言表达能力和逻辑思维能力测试,结果如下表:语言表达能力优秀或逻辑思维能力优秀的学生的概率为2 5 .(1)从参加测试的语言表达能力良好的学生中任意抽取2名,求其中至少有一名逻辑思维能力优秀的学生的概率;(2)从参加测试的20名学生中任意抽取2名,设语言表达能力优秀或逻辑思维能力优秀的学生人数为X,求随机变量X的分布列.解(1)用A表示“从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生”,∵语言表达能力优秀或逻辑思维能力优秀的学生共有(6+n)名,∴P(A)=6+n20=25,解得n=2,∴m=4,用B表示“从参加测试的语言表达能力良好的学生中任意抽取2名,其中至少有一名逻辑思维能力优秀的学生”,∴P(B)=1-C26C29=712.(2)随机变量X的可能取值为0,1,2.∵20名学生中,语言表达能力优秀或逻辑思维能力优秀的学生人数共有8名,∴P(X=0)=C212C220=3395,P(X=1)=C18C112C220=4895,P(X=2)=C28C220=1495,∴X的分布列为10.300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回地每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(1)求1名顾客摸球3次停止摸奖的概率;(2)记X 为1名顾客摸奖获得的奖金数额,随机变量X 的分布列. 解 (1)设“1名顾客摸球3次停止摸奖”为事件A , 则P (A )=A 23A 34=14,故1名顾客摸球3次停止摸球的概率为14.(2)随机变量X 的所有取值为0,5,10,15,20.P (X =0)=14,P (X =5)=2A 24=16,P (X =10)=1A 24+A 22A 34=16,P (X =15)=C 12·A 22A 34=16,P (X =20)=A 33A 44=14.所以,随机变量X 的分布列为(建议用时:25分钟)11.随机变量X 的分布列如下:其中a ,b ,c ) A.16B.13C.12D.23解析 ∵a ,b ,c 成等差数列,∴2b =a +c .又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.答案 D12.随机变量X 的概率分布规律为P (X =n )=a n (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝ ⎛⎭⎪⎫12<X <52的值为( )A.23B.34C.45D.56解析 因为P (X =n )=a n (n +1)(n =1,2,3,4),所以a 1×2+a 2×3+a 3×4+a 4×5=45a =1.∴a =54,故P ⎝ ⎛⎭⎪⎫12<X <52=P (X =1)+P (X =2)=12×54+16×54=56.答案 D13.(2017·石家庄调研)为检测某产品的质量,现抽取5件产品,测量产品中微量元素x ,y 的含量(单位:毫克),测量数据如下:. 现从上述5件产品中,随机抽取2件,则抽取的2件产品中优等品数X 的分布列为________.解析 5件抽测品中有2件优等品,则X 的可能取值为0,1,2.P (X =0)=C 23C 25=0.3,P (X =1)=C 13·C 12C 25=0.6,P (X =2)=C 22C 25=0.1.∴优等品数X 的分布列为答案14.盒内有大小相同的9个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球.(1)求取出的3个球中至少有1个红球的概率;(2)求取出的3个球得分之和恰为1分的概率;(3)设X为取出的3个球中白色球的个数,求X的分布列.解(1)P=1-C37C39=712.(2)记“取出1个红色球,2个白色球”为事件B,“取出2个红色球,1个黑色球”为事件C,则P(B+C)=P(B)+P(C)=C12C23C39+C22C14C39=542.(3)X可能的取值为0,1,2,3,X服从超几何分布,所以P(X=k)=C k3C3-k6C39,k=0,1,2,3.故P(X=0)=C36C39=521,P(X=1)=C13C26C39=1528,P(X=2)=C23C16C39=314,P(X=3)=C33C39=184.所以X的分布列为15.3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x ,y ,记X =|x -2|+|y -x |.(1)求随机变量X 的最大值,并求事件“X 取得最大值”的概率; (2)求随机变量X 的分布列.解 (1)由题意知,x ,y 可能的取值为1,2,3, 则|x -2|≤1,|y -x |≤2,所以X ≤3,且当x =1,y =3或x =3,y =1时,X =3. 因此,随机变量X 的最大值为3.而有放回地抽两张卡片的所有情况有3×3=9(种),所以P (X =3)=29.故随机变量X 的最大值为3,事件“X 取得最大值”的概率为29. (2)X 的所有取值为0,1,2,3.当X =0时,只有x =2,y =2这一种情况,当X =1时,有x =1,y =1或x =2,y =1或x =2,y =3或x =3,y =3四种情况,当X =2时,有x =1,y =2或x =3,y =2两种情况. 当X =3时,有x =1,y =3或x =3,y =1两种情况. 所以P (X =0)=19,P (X =1)=49,P (X =2)=29,P (X =3)=29.则随机变量X 的分布列为。
配餐作业(七十)离散型随机变量及其分布列(时间:40分钟)一、选择题1.设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)等于()1A.0 B.21 2C. D.3 3解析设X的分布列为:X 0 1P p 2p即“X=0”表示试验失败,“X=1”表示试验成功,设失败率为p,则成功率为2p。
∴1由p+2p=1,得p=,故选C。
3答案 C2.已知箱中装有4个白球和5个黑球,且规定:取出1个白球得2分,取出1个黑球得1 分。
现从该箱中任意(无放回,且每球取到的机会均等)取出3个球,则得分之和为5分的概率为()1 5A. B.21 425 5C. D.14 7解析由题意知,得分为5分只能是取2个白球和1个黑球,符合超几何分布,所以所求C24C15 5概率P==。
故选C。
C3914答案 C3.若随机变量X的分布列为X -2 -1 0 1 2 3P 0.1 0.2 0.2 0.3 0.1 0.1则当P(X<a)=0.8时,实数a的取值范围是()A.(-∞,2] B.[1,2]C.(1,2] D.(1,2)解析由随机变量X的分布列知:P(X<-1)=0.1,P(X<0)=0.3,P(X<1)=0.5,P(X<2)=0.8,则当P(X<a)=0.8时,实数a的取值范围是(1,2]。
故选C。
1答案 C4.已知随机变量 X 的概率分布列如下表:X 1 2 3 4 5 6 7 8 9 10P 2 3 2 32 2 33 2 34 2 35 2 36 2 37 2 38 2 39m 则 P (X =10)=( ) 2 2 A. B. 39 310 1 1 C. D. 39 3102 2 2 2解析 由题易知:P (X =1)+P (X =2)+…+P (X =10)=1⇒ + +…+ +m =1⇒m =1-3 32 39 3113[1-(3)9]2 21 1+ +…+ =1-2× =1-1- = ,故选 C 。
离散型随机变量的分布列、均值与方差【三年高考】1. 【2017浙江,8】已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1—p i ,i =1,2. 若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξB .1E()ξ<2E()ξ,1D()ξ>2D()ξC .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ 【答案】A【解析】试题分析:112212(),(),()()E p E p E E ξξξξ==∴<111222121212()(1),()(1),()()()(1)0D p p D p p D D p p p p ξξξξ=-=-∴-=---<,选A .2. 【2017山东,理18】在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I )求接受甲种心理暗示的志愿者中包含A 1但不包含1B 的频率。
(II )用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望EX .【解析】(I )记接受甲种心理暗示的志愿者中包含1A 但不包含1B 的事件为M ,则485105().18C P M C == (II)由题意知X 可取的值为:0,1,2,3,4.则565101(0),42C P X C ===41645105(1),21C C P X C === 326451010(2),21C C P X C ===23645105(3),21C C P X C ===14645101(4),42C C P X C ===因此X 的分布列为X 的数学期望是0(0)1(1)2(2)3(3)4(4)EX P X P X P X P X P X =⨯=+⨯=+⨯=+⨯=+⨯==151******** 2.4221212142⨯+⨯+⨯+⨯+⨯= 3.【2017课标3,理18】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【解析】(1)由题意知,X 所有的可能取值为200,300,500,由表格数据知()2162000.290P X +===,()363000.490P X ===,()25745000.490P X ++===.因此X 的分布列为⑵由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200500n ≤≤ 当300500n ≤≤时,若最高气温不低于25,则642Y n n n =-= ,若最高气温位于区间[)20,25,则()63002300412002Y n n n =⨯+--=-;若最高气温低于20,则()6200220048002Y n n n =⨯+--=- ;因此()()20.4120020.48002 0.26400.4EY n n n n =⨯+-⨯+-⨯=- .当200300n <≤时, 若最高气温不低于20,则642Y n n n =-= ;若最高气温低于20,则()6200220048002Y n n n =⨯+--=- ;因此()()20.40.480020.2160 1.2EY n n n =⨯++-⨯=+ .所以n =300时,Y 的数学期望达到最大值,最大值为520元.4.【2017北京,理17】为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(Ⅱ)从图中A ,B ,C ,D 四人中随机.选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望E (ξ);(Ⅲ)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)【解析】(Ⅰ)由图知,在服药的50名患者中,指标y 的值小于60的有15人,所以从服药的50名患者中随机选出一人,此人指标y 的值小于60的概率为150.350=. (Ⅱ)由图知,A,B,C,D 四人中,指标x 的值大于1.7的有2人:A 和C.所以ξ的所有可能取值为0,1,2.21122222222444C C C C 121(0),(1),(2)C 6C 3C 6P P P ξξξ=========.所以ξ的分布列为故ξ的期望()0121636E ξ=⨯+⨯+⨯=. (Ⅲ)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据的方差. 5.【2017天津,理16】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234. (Ⅰ)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.(Ⅱ)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为(1)(0,1)(1,0)(0)(1)(1)(0)P Y Z P Y Z P Y Z P Y P Z P Y P Z +====+=====+== 1111111142424448=⨯+⨯=.所以,这2辆车共遇到1个红灯的概率为1148. 6.【2016年高考四川理数】同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是 .【答案】32【解析】同时抛掷两枚质地均匀的硬币,可能的结果有(正正),(正反),(反正),(反反),所以在1次试验中成功次数ξ的取值为0,1,2,其中111(0),(1),(2),424P P P ξξξ======在1次试验中成功的概率为113(1)424P ξ≥=+=,所以在2次试验中成功次数X 的概率为12313(1)448P X C ==⨯⨯=,239(2)()416P X ===,393128162EX =⨯+⨯= 7.【2016高考新课标1卷】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?【解析】(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而04.02.02.0)16(=⨯==X P ;16.04.02.02)17(=⨯⨯==X P ;24.04.04.02.02.02)18(=⨯+⨯⨯==X P ;24.02.04.022.02.02)19(=⨯⨯+⨯⨯==X P ;2.02.02.04.02.02)20(=⨯+⨯⨯==X P ;08.02.02.02)21(=⨯⨯==X P ; 04.02.02.0)22(=⨯==X P .所以X 的分布列为(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19.(Ⅲ)记Y 表示2台机器在购买易损零件上所需的费用(单位:元).当19=n 时,08.0)500220019(2.0)50020019(68.020019⨯⨯+⨯+⨯+⨯+⨯⨯=EY 404004.0)500320019(=⨯⨯+⨯+. 当20=n 时,04.0)500220020(08.0)50020020(88.020020⨯⨯+⨯+⨯+⨯+⨯⨯=EY 4080=.可知当19=n 时所需费用的期望值小于20=n 时所需费用的期望值,故应选19=n .8.【2016高考新课标2理数】某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值.(Ⅲ)记续保人本年度的保费为X ,则X 的分布列为0.850.300.15 1.250.20 1.50.20 1.750.1020.05 1.23EX a a a a a a a =⨯+⨯+⨯+⨯+⨯+⨯=,因此续保人本年度的平均保费与基本保费的比值为1.23.9.【2016高考天津理数】某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,.现从这10人中随机选出2人作为该组代表参加座谈会. (I )设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(II )设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.【解析】:()I 由已知,有()1123442101,3C C C P A C +==所以,事件A 发生的概率为13. ()∏随机变量X 的所有可能取值为0,1,2.()2223342100C C C P X C ++==415=,()111133342107115C CC C P X C +===,()11342104215C C P X C ===.所以,随机变量X 分布列为 随机变量X 的数学期望()4740121151515E X =⨯+⨯+⨯=. 10.【2015高考山东,理19】若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得1-分;若能被10整除,得1分.(I )写出所有个位数字是5的“三位递增数” ;(II )若甲参加活动,求甲得分X 的分布列和数学期望EX.11.【2015高考天津,理16】为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(I)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”求事件A 发生的概率;(II)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.【解析】(I)由已知,有22222333486()35C C C C P A C +==,所以事件A 发生的概率为635. (II)随机变量X 的所有可能取值为1,2,3,4,()45348(1,2,3,4)k k C C P X k k C -=== 所以随机变量X 的分布列为所以随机变量X 的数学期望()1331512341477142E X =⨯+⨯+⨯+⨯=12.【2015高考四川,理17】某市A,B 两所中学的学生组队参加辩论赛,A 中学推荐3名男生,2名女生,B 中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队(1)求A 中学至少有1名学生入选代表队的概率.(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 得分布列和数学期望.【解析】(1)由题意,参加集训的男女生各有6名.参赛学生全从B 中抽取(等价于A 中没有学生入选代表队)的概率为333433661100C C C C =.因此,A 中学至少1名学生入选的概率为1991100100-=. (2)根据题意,X 的可能取值为1,2,3.,1333461(1)5C C P X C ===,2233463(2)5C C P X C ===,3133461(3)5C C P X C ===,所以X 的分布列为:因此,X 的期望为131()1232555E X =⨯+⨯+⨯=. 【2017考试大纲】 ( 1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.(2)理解超几何分布及其导出过程,并能进行简单的应用.(3)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.【三年高考命题回顾】纵观前三年各地高考试题, 概率与统计问题是每年高考考试的重点,离散型随机变量的分布列、均值与方差问题是高考经常考的知识点,且本部分题多为解答题.【2018年高考复习建议与高考命题预测】由前三年的高考命题形式可以看出 , 离散型随机变量的均值与方差是高考的热点题型,以解答题为主,也有选择、填空题,属中档题,常与排列组合概率等知识综合命题,解答题往往与统计问题综合在一起,如以直方图或茎叶图提供问题的背景信息,在同一个问题中同时考查概率与统计的知识,第二问主要考查分布列、均值与方差问题,特别是离散型随机变量的分布列、均值与方差是高考的重点,解答题考查得较为全面,常常和概率、平均数等知识结合在一起,考查学生应用知识解决问题的能力.根据这几年高考试题预测2018年高考,离散型随机变量的分布列与期望仍然是考查的热点,同时应注意和概率、平均数、分布列,期望,二项分布,正态分布等知识的结合.【2018年高考考点定位】本节主要有离散型随机变量的分布列,超几何分布,数学期望,方差等基本公式的应用,‘试题多为课本例题,习题拓展加工的基础题或中档题.只要我们理解和掌握五个概率公式及其应用,夯实基础,借助排列组合知识和化归转化思想方法,就能顺利解答高考概率与统计试题. 最多的概率与统计问题的分值占整个卷面分值的12%,且本部分题多为中低档题.从而可以看出近几年高考中概率与统计所占地位的重要性.【考点1】离散型随机变量的分布列【备考知识梳理】1.离散型随机变量的分布列(1)随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母X ,Y ,ξ,η等表示.(2)离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是随机变量,a b ηξ=+,其中,a b 是常数,则η也是随机变量.2.常见离散型随机变量的分布列(1)两点分布:若随机变量X 服从两点分布,即其分布列为其中01p <<,则称离散型随机变量X 服从参数为p 的两点分布.其中()1p P X ==称为成功概率.(2)超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X k =}发生的概率为()k n k M N M n N C C P X k C --==,0,1,2,,k m =,其中{}min ,m M n =,且,,,,n N M N n M N N *≤≤∈,称分布列为超几何分布列.(3)设离散型随机变量可能取得值为1,2,…,i ,…n ,取每一个值i (2,,n )的概率为()i i PX x p ==,则称表为随机变量X 的概率分布列,简称X 的分布列.有时为了表达简单,也用等式()i i P X x p ==,1,2,,i n =表示X 的分布列.分布列的两个性质:①0i p ≥,1,2,,i n =;②121n p p p +++=.【规律方法技巧】 1. 求分布列的三种方法(1)由统计数据得到离散型随机变量的分布列;(1)可设出随机变量Y ,并确定随机变量的所有可能取值作为第一行数据;(2)由统计数据利用事件发生的频率近似地表示该事件的概率作为第二行数据.由统计数据得到分布列可帮助我们更好理解分布列的作用和意义.(2)由古典概型求出离散型随机变量的分布列;求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.而超几何分布就是此类问题中的一种.(3)由互斥事件的概率、相互独立事件同时发生的概率及n 次独立重复试验有k 次发生的概率求离散型随机变量的分布列. 2. 求离散型随机变量分布列的步骤(1)找出随机变量X 的所有可能取值x i (i =1,2,3,…,n ); (2)求出各取值的概率P (X =x i )=p i ;(3)列成表格并用分布列的性质检验所求的分布列或某事件的概率是否正确. 3. 解答离散型随机变量的分布列及相关问题的一般思路 (1)明确随机变量可能取哪些值.(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值. (3)根据分布列和期望、方差公式求解.注意 解题中要善于透过问题的实际背景发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题.【考点针对训练】1.【2017届黑龙江虎林一中高三月考三】随机变量X的分布列为则)A【答案】B2.【2017届安徽省宣城市高三第二次调研】某校在高二年级开展了体育分项教学活动,将体育课分为大球(包括篮球、排球、足球)、小球(包括乒乓球、羽毛球)、田径、体操四大项(以下简称四大项,并且按照这个顺序).为体现公平,学校规定时间让学生在电脑上选课,据初步统计,在全年级980名同学中,有意申报四大项的人数之比为3:2:1:1,而实际上由于受多方面条件影响,最终确定的四大项人数必须控制在2:1:3:1,选课不成功的同学由电脑自动调剂到田径类.(Ⅰ)随机抽取一名同学,求该同学选课成功(未被调剂)的概率;(Ⅱ)某小组有五名同学,有意申报四大项的人数分别为2、1、1、1,记最终确定到田径类的人数为X,求X的分布列及数学期望EX.【解析】(Ⅱ)X的所有可能取值为1,2,3,4.分布列为:【考点2】离散型随机变量的期望与方差 【备考知识梳理】 1.均值若离散型随机变量X 的分布列为称1122i i n n E X x p x p x p x p =+++++为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.若Y aX b =+,其中,a b 为常数,则Y 也是随机变量,且()()E aX b aE X b +=+. 若X 服从两点分布,则()E X p =; 若(),XB n p ,则()E X np =.2.方差若离散型随机变量X 的分布列为则()i x E X -描述了i x (1,2,,i n =)相对于均值()E X 的偏离程度,而()()()21ni i i D X x E X p ==-∑为这些偏离程度的加权平均,刻画了随机变量X 与其均值()E X 的平均偏离程度.称()D X 为随机变量X 的方差,X 的标准差.若Y aX b =+,其中,a b 为常数,则Y 也是随机变量,且()()2D aX b a D X +=.若X 服从两点分布,则()()1D X p p =-. 若(),XB n p ,则()()1D X np p =-.【规律方法技巧】.1. 求离散型随机变量均值、方差的基本方法(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数a b ηξ=+的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)如能分析所给随机变量是服从常用的分布(如两点分布、二项分布等),可直接利用它们的均值、方差公式求解.2. 求离散型随机变量均值的步骤(1)理解随机变量X 的意义,写出X 可能取得的全部值;(2)求X 的每个值的概率;(3)写出X 的分布列;(4)由均值定义求出()E X .3. 六条性质:(1) ()E C C = (C 为常数);(2) ()()E aX b aE X b +=+ (,a b 为常数);(3) ()()()1212E X X E X E X +=+;(4)如果12,X X 相互独立,则()()()1212E X X E X E X ⋅=⋅(5) ()()()()22D XE XE X =-;(6) ()()2D aX b a D X +=4. 均值与方差性质的应用若X 是随机变量,则()f X η=一般仍是随机变量,在求η的期望和方差时,熟练应用期望和方差的性质,可以避免再求η的分布列带来的繁琐运算. 【考点针对训练】1.【浙江省嘉兴市第一中学2017届高三适应性考试】随机变量X 的分布列如下表,且E (X )=2,则D (2X -3)=( ) A. 2 B. 3 C. 4 D. 5 【答案】C当a 增大时,( )A.()E ξ增大,()D ξ增大B.()E ξ减小,()D ξ增大C.()E ξ增大,()D ξ减小D.()E ξ减小 ,()D ξ减小 【答案】B.减小,()D ξ增大,故选B.【应试技巧点拨】1.解答离散型随机变量的分布列及相关问题的一般思路 (1)明确随机变量可能取哪些值.(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值. (3)根据分布列和期望、方差公式求解.注意 解题中要善于透过问题的实际背景发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题. 2.求离散型随机变量分布列的步骤:()1要确定随机变量ξ的可能取值有哪些.明确取每个值所表示的意义;()2分清概率类型,计算ξ取得每一个值时的概率(取球、抽取产品等问题还要注意是放回抽样还是不放回抽样;()3列表对应,给出分布列,并用分布列的性质验证.3.几种常见的分布列的求法()1取球、投骰子、抽取产品等问题的概率分布,关键是概率的计算.所用方法主要有划归法、数形结合法、对应法等对于取球、抽取产品等问题,还要注意是放回抽样还是不放回抽样.()2射击问题:若是一人连续射击,且限制在n 次射击中发生k 次,则往往与二项分布联系起来;若是首次命中所需射击的次数,则它服从几何分布,若是多人射击问题,一般利用相互独立事件同时发生的概率进行计算.()3对于有些问题,它的随机变量的选取与所问问题的关系不是很清楚,此时要仔细审题,明确题中的含义,恰当地选取随机变量,构造模型,进行求解.1.【河北省石家庄2017届高三三模】在—次实验中,同时抛掷4枚均匀的硬币16次,设4枚硬币正好出现3枚正面向上,1枚反面向上的次数为ξ,则ξ的方差是()A. 3B. 4C. 1D.【答案】A【解析】抛掷4枚均匀的硬币1次,正好出现3枚正面向上,1枚反面向上的概率为所以ξ的方差是,选A.2.【2017届四川凉山州高三一诊】设袋中有两个红球一个黑球,除颜色不同,其他均相同,现有放回的抽取,每次抽取一个,记下颜色后放回袋中,连续摸三次,X表示三次中红球被D X=()摸中的次数,每个小球被抽取的几率相同,每次抽取相对立,则方差()A.2 B.1 C【答案】CC.3. 【2017届河南新乡一中高三模拟】同时拋掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是()A.20 B.25 C. 30 D.40【答案】B【解析】5枚硬币正好出现2枚正面向上,3枚反面向上的概率为由题意可知ξ服从,故本题选B.4. 【2017届内蒙古杭锦后旗高三摸拟】一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c,())1,0(a,已知他投篮一次得分的数学期望是2,则b,,∈cA【答案】D5. 【2017届黑龙江大庆高三考前训练一】体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为()0p p ≠,发球次数为X ,若X 的数学期望() 1.75E X >,则p 的取值范围是( ) A. 70,12⎛⎫ ⎪⎝⎭ B. 7,112⎛⎫ ⎪⎝⎭ C. 10,2⎛⎫ ⎪⎝⎭ D. 1,12⎛⎫⎪⎝⎭【答案】C【解析】根据题意,学生发球此时为1即一次发球成功的概率为p ,即()1P X p ==,发球次数为2即二次发球成功的概率为()()21P X p p ==-,发球次数为3的概率为()()231P X p ==-,则期望()()()22213133E X p p p p p p =+-+-=-+,依题意有() 1.75E X >,即233 1.75p p -+>,解得52p >或12p <,结合p 的实际意义,可得102p <<,故选C . 6. 【2017届浙江省温州市高三第二次模拟】设离散型随机变量的分布列为则的充要条件是( ) A.B.C.D.【答案】C【解析】由题设及数学期望的公式可得,则的充要条件是。
课时跟踪检测 (六十三) 离散型随机变量及其分布列一抓基础,多练小题做到眼疾手快 1.某射击选手射击环数的分布列为若射击不小于9环为优秀,其射击一次的优秀率为( ) A .30% B .40% C .60%D .70% 解析:选B 由分布列的性质得a +b =1-0.3-0.3=0.4,故射击一次的优秀率为40%,故选B.2.若随机变量X 的分布列为则当P (X <a )=0.8时,实数a 的取值范围是( ) A .(-∞,2] B .[1,2] C .(1,2]D .(1,2)解析:选C 由随机变量X 的分布列知:P (X <-1)=0.1,P (X <0)=0.3,P (X <1)=0.5,P (X <2)=0.8,则当P (X <a )=0.8时,实数a 的取值范围是(1,2].3.从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是( )A.435B.635 C.1235D.36343解析:选C 如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布问题,故所求概率为P =C 23C 14C 37=1235.4.一个均匀小正方体的六个面中,三个面上标有数字0,两个面上标有数字1,一个面上标有数字2.将这个小正方体抛掷2次,则向上的数之积X 的分布列为________.解析:随机变量X 的可能取值为0,1,2,4,P (X =0)=34,P (X =1)=19,P (X =2)=19,P (X=4)=136,所以分布列为答案:5.设随机变量X的概率分布列为则P(|X-3|=1)=________.解析:根据概率分布列的性质得出:13+m+14+16=1,得m=1 4,随机变量X的概率分布列为所以P(|X-3|=1)=P(4)+P(2)=5 12.答案:5 12二保高考,全练题型做到高考达标1.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为X,则表示“放回5个红球”事件的是()A.X=4 B.X=5C.X=6 D.X≤5解析:选C事件“放回5个红球”表示前5次摸到黑球,且第6次摸到红球,所以X =6.2.设随机变量X 的分布列为P (X =k )=a ⎝⎛⎭⎫13k,k =1,2,3,则a 的值为( ) A .1 B.913C.1113D.2713解析:选D 因为随机变量X 的分布列为 P (X =k )=a ⎝⎛⎭⎫13k (k =1,2,3),所以根据分布列的性质有a ×13+a ⎝⎛⎭⎫132+a ⎝⎛⎭⎫133=1,所以a ⎝⎛⎭⎫13+19+127=a ×1327=1, 所以a =2713.3.设随机变量Y 的分布列为则“32≤Y ≤72”的概率为( )A.14B.12C.34D.23 解析:选C 依题意知,14+m +14=1,则m =12.故P ⎝⎛⎭⎫32≤Y ≤72=P (Y =2)+P (Y =3)=12+14=34. 4.已知离散型随机变量X 的分布列为则P (X ∈Z)=( ) A .0.9 B .0.8 C .0.7D .0.6 解析:选A 由分布列性质得0.5+1-2q +13q =1,解得q =0.3,∴P (X ∈Z)=P (X =0)+P (X =1) =0.5+1-2×0.3=0.9,故选A.5.(2017·泰安模拟)若P (X ≤x 2)=1-β,P (X ≥x 1)=1-α,其中x 1<x 2,则P (x 1≤X ≤x 2)等于( )A .(1-α)(1-β)B .1-(α+β)C .1-α(1-β)D .1-β(1-α)解析:选B 显然P (X >x 2)=β,P (X <x 1)=α.由概率分布列的性质可知P (x 1≤X ≤x 2)=1-P (X >x 2)-P (X <x 1)=1-α-β.6.从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中女生人数不超过1人的概率是________.解析:设所选女生人数为X ,则X 服从超几何分布, 其中N =6,M =2,n =3,则P (X ≤1)=P (X =0)+P (X =1)=C 02C 34C 36+C 12C 24C 36=45.答案:457.已知随机变量X 的概率分别为p 1,p 2,p 3,且依次成等差数列,则公差d 的取值范围是________.解析:由已知得p 1=p 2-d ,p 3=p 2+d ,由分布列性质知 (p 2-d )+p 2+(p 2+d )=1,得p 2=13,又⎩⎨⎧13-d ≥0,13+d ≥0,得-13≤d ≤13.答案:⎣⎡⎦⎤-13,13 8.口袋中有5只球,编号为1,2,3,4,5,从中任意取3只球,以X 表示取出的球的最大号码,则X 的分布列为________.解析:由题意知X 的取值为3,4,5.又P (X =3)=1C 35=110, P (X =4)=C 23C 35=310,P (X =5)=C 24C 35=35.∴随机变量X 的分布列为答案:9.有编号为1,2,3,…,n 的n 个学生,入坐编号为1,2,3,…,n 的n 个座位,每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为X ,已知X =2时,共有6种坐法.(1)求n 的值.(2)求随机变量X 的概率分布列. 解:(1)因为当X =2时,有C 2n 种坐法, 所以C 2n =6,即n (n -1)2=6, n 2-n -12=0,解得n =4或n =-3(舍去),所以n =4. (2)因为学生所坐的座位号与该生的编号不同的学生人数为X , 由题意知X 的可能取值是0,2,3,4, 所以P (X =0)=1A 44=124, P (X =2)=C 24×1A 44=624=14,P (X =3)=C 34×2A 44=824=13,P (X =4)=1-124-14-13=38, 所以X 的概率分布列为:10.口袋中有n (n ∈N *)个白球,3个红球,依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X ,已知P (X =2)=730,求: (1)n 的值; (2)X 的分布列.解:(1)由P (X =2)=730,知C 13C 1n +3×C 1n C 1n +2=730,∴90n =7(n +2)(n +3). 解得n =7⎝⎛⎭⎫n =67舍去.(2)由题意知X 的可能取值是1,2,3,4,且P (X =1)=C 17C 110=710,P (X =2)=C 13C 110×C 17C 19=730,P (X =3)=C 13C 110×C 12C 19×C 17C 18=7120,P (X =4)=C 13C 110×C 12C 19×C 11C 18×C 17C 17=1120.∴X 的分布列为:三上台阶,自主选做志在冲刺名校1.(2017·衡阳模拟)一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了X 个白球,下列概率等于(n -m )A 2mA 3n的是( )A .P (X =3)B .P (X ≥2)C .P (X ≤3)D .P (X =2)解析:选D 依题意知,(n -m )A 2mA 3n是取了3次,所以取出白球应为2个. 2.甲、乙两人为了响应政府“节能减排”的号召,决定各购置一辆纯电动汽车.经了解目前市场上销售的主流纯电动汽车,按行驶里程数R (单位:公里)可分为三类车型,A :80≤R <150,B :150≤R <250,C :R ≥250.甲从A ,B ,C 三类车型中挑选,乙从B ,C 两类车型中挑选,甲、乙二人选择各类车型的概率如下表:若甲、乙都选C 类车型的概率为310. (1)求p ,q 的值.(2)求甲、乙选择不同车型的概率.(3)某市对购买纯电动汽车进行补贴,补贴标准如下表:记甲、乙两人购车所获得的财政补贴和为X ,求X 的分布列.解:(1)由题意可知⎩⎨⎧34q =310,p +q +15=1,解得p =25,q =25.(2)设“甲、乙选择不同车型”为事件A , 则P (A )=15+25×14+25×34=35,所以甲、乙选择不同车型的概率是35.(3)X 可能取值为7,8,9,10. P (X =7)=15×14=120,P (X =8)=15×34+25×14=14,P (X =9)=25×14+25×34=25,P (X =10)=25×34=310.所以X 的分布列为:。
2018年高考数学讲练测【新课标版理】【讲】第十二章概率与统计第04节离散型随机变量及其分布【考纲解读】考点考纲内容五年统计分析预测离散型随机变量及其分布1。
理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.2.理解超几何分布及其导出过程,并能进行简单应用..2015课标22016课标12017课标2离散型随机变量的分布列仍旧是2018年考试重点.备考重点:以生产、采购,销售,利润等为背景的分布列问题【知识清单】1。
离散型随机变量的概念和性质(1)离散型随机变量随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量.(2)离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X =x i)=p i,则表(2)离散型随机变量的分布列的性质:①p i≥0(i=1,2,…,n);②p1+p2+…+p n=1.对点练习1.袋中有大小相同的3只钢球,分别标有1、2、3三个号码,有放回的依次取出2个球,设两个球号码之和为随机变量X,则X所有可能值的个数是()A。
9 B。
8 C. 6 D。
5【答案】D【解析】根据题意,分析可得,这是有放回抽样,号码之和可能的情况为: 23456、、、、,共5种,故选D 。
2.若离散型随机变量ξ的概率分布列如下表所示,则a 的值为( )ξ1-1P41a -23a a +A. 13B 。
2-C. 13或2-D.12【答案】A2。
常见离散型随机变量的分布列 (1)两点分布若随机变量X 服从两点分布,其分布列为X 0 1P1-pp其中p =P (X =1)(2)超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=错误!,k=0,1,2,…,m,其中m=min错误!,且n≤N,M≤N,n,M,N∈N*,称随机变量X服从超几何分布。
命题角度3.1 离散型随机变量的分布列与期望、方差1.某印刷厂的打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每台新机随机购买第一盒墨150元,优惠0元;再每多买一盒墨都要在原优惠基础上多优惠一元,即第一盒墨没有优惠,第二盒墨优惠一元,第三盒墨优惠2元,……,依此类推,每台新机最多可随新机购买25盒墨.平时购买墨盒按零售每盒200元.以这十台打印机消耗墨盒数的频率代替一台打印机消耗墨盒数发生的概率,记ξ表示两台打印机5年消耗的墨盒数.(1)求ξ的分布列;(2)若在购买两台新机时,每台机随机购买23盒墨,求这两台打印机正常使用五年在消耗墨盒上所需费用的期望.【答案】(1) ξ的分布列为(2) 这两台打印机正常使用五年所需购买墨盒的费用的期望为6614元.故ξ的分布列为(2)记y 表示在题设条件下,购买2台新机使用五年在消耗墨盒上所需的费用(单位:元) 若在购买两台新机时,每台机随机购买23盒墨,则需付款2223150462230163942⨯⎛⎫⨯-⨯⨯+⨯= ⎪⎝⎭则()()126176639463942006394220010025255025Ey ⎛⎫=⨯++++⨯++⨯⨯⎪⎝⎭()()216394320063944200661425100++⨯⨯++⨯⨯= 答:这两台打印机正常使用五年所需购买墨盒的费用的期望为6614元.2.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视. 为此贵阳市建立了公共自行车服务系统,市民凭本人二代身份证到自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20积分,当积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下: ①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分; ③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过1小时的概率分别是0.4和0.5;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.3.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望()E ξ. 【答案】(1)甲、乙两人所扣积分相同的概率为0.36,(2)ξ的数学期望() 1.5E ξ=.【解析】试题分析:(1)先确定甲、乙两人所扣积分相同事件取法:扣0分、扣1分及扣2分,再根据相互独立事件概率乘法公式及互斥事件概率加法公式得所求概率,(2)先确定随机变量取法,再分别求对应概率,列表可得分布列,最后根据数学期望公式求期望.(Ⅱ)ξ的可能取值为: 01234,,,,, ()()()1100.2P P A P B ξ===,()()()()()122110.40.30.40.50.32P P A P B P A P B ξ==+=⨯+⨯=,()()()()()()()13223120.40.20.40.30.20.50.3P P A P B P A P B P A P B ξ==++=⨯+⨯+⨯=, ()()()()()233230.40.20.20.30.14P P A P B P A P B ξ==+=⨯+⨯=, ()()()3340.20.20.04P P A P B ξ===⨯=,所以ξ的分布列为:ξξ的数学期望()00.210.3220.330.1440.04 1.5E ξ=⨯+⨯+⨯+⨯+⨯=.答:甲、乙两人所扣积分相同的概率为0.36, ξ的数学期望() 1.5E ξ=.3.已知6只小白鼠有1只被病毒感染,需要通过对其化验病毒DNA 来确定是否感染.下面是两种化验方案:方案甲:逐个化验,直到能确定感染为止.方案乙:将6只分为两组,每组三个,并将它们混合在一起化验,若存在病毒DNA ,则表明感染在这三只当中,然后逐个化验,直到确定感染为止;若结果不含病毒DNA ,则在另外一组中逐个进行化验. (1)求依据方案乙所需化验恰好为2次的概率.(2)首次化验化验费为10元,第二次化验化验费为8元,第三次及其以后每次化验费都是6元,列出方案甲所需化验费用的分布列,并估计用方案甲平均需要体验费多少元? 【答案】(1)13;(2)分布列见解析, 773.试题解析:(2)设方案甲化验的次数为ξ,则ξ可能的取值为1,2,3,4,5,对应的化验费用为η元,则()()11106P P ξη====, ()()511218656P P ξη====⨯=, ()()54113246546P P ξη====⨯⨯=, ()()5431143065436P P ξη====⨯⨯⨯=,()()5432153665433P P ξη====⨯⨯⨯=则其化验费用η的分布列为所以1111177 1018243036666633Eη=⨯+⨯+⨯+⨯+⨯=(元).所以甲方案平均需要化验费773元4.某保险公司针对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金.保险公司把企业的所有岗位共分为、、三类工种,从事三类工种的人数分布比例如图,根据历史数据统计出三类工种的赔付频率如下表(并以此估计赔付频率).对于、、三类工种职工每人每年保费分别为元,元,元,出险后的赔偿金额分别为100万元,100万元,50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.(Ⅰ)若保险公司要求利润的期望不低于保费的20%,试确定保费、所要满足的条件;(Ⅱ)现有如下两个方案供企业选择;方案1:企业不与保险公司合作,企业自行拿出与保险提供的等额的赔偿金额赔付给出险职工;方案2:企业于保险公司合作,企业负责职工保费的60%,职工个人负责保费的40%,出险后赔偿金由保险公司赔付.若企业选择翻翻2的支出(不包括职工支出)低于选择方案1的支出期望,求保费、所要满足的条件,并判断企业是否可与保险公司合作.(若企业选择方案2的支出低于选择方案1的支出期望,且与(Ⅰ)中保险公司所提条件不矛盾,则企业可与保险公司合作.)【答案】(Ⅰ)元;(Ⅱ)企业有可能与保险公司合作.试题解析:(Ⅰ)设工种,,职工的每份保单保险公司的效益为随机变量,,,则,,的分布列为保险公司期望收益,,.根据要求.解得,所以每张保单的保费需要满足元.结果与(Ⅰ)不冲突,所以企业有可能与保险公司合作.5.如图,小华和小明两个小伙伴在一起做游戏,他们通过划拳(剪刀、石头、布)比赛决胜谁首先登上第3个台阶,他们规定从平地开始,每次划拳赢的一方登上一级台阶,输的一方原地不动,平局时两个人都上一级台阶,如果一方连续两次赢,那么他将额外获得一次上一级台阶的奖励,除非已经登上第3个台阶,当有任何一方登上第3个台阶时,游戏结束,记此时两个小伙伴划拳的次数为X .(1)求游戏结束时小华在第2个台阶的概率; (2)求X 的分布列和数学期望. 【答案】(1)50243(2)()25181E X =试题解析:解:(1)易知对于每次划拳比赛基本事件共有339⨯=个,其中小华赢(或输)包含三个基本事件上,他们平局也为三个基本事件,不妨设事件“第()*i i N ∈次划拳小华赢”为i A ;事件“第i 次划拳小华平”为i B ;事件“第i 次划拳小华输”为i C ,所以()()()3193i i i P A P B P C ====. 因为游戏结束时小华在第2个台阶,所以这包含两种可能的情况:第一种:小华在第1个台阶,并且小明在第2个台阶,最后一次划拳小华平;其概率为()()()()()()212122124781p A P B P C P B P C P A P B =+=, 第二种:小华在第2个台阶,并且小明也在第2个台阶,最后一次划拳小华输,其概率为()()()()()()()()()()()()3221233123421234529243p P B P B P C A P A P B P C P C A P A P C P A P C P C =++=所以游戏结束时小华在第2个台阶的概率为127295081243243p p p =+=+=. (2)依题可知X 的可能取值为2、3、4、5,()()()()()4123412522381P X P A P C P A P C ⎛⎫===⨯= ⎪⎝⎭,()()()2121222239P X P A P A ⎛⎫===⨯= ⎪⎝⎭,()()()()()()()()()()123123123322P X P A P B P A P B P A P A P B P B P B ==++ ()()()()()()()()()()()()12312312312322213227P A P B P B P B P A P B P B P B P A P C P A P A ++++=()()()()224152381P X P X P X P X ==-=-=-==, 所以X 的分布列为:所以X 的数学期望为:()2132222512345927818181E X =⨯+⨯+⨯+⨯=.6.为吸引顾客,某公司在商场举办电子游戏活动.对于,A B 两种游戏,每种游戏玩一次均会出现两种结果,而且每次游戏的结果相互独立,具体规则如下:玩一次游戏A ,若绿灯闪亮,获得50分,若绿灯不闪亮,则扣除10分(即获得10-分),绿灯闪亮的概率为12;玩一次游戏B ,若出现音乐,获得60分,若没有出现音乐,则扣除20分(即获得20-分),出现音乐的概率为25.玩多次游戏后累计积分达到130分可以兑换奖品.(1)记X 为玩游戏A 和B 各一次所得的总分,求随机变量X 的分布列和数学期望; (2)记某人玩5次游戏B ,求该人能兑换奖品的概率. 【答案】(1)详见解析;(2)9923125.试题解析:(1)随机变量X 的所有可能取值为110,50,30,30-,分别对应以下四种情况: ①玩游戏A ,绿灯闪亮,且玩游戏B ,出现音乐; ②玩游戏A ,绿灯不闪亮,且玩游戏B ,出现音乐; ③玩游戏A ,绿灯闪亮,且玩游戏B ,没有出现音乐; ④玩游戏A ,绿灯不闪亮,且玩游戏B ,没有出现音乐, 所以()121110255P X ==⨯=, ()121501255P X ⎛⎫==-⨯= ⎪⎝⎭, ()1233012510P X ⎛⎫==⨯-= ⎪⎝⎭, ()12330112510P X ⎛⎫⎛⎫=-=-⨯-= ⎪ ⎪⎝⎭⎝⎭,即X 的分布列为113311050303032551010EX =⨯+⨯+⨯-⨯=.7.教育学家分析发现加强语文乐队理解训练与提高数学应用题得分率有关,某校兴趣小组为了验证这个结论,从该校选择甲乙两个同轨班级进行试验,其中甲班加强阅读理解训练,乙班常规教学无额外训练,一段时间后进行数学应用题测试,统计数据情况如下面的22⨯列联表(单位:人)(1)能够据此判断有97.5%把握热内加强语文阅读训练与提高数学应用题得分率有关?(2)经过多次测试后,小明正确解答一道数学应用题所用的时间在5—7分钟,小刚正确解得一道数学应用题所用的时间在6—8分钟,现小明、小刚同时独立解答同一道数学应用题,求小刚比小明现正确解答完的概率;(3)现从乙班成绩优秀的8名同学中任意抽取两人,并对他们点答题情况进行全程研究,记A 、B 两人中被抽到的人数为X ,求X 的分布列及数学期望E (X ).【答案】(1)见解析; (2)18;(3)见解析.试题解析:(1)由表中数据得2K 的观测值()250221288505.556 5.024********9k ⨯⨯-⨯==≈>⨯⨯⨯ 所以根据统计有97.5%的把握认为加强语文阅读理解训练与提高数学应用题得分率有关.(2)设小明和小刚解答这道数学应用题的时间分别为x y 、分钟, 则基本事件满足的区域为57{68x y ≤≤≤≤ (如图所示)设事件A 为“小刚比小明先解答完此题” 则满足的区域为x y >∴由几何概型()11112228P A ⨯⨯==⨯ 即小刚比小明先解答完此题的概率为18. (3)X 可能取值为0,1,2, ()15028P X ==, ()1231287P X ===, ()1228P X ==X 的分布列为:()1512110+1+22828282E X ∴=⨯⨯⨯=. 8.某市卫生防疫部门为了控制某种病毒的传染,提供了批号分别为1,2,3,4,5的五批疫苗,供全市所辖的,,A B C 三个区市民注射,每个区均能从中任选其中一个批号的疫苗接种.(1)求三个区注射的疫苗批号中恰好有两个区相同的概率;(2)记,,A B C 三个区选择的疫苗批号的中位数为X ,求 X 的分布列及期望. 【答案】(1)1225;(2)详见解析.试题解析:(1) P ( 三个区注射的疫苗批号恰好两个区相同)= 222532312525C C A ⋅⋅=.(2) 设三个区选择的疫苗批号的中位数为X 所有可能取值为1,2,3,4,5.()()2213333333141413311,251255125C C C A P X P X +⋅+⋅+⋅======,()()2113213322333333141437313,451255125C C C A C C A P X P X +⋅+⋅⋅+⋅+⋅======, ()233141355125C P X +⋅===. X即X 的期望: 1331373113123453125125125125125EX =⨯+⨯+⨯+⨯+⨯=. 9.交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a 元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(Ⅰ)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, 950a =,记X 为某同学家里的一辆该品牌车在第四年续保时的费用,求X 的分布列与数学期望;(数学期望值保留到个位数字) (Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至少有一辆事故车的概率; ②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值. 【答案】(Ⅰ)见解析;(Ⅱ)①2027,②见解析.试题解析:(Ⅰ)由题意可知X 的可能取值为0.9,0.8,0.7,,1.1,1.3,a a a a a a 由统计数据可知:()()()1110.9,0.8,,6123P X a P X a P X a ======()()111.1, 1.3,412P X a P X a ====X所以11111111.9113050.90.80.7 1.1 1.3942.6121234121212a EX a a a a a a =⨯+⨯+⨯+⨯+⨯+⨯==≈ (Ⅱ)①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故车的概率为1,3三辆车中至少有一辆事故车的概率为321311220133327P C ⎛⎫⎛⎫=-+⋅⋅=⎪ ⎪⎝⎭⎝⎭ ②Y 为该销售购进并销售一辆二手车的利润, Y 的可能取值为5000,10000.- Y所以125000100005000.33EY =-⨯+⨯= 所以该销售商一次购进100辆该品牌车龄已满三年的二手车获得利润的期望值为10050EY ⨯=万元.10.为了研究学生的数学核素养与抽象(能力指标)、推理(能力指标)、建模(能力指标)的相关性,并将它们各自量化为1、2、3三个等级,再用综合指标的值评定学生的数学核心素养;若,则数学核心素养为一级;若,则数学核心素养为二级;若,则数学核心素养为三级,为了了解某校学生的数学核素养,调查人员随机访问了某校10名学生,得到如下结果:(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为,从数学核心素养等级不是一级的学生中任取一人,其综合指标为,记随机变量,求随机变量的分布列及其数学期望. 【答案】(1)(2)(2) 由题可知,数学核心素养一级:,数学核心素养不是一级的:;的可能取值为1,2,3,4,5. 具体如下:指标(2)由题可知,数学核心素养一级:,数学核心素养不是一级的:;的可能取值为1,2,3,4,5.∴.。
2018年那高考理科数学考前集训:离散型随机变量及其分布限时规范训练一、选择题1.先后掷一枚质地均匀的骰子(骰子的六个面上分别标有1,2,3,4,5,6个点)两次,落在水平桌面后,记正面朝上的点数分别为x ,y ,设事件A 为“x +y 为偶数”,事件B 为“x ,y 中有偶数且x ≠y ”,则概率P (B |A )等于( ) A.13 B.12 C.16D.14解析:由题意可得P (A )=3×3+3×36×6=12,P (AB )=3×26×6=16,则P (B |A )=P (AB )P (A )=1612=13,故选A. 答案:A2.小明准备参加电工资格证考试,先后进行理论考试和操作考试两个环节,每个环节各有2次考试机会.在理论考试环节,若第1次考试通过,则直接进入操作考试;若第1次未通过,则进行第2次考试,第2次通过后进入操作考试环节,第2次未通过则直接被淘汰.在操作考试环节,若第1次考试通过,则直接获得证书;若第1次未通过,则进行第2次考试,第2次通过后获得证书,第2次未通过则被淘汰.若小明每次理论考试通过的概率为34,每次操作考试通过的概率为23,并且每次考试相互独立,则小明本次电工考试中,共参加3次考试的概率是( ) A.13 B.38 C.23D.34 解析:由题意得参加3次考试包括第一次理论考试通过且第一次操作考试不通过和第一次理论考试不通过且第二次理论考试通过且第一次操作考试通过两种情况,所以所求概率为34×13+14×34×23=38,故选B. 答案:B3.口袋内放有大小相同的2个红球和1个白球,有放回地每次摸取一个球,定义数列{a n }为a n =⎩⎨⎧-1,第n 次摸到红球,1,第n 次摸到白球.如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( ) A .C 27⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫135B .C 37⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫234C .C 47⎝ ⎛⎭⎪⎫134⎝ ⎛⎭⎪⎫233 D .C 57⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫235解析:由题意S 7=3知共摸球七次,只有两次摸到红球,由于每次摸球的结果之间没有影响,摸到红球的概率是23,摸到白球的概率是13,故只有两次摸到红球的概率是C 27⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫135,故选A. 答案:A4.若随机变量X ~N (μ,σ2)(σ>0),则有如下结论:P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4,P (μ-3σ<X ≤μ+3σ)=0.997 4.高三(1)班有48名同学,一次数学考试的成绩服从正态分布,平均分为120,方差为100,理论上说在130分以上人数约为( ) A .32 B .24 C .16D .8解析:因为数学成绩服从正态分布N (120,102),则P (|x -120|>10)=1-P (|x -120|≤10)=0.317 4,由正态曲线的对称性知在130分以上的概率是P (|x -120|>10)的一半,所以人数约为12×0.317 4×48≈8,故选D. 答案:D5.随机变量X 的分布列如下:其中a ,b ,c 成等差数列.若E (X )=13,则D (X )的值是( ) A.49 B.59 C.23D.95解析:a +b +c =1,又∵2b =a +c ,故b =13,a +c =23.由E (X )=13得13=-a +c ,故a =16,c =12.D (X )=⎝ ⎛⎭⎪⎫-1-132×16+⎝ ⎛⎭⎪⎫0-132×13+⎝ ⎛⎭⎪⎫1-132×12=59,故选B.答案:B6.(2017·厦门模拟)某种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X ,则X 的数学期望为( ) A .100 B .200 C .300D .400解析:将“没有发芽的种子数”记为ξ,则ξ=1,2,3,…,1 000,由题意可知ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100,又因为X =2ξ,所以E (X )=2E (ξ)=200,故选B. 答案:B7.一个人将编号为1,2,3,4的四个小球随机放入编号为1,2,3,4的四个盒子中,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数记为ξ,则ξ的期望值为( ) A.12 B.23 C .1D .2解析:将四个不同小球放入四个不同盒子,每个盒子放一个小球,共有A 44种不同放法,放对的个数ξ可取的值有0,1,2,4.其中P (ξ=0)=9A 44=38,P (ξ=1)=C 14×2A 44=13,P (ξ=2)=C 24A 44=14,P (ξ=4)=1A 44=124,E (ξ)=0×38+1×13+2×14+4×124=1,故选C. 答案:C8.已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的左侧.其中a ,b ,c ∈{-3,-2,-1,0,1,2,3},在这些抛物线中,若随机变量X =|a -b |,则X 的数学期望E (X )=( ) A.89 B.35 C.25D.13解析:对称轴在y 轴的左侧(a 与b 同号)的抛物线有2C 13C 13C 17=126条,X 的可能取值有0,1,2.P (X =0)=6×7126=13,P (X =1)=8×7126=49,P (X =2)=4×7126=29,E (X )=89,故选A. 答案:A 二、填空题9.(2017·高考全国卷Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =__________. 解析:由题意得X ~B (100,0.02), ∴DX =100×0.02×(1-0.02)=1.96. 答案:1.9610.(2017·哈师大附中模拟)某少年体校田径队招收短跑运动员,前来参加100米项目测试的有120人,他们的测试成绩X (秒)近似服从正态分布N (15,σ2),已知P (X >17)=0.1,P (X ≤14)= 0.25,则测试成绩X (秒)位于[13,14]的人数大约有________人.解析:P (X <13)=P (X >17)=0.1,则P (13≤X ≤14)=P (X ≤14)-P (X <13)=0.15,则120人中成绩位于[13,14]的人数大约为0.15×120=18. 答案:1811.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为________.附:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.682 6, P (μ-2σ<X ≤μ+2σ)=0.954 4.解析:由P (-1<X ≤1)=0.682 6,得P (0<X ≤1)=0.341 3,则阴影部分的面积为0.341 3,故估计落入阴影部分的点的个数为10 000×0.341 31×1=3 413. 答案:3 41312.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是__________. 解析:此试验满足二项分布,其中p =34,所以在2次试验中成功次数X 的均值为E (X )=np =2×34=32. 答案:32 三、解答题13.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14、16;1小时以上且不超过2小时离开的概率分别为12、23;两人滑雪时间都不会超过3小时. (1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E (ξ).解析:(1)若两人所付费用相同,相同的费用可能是0,40,80元. 两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13, 两人都付80元的概率为 P 3=⎝ ⎛⎭⎪⎫1-14-12×⎝ ⎛⎭⎪⎫1-16-23=14×16=124. 则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512. (2)设甲、乙所付费用之和为ξ,则ξ的所有可能取值为0,40,80,120,160. P (ξ=0)=14×16=124, P (ξ=40)=14×23+12×16=14, P (ξ=80)=14×16+12×23+14×16=512, P (ξ=120)=12×16+14×23=14, P (ξ=160)=14×16=124. 所以ξ的分布列为E (ξ)=0×124+40×14+80×512+120×14+160×124=80.14.(2017·高考山东卷)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望EX . 解析:(1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M ,则P (M )=C 48C 510=518.(2)由题意知X 可取的值为0,1,2,3,4,则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X 的分布列为X 的数学期望EX =0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0+1×521+2×1021+3×521+4×142=2.15.甲、乙两名运动员进行2016里约奥运会选拔赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为12,乙获胜的概率为12,各局比赛结果相互独立. (1)求甲在3局以内(含3局)赢得比赛的概率; (2)记X 为比赛决出胜负时的总局数,求X 的分布列.解析:(1)用A 表示“甲在3局以内(含3局)赢得比赛”,A K 表示第K 局甲获胜,B K 表示第K 局乙获胜,则P (A K )=12,P (B K )=12,K =1,2,3,4,5, 则P (A )=P (A 1A 2)+P (B 1A 2A 3)=12×12+12×12×12=38. (2)X 的可能取值为2,3,4,5,P (X =2)=P (A 1A 2)+P (B 1B 2)=12×12+12×12=12,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=12×12×12+12×12×12=14,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=12×12×12×12+12×12×12×12=18,P (X =5)=P (A 1B 2A 3B 4A 5)+P (B 1A 2B 3A 4B 5)+P (A 1B 2A 3B 4B 5)+P (B 1A 2B 3A 4A 5)=4×12×12×12×12×12=18. 故X 的分布列为。