2013广东省东海中学高二物理教案3.3《探究安培力》
- 格式:doc
- 大小:83.50 KB
- 文档页数:7
高中物理3-3探究安培力(2)教案粤教版必修3高中物理 3-3探究安培力(2)教案粤教版必修3[教学目标](一)知识目标1、知道什么是安培力,知道电流方向与磁场方向垂直时,安培力的大小为.2、会用左手定则熟练地判定安培力的方向3、理解磁感应强度B的定义及单位.4、知道用磁感线的疏密可以形象直观地反映磁感应强度的大小.5、知道什么叫匀强磁场,知道匀强磁场的磁感线的分布情况.(二)能力目标1、通过探究安培力方向的实验,培养学生探究能力和空间想象能力.2、通过探究安培力大小的实验,培养学生利用控制变量法总结归纳物理规律的能力.(三)情感目标通过实验探究,让学生体会科学发现的过程,激发学生对物理的学习兴趣,鼓励学生平时要具有用于探索的勇气和精神。
[重点与难点]重点:对磁感应强度的理解.安培力大小的计算和方向判断.难点:理解磁感应强度的概念.磁场方向、电流方向和安培力方向三者的关系。
[课时安排]1课时[教学用具]铁架台、三个相同的蹄形磁铁、电源、电键、导线.[教学步骤]引入新课:教师: 磁场的基本性质是什么?学生:回顾前面学习的内容,得出磁场的基本性质是磁场的基本性质是对放入其中的磁体或电流有力的作用。
教师:在磁场的基本性质里,其中磁场对电流的作用力称为安培力。
(引入安培力概念)一、探究安培力的方向1、实验与探究(电流垂直磁场)实物演示:①电流垂直纸面向里,磁场方向向下。
②电流垂直纸面向里,磁场方向向上。
学生:观察以上实验,得出现象(电流垂直纸面向里,磁场方向向下,安培力水平向左;电流垂直纸面向里,磁场方向向上,安培力水平向右)教师:课件重复演示以上两个实验,然后根据实验现象让学生讨论安培力方向与磁场方向是否有关,最后得出结论(安培力方向与磁场方向有关)教师:先课件演示“③电流垂直纸面向外,磁场方向向上”的实验,让学生观察出此时安培力水平向左的现象,然后再实物演示进行验证,接着比较实验②、③,让学生讨论安培力方向与电流方向是否有关,最后得出结论(安培力方向与电流方向有关)学生讨论与交流:安培力F的方向跟磁场方向、电流方向之间到底有什么关系?结论:安培力既垂直与磁场方向,也垂直与电流方向。
《探究安培力》教案2一、教学内容本节课的教学内容来自于高中物理教材《物理》的第十章“电磁学”的第二节“安培力”。
本节课的主要内容包括:安培力的定义、安培力的计算公式、安培力的方向、安培力的大小与电流、磁场、导线长度和导线与磁场方向的关系等方面的知识。
二、教学目标1. 让学生理解安培力的概念,掌握安培力的计算公式和方向规律。
2. 培养学生运用安培力知识解决实际问题的能力。
3. 引导学生通过实验探究安培力的产生和变化规律,提高学生的实验操作能力和观察能力。
三、教学难点与重点重点:安培力的定义、安培力的计算公式、安培力的方向。
难点:安培力的大小与电流、磁场、导线长度和导线与磁场方向的关系。
四、教具与学具准备教具:多媒体教学设备、实验器材(导线、电流表、磁场发生器、小车等)。
学具:学生实验手册、笔、计算器。
五、教学过程1. 实践情景引入:让学生观察实验器材,引导他们思考:当电流通过导线时,导线周围是否存在力的作用?这个力是如何产生的?2. 知识讲解:介绍安培力的定义、安培力的计算公式、安培力的方向。
通过示例和动画演示,让学生直观地理解安培力的概念和计算方法。
3. 实验探究:让学生分组进行实验,观察安培力的方向和大小与电流、磁场、导线长度和导线与磁场方向的关系。
引导学生通过实验数据分析安培力的变化规律。
4. 例题讲解:运用安培力知识解决实际问题,如:如何计算通电导线在磁场中受到的安培力?如何确定导线与磁场方向的关系?5. 随堂练习:让学生独立完成练习题,巩固所学知识。
6. 板书设计:板书安培力的计算公式、方向规律和大小与电流、磁场、导线长度和导线与磁场方向的关系。
7. 作业设计题目1:计算一段长为L、电流为I、置于磁场中且与磁场方向垂直的导线受到的安培力大小。
答案:F = BIL题目2:判断一段长为L、电流为I、与磁场方向成θ角的导线受到的安培力大小是否与θ有关。
答案:是的,安培力大小与θ有关,当θ=90°时,F = BIL;当θ≠90°时,F = BILsinθ六、教学评价通过课堂讲解、实验操作、练习题和作业,评价学生对安培力的掌握程度。
《探究安培力》教案1一、教学内容本节课选自高中物理教材《电磁学》第四章第二节“安培力的计算”。
详细内容包括:安培力定律的推导,安培力的大小计算,以及左手定则的应用。
二、教学目标1. 了解安培力定律的发现过程,理解安培力定律的内容及其适用条件。
2. 学会使用左手定则判断安培力的方向,掌握安培力大小的计算方法。
3. 能够运用安培力知识解决实际问题,提高学生分析问题和解决问题的能力。
三、教学难点与重点重点:安培力的大小计算和左手定则的应用。
难点:安培力方向的理解和运用。
四、教具与学具准备1. 教具:电流表、磁铁、导线、电源、演示用安培力实验装置。
2. 学具:电流表、磁铁、导线、电源、计算器。
五、教学过程1. 实践情景引入:演示电流在磁场中受到力的作用,引导学生思考电流与磁场之间的关系。
2. 例题讲解:讲解安培力定律的推导过程,引导学生理解安培力定律的内容。
3. 随堂练习:让学生根据安培力定律计算给定电流和磁场下的安培力大小,并使用左手定则判断方向。
4. 讲解左手定则的应用,让学生通过实际操作加深理解。
5. 分析安培力在生活中的应用,如电动机、发电机等。
六、板书设计1. 安培力定律的推导过程。
2. 安培力大小计算公式:F = BILsinθ。
3. 左手定则的内容及应用。
七、作业设计1. 作业题目:计算给定电流和磁场下的安培力大小和方向。
答案:根据安培力定律和左手定则进行计算。
2. 作业题目:分析电动机和发电机中安培力的作用。
答案:电动机中的安培力实现电能转换为机械能,发电机中的安培力实现机械能转换为电能。
八、课后反思及拓展延伸本节课通过实践情景引入、例题讲解和随堂练习,使学生掌握了安培力的计算方法和左手定则的应用。
课后反思,注意引导学生将所学知识运用到实际问题中,提高学生的分析问题和解决问题的能力。
拓展延伸部分,可以让学生研究安培力在高科技领域的应用,如磁悬浮列车、磁流体发电机等。
重点和难点解析1. 安培力大小计算公式:F = BILsinθ。
新课标粤教版31选修三《探究安培力》WORD 教案1一、教学目标1.明白得磁感应强度B 的定义,明白B 的单位是特斯拉.2.会用磁感应强度的定义式进行有关运算.3.明白用磁感线的疏密程度能够形象地表示磁感应强度的大小.4.明白什么叫匀强磁场,明白匀强磁场的磁感线是分布平均的平行直线.5.明白什么是安培力.明白电流方向与磁场方向平行时,电流所受的安培力最小,等于零;电流方向与磁场方向垂直时,电流受的安培力最大,等于BIL .6.会用公式BIL F =解答有关问题.7.明白左手定则的内容,并会用它解答有关问题.二、重点难点重点:对磁感应强度的明白得.安培力大小的运算和方向判定.难点:明白得磁感应强度的概念.磁场方向、电流方向和安培力方向三者的关系。
三、教与学教学过程:磁场不仅具有方向性,而且各处的强弱也可能不同,靠近磁极或电流处的磁场较强,为了反映磁场的差不多特性(具有力的性质),反映磁场不仅具有方向而且还有强弱,我们将引入一个叫做磁感应强度的物理量加以定量地描述(一)磁感应强度1.磁场对电流的作用【演示】利用操纵变量法来演示通电的直导线在蹄形磁铁间的磁场(能够认为磁场是平均的)中的受力跟哪些因素有关.(1)与电流的大小有关,精确实验说明I F ∝.(2)与通电导线在磁场中的长度有关,精确实验说明L F ∝(3)与通电导线在磁场中放置的方向有关,导线与磁场间的夹角越接近90°,F 越大,当通电导线平行磁场放置时,0=F ;当通电导线垂直磁场放置时,F 最大.归纳可得:在保持电流方向与磁场方向垂直时,通电导线所受的磁场对它的作用力——安培力IL F ∝.2.磁感应强度概念的引入(1)在同一磁场中的某处,不管电流I 、导线长度L 如何样变.但导线所受的安培力F 跟IL 的比值保持不变,对不同的磁场或磁场中的不同处,这一比值一样是不同的.(2)比值IL F /与放入的通电导线无关,反映了磁场本身的特性(力的性质),为了反映这一特性我们引入物理量磁感应强度B .3.磁感应强度B定义:在磁场中垂直于磁场方向的通电导线,所受的安培力F 跟电流I 和导线长度L 的乘积IL 的比值,叫做磁感应强度.IL FB =(电流与磁场垂直) (引导学生将IL F B =和q F E =作比较) (1)磁感应强度是反映磁场本身特性的物理量,跟磁场中是否存在通电导线无关.(2)B 的大小表示磁场的强弱,B 越大表示磁场越强.(3)单位:在国际单位制中是特斯拉,简称特,符号是T .1T =1N/A ·m .(4)B 是矢量为了让B 不仅能反映磁场的强弱,还能反映磁场具有方向性,我们把磁场中某一点的磁场方向定义为该点的磁感应强度的方向.如此磁感应强度B 这一矢量就全面地反映了磁场的强弱和方向.(5)几个常见磁场B 的大约值:地面邻近的磁场:T 107.0~T 103.044--⨯⨯永磁铁磁极邻近的磁场:T 1~T 103-工作的电机和变压器铁芯中的磁场: 1.4T ~0.8T4.磁感线的疏密程度表示磁感应强度的大小,磁感线越密的地点表示磁感强度越大.5.匀强磁场:磁感应强度的大小和方向处处相同的磁场.(1)匀强磁场的实例:相距专门近的两平行的异名磁极间的磁场;通电的长直螺线管内部(边缘部分除外)的磁场.(2)匀强磁场的磁感线分布是一组等间隔的平行线.(二)安培力磁场对电流的作用力通常称为安培力1.安培力的大小 由IL F B =可得:安培力大小BIL F =。
第三节探讨安培力1.通过实验熟悉安培力,会用左手定则判断安培力的方向,会计算匀强磁场中安培力大小.2.理解磁感应强度的概念,会用磁感应强度的概念式进行有关计算.3.知道磁通量,能计算穿过某面积的磁通量.1.磁场对电流的作使劲称为安培力.2.安培力方向:用左手定则判定:张开左手,使大拇指跟其余四个手指垂直,而且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使张开的四指指向电流的方向,那么,大拇指所指方向就是通电导线在磁场中所受的安培力的方向.3.磁感应强度:物理学规定,当通电导线与磁场方向垂直时,通电导线所受的安培力F跟电流I和导线长度L的乘积IL的比值叫做磁感应强度.概念式:B=FIL.4.磁场方向:小磁针静止时N极所指的方向规定为该点的磁感应强度的方向,简称为磁场方向.5.匀强磁场:在磁场的某个区域内,若是各点的磁感应强度大小和方向都相同,这个区域内的磁场叫匀强磁场.在匀强磁场中,磁感线是一组平行且等间距的直线.6.磁通量.(1)概念:磁感应强度B与垂直于磁场方向的面积S的乘积叫做穿过这个面的磁通量.(2)概念式:Φ=BS.安培力综合分析F=BLI sin α(α为B、L间的夹角),高中只要求掌握α=0(不受安培力)和α=90°两种情况.如图所示,一根长为0.2 m的金属棒放在倾角为θ=37°的滑腻斜面上,并通以I=5 A 电流,方向如图所示,整个装置放在磁感应强度为B = T ,竖直向上的匀强磁场中,金属棒恰能静止在斜面上,则该棒的重力为多少?解析:金属棒受力如图所示,由平衡条件得:沿斜面方向有:F cos θ=G sin θ,①棒所受的磁场力为:F =BIL ,②由①②解得棒的重力为:G =BIL cos θsin θ= N.答案: N总结:安培力是通电导体受的磁场力,从力学角度分析,对通电导体仍可借助定律、功能关系等力学规律分析.一、单项选择题1.磁感应强度的单位是特斯拉(T),与它等价的是(A )2.如图所示,把一重力不计的通电直导线水平放在蹄形磁铁两极的正上方,导线可以自由转动,当导线通入图示方向电流I时,导线的运动情况是(从上往下看)(A) A.顺时针转动,同时下降B.顺时针转动,同时上升C.逆时针转动,同时下降D.逆时针转动,同时上升解析:画出蹄形磁铁的两条磁感线,在磁感线与电流相交处别离取一小段电流,如图中的BC、AD两段,由左手定则可知,AD段受安培力垂直纸面向外,BC段受垂直纸面向里的安培力,故导线将绕轴线OO′顺时针旋转(俯视).当导线转动90°时(特殊位置法),由左手定则可知,导线受向下的安培力作用,所以导线在顺时针转动的同时还向下运动.3.下图中磁感应强度B,电流I和安培力F之间的方向关系错误的是(D)解析:按照左手定则,F必然垂直于I和L,D项错误.4.一段长0.2 m,通过2.5 A电流的直导线,关于在磁感应强度为B的匀强磁场中所受安培力F的情况,正确的是(C)A.若是B=2 T,F必然是1 NB.若是F=0,B也必然为零C.若是B=4 T,F有可能是1 ND.若是F有最大值时,通电导线必然与B平行解析:当导线与磁场方向垂直放置时,F=BIL,力最大,当导线与磁场方向平行放置时,F=0,当导线与磁场方向成任意其他角度放置时,0<F<BIL,A、D两项不正确,C项正确;磁感应强度是磁场本身的性质,与受力F无关,B不正确.二、不定项选择题5.如图所示,两根间距为d的平行滑腻金属导轨间接有电源E,导轨平面与水平面间的夹角θ=30°.金属杆ab垂直导轨放置,导轨与金属杆接触良好.整个装置处于磁感应强度为B的匀强磁场中.当磁场方向垂直导轨平面向上时,金属杆ab恰益处于静止状态.要使金属杆能沿导轨向上运动,可以采取的办法是(B)A.减小磁感应强度BB .调节滑动变阻器使电阻减小C .增大导轨平面与水平面间的夹角θD .将电源正负极对调使金属杆中的电流方向改变 解析:对金属杆受力分析,沿导轨方向:BEdR-mg sin θ=0,若想让金属杆向上运动,则BEd R 增大,A 项错误;电阻减小,BEdR增大,则B 项正确;若增大θ,则mg sin θ增大,C 项错误;若电流反向,则金属杆受到的安培力反向,D 项错误.6.质量为m 的通电细杆置于倾角为θ的导轨上,导轨的宽度为d ,杆与导轨间的动摩擦因数为μ,有垂直于纸面向里的电流通过杆,杆恰好静止于导轨上.在如下图所示的A 、B 、C 、D 四个图中,杆与导轨间的摩擦力必然不为零的是(CD )解析:对通电杆进行受力分析如下:按照平衡条件可以判断出C 和D 必然受到摩擦力的作用,正确选项为C 、D.此题要求考生能够对通电杆进行正确的受力分析,并按照平衡条件进行判断.7.首先对电磁作使劲进行研究的是法国科学家安培.如图所示的装置,可以探讨影响安培力大小的因素,实验中若是想增大导体棒AB 摆动的幅度,可能的操作是(BC )A .把磁铁的N 极和S 极换过来B .增大通过导体棒的电流强度IC .把接入电路的导线从②、③两条换成①、④两条D .改换磁性较小的磁铁解析:安培力的大小与磁场强弱成正比,与电流强度成正比,与导线的长度成正比,B 、C 正确.8.(2013·长春高三检测)关于电场线和磁感线的说法正确的是(ACD ) A .电场线和磁感线都是利用疏密表示场的强弱的 B .电场线是客观存在的,而磁感线是不存在的 C .静电场的电场线是不闭合的,而磁感线是闭合的曲线 D .电场线和磁感线都不可能相交三、非选择题(按题目要求作答.解答题应写出必要的文字说明、方程和重要演算步骤,答案中必需明确写出数值和单位)9.如图所示,在倾角为θ=30°的斜面上,固定一宽L =0.25 m 的平行金属导轨,在导轨上端接入电源和滑动变阻器R .电源电动势E =12 V ,内阻r =1 Ω,一质量m =20 g 的金属棒ab 与两导轨垂直并接触良好.整个装置处于磁感应强度B = T ,垂直于斜面向上的匀强磁场中(导轨与金属棒的电阻不计).金属导轨是滑腻的,取g =10 m/s 2,要维持金属棒在导轨上静止,求:(1)金属棒所受到的安培力; (2)通过金属棒的电流;(3)滑动变阻器R 接入电路中的阻值.解析:(1)金属棒静止在金属轨道上受力平衡,F 安=mg sin 30°,得出F 安= N. (2)由F 安=BIL ,得I =F 安BL,代入数据得I =0.5 A. (3)设滑动变阻器接入电路的阻值为R 0,按照闭合电路欧姆定律得:E =I (R 0+r ),解得R 0=EI-r =23 Ω.答案:(1) N (2)0.5 A (3)23 Ω10.如图所示,滑腻的平行导轨倾角为θ,处在竖直向下匀强磁场中,导轨中接入电动势为E 、内电阻为r 的直流电源,电路中除电阻R 外其余电阻不计;将质量为m 、长度为L 的导体棒放在平行导轨上恰好能够处于静止状态,求磁感应强度B .解析:以导体棒为研究对象,对其受力分析如图所示,可得:BIL =mg tan θ,I =ER +r,解得:B =mg (R +r )tan θEL.答案:mg (R +r )tan θEL11.如图所示,PQ 和MN 为水平、平行放置的金属导轨,相距L =1 m ,导体棒ab 跨放在导轨上,棒的质量为m =0.2 kg ,棒的中点用细线经滑轮与物体相连,物体的质量M =0.3 kg ,棒与导轨的动摩擦因数μ=,匀强磁场的磁感应强度B = T ,方向竖直向下,为使物体匀速上升,应在棒中通入多大的电流?方向如何?(g 取10 m/s 2)解析:对导体ab ,由平衡条件得:F N -mg =0,BIL -f -F =0,对物体,由平衡条件得:F -Mg =0,又f =μF N ,联立以上四式解得I =20 A ,由左手定则知电流方向应为由b 到a . 答案:20 A 从b 流向a12.如图所示,在与水平方向成60°的滑腻金属导轨间连一电源,在相距1 m 的平行导轨上放一重力为3 N 的金属棒ab ,棒上通以3 A 的电流,磁场方向竖直向上,这时棒恰好静止.求:(1)匀强磁场的磁感应强度B ; (2)ab 棒对导轨的压力.解析:先将原图改画为侧视图,对导体棒受力分析,如图所示,导体棒恰好能静止,应有:N x =F 安;N y =G ;因为tan 60°=N xN y,所以F 安=tan 60°,N y =3G ;又F 安=BIL ;所以:(1)B =F 安IL =3G IL =333×1T = 3 T. (2)导体棒对轨道的压力与轨道对棒的支持力N 大小相等.N =N y cos 60°=Gcos 60°=2G =6 N.答案:观点析。
《探究安培力》教案2一、教学内容本节课选自高中物理教材《电磁学》第四章第3节“安培力”。
内容包括:安培力公式的推导及其应用,电流与磁场相互作用产生的力矩,以及左手定则的应用。
二、教学目标1. 理解并掌握安培力公式,能运用公式计算电流在磁场中所受的力。
2. 了解左手定则,能运用左手定则判断通电导体在磁场中的受力方向。
3. 学会运用安培力解释实际生活中的电磁现象。
三、教学难点与重点教学难点:安培力公式的推导,左手定则的应用。
教学重点:安培力公式及其应用,左手定则。
四、教具与学具准备1. 教具:电流表、磁场演示器、导线、磁铁、电源、螺丝刀等。
2. 学具:纸、笔、尺子、圆规、计算器等。
五、教学过程1. 实践情景引入通过演示电流表指针偏转的现象,引导学生思考电流与磁场之间的关系。
2. 探究安培力公式(1)引导学生推导安培力公式。
(2)讲解安培力公式中各参数的含义。
(3)通过例题讲解,加深学生对安培力公式的理解。
3. 左手定则的应用(1)介绍左手定则。
(2)演示左手定则的应用。
(3)随堂练习:判断通电导体在磁场中的受力方向。
4. 安培力的应用(1)讲解安培力在实际生活中的应用。
(2)举例说明安培力在科技发展中的作用。
5. 课堂小结六、板书设计1. 安培力公式:F = BILsinθ2. 左手定则:确定电流方向、磁场方向、受力方向的关系。
七、作业设计1. 作业题目:(1)计算题:已知电流、磁场、导体长度和角度,求安培力。
(2)判断题:根据左手定则判断通电导体在磁场中的受力方向。
2. 答案:(1)F = BILsinθ(2)根据左手定则判断。
八、课后反思及拓展延伸1. 反思:本节课通过实践情景引入,使学生更好地理解安培力的概念。
在讲解安培力公式和左手定则时,注意引导学生参与推导和思考,提高课堂互动。
2. 拓展延伸:(1)研究安培力与电流、磁场强度、导体长度和角度的关系。
(2)探讨安培力在电机、发电机等设备中的应用。
探究安培力教学设计教材分析木节内容不仅是与上节知识的联系点,而且是学习电流表工作原理和推导洛伦兹力公式的基础,在教材中承上启下作用。
反应与电学知识、力学知识之间密切联系。
是高中物理电磁学的重点部分。
安培力与哪些因素有关的科学探究是采用控制变量法探究物理基本规律的一节课,涵盖了科学探究的基本因素,让学生在认知过程屮体验领悟科学探究的意义,掌握研究问题的科学方法。
学生情况分析学生在学习本章节之前,已经学习了磁场,知道了磁体和电流周围磁场的性质及特点,了解到磁体间的相互作用、电流周围存在着磁场以及电与磁之间有联系。
另外,学生通过高一物理“必修”课程的学习,经丿力了牛顿第二定律等实验探究过程,已经掌握了变量控制实验探究的一些科学研究方法,为本节的探究性学习做了铺垫。
设计思想a.教学设计思路本课吋采用实验探究教学法,让学生在实验探究的过程中,依从“问题一讨论一实验一交流归纳”的教学过程,学习观察一一归纳一一总结的科学的思维方法,从生活实例中发现问题,提出问题,激发学生猜想、思考讨论,进而确定实验方案并进行实验,得出结论。
再将结论应用于实践验证。
b.本节课设计的教学流程图如下:情境激发一问题点拨一设计实验步骤一实验探究一结论形成一实际应用教学目标:1.知识与技能(1)进一步理解磁场的基本性质——磁场对电流有力的作用,掌握用左手定则判断安培力的方向。
(2)知道磁场中垂直于磁场方向的通电直导线所受安培力的人小跟电流的人小、磁场的强弱和导线在磁场中的长度等因素有关。
2.过程与方法(1)经历探究安培力方向与哪些因素有关的过程,体会科学探究的一般方法,(2)通过学习左手定则,理解磁场方向、电流方向和安培力方向三者之间的关系,培养学生空间想象能力。
(3)通过用实验探究影响安培力大小的因素,学习用“控制变量法”研究问题的方法。
3.情感、态度与价值观(1)本节课通过引导学生对安培力进行探究,培养学生的观察能力、分析能力和与他人合作精神。
高中物理粤教版教材高二年级选修3-1第三章第3节《探究安培力》教学设计一、教材分析本节内容通过实验探究了安培力的大小、方向的规律,是今后学习学习电流表工作原理和推导洛伦兹力公式的基础.指出了电学知识与力学知识之间的密切联系,是高中阶段物理电磁学的重点部分.安培力与哪些因素有关的科学探究是采用控制变量法探究物理基本规律的一节课,涵盖了科学探究的基本因素,让学生在认知过程中体验领悟科学探究的意义,掌握研究问题的科学方法.二、教学目标1.知识与技能知道什么是安培力,知道安培力与哪些因素有关,掌握安培力的计算公式,会计算匀强磁场中安培力的大小.会用左手定则判断安培力的方向.2.过程与方法①经历探究安培力与哪些因素有关的过程,以及如何确定安培力方向的探究过程.认识科学探究的意义.②体会控制变量法、等效替代法等思想方法.3.态度、情感与价值观①培养学生的观察能力、分析综合能力和主动与他人合作精神,实事求是的科学研究态度.②认识安培力的应用给我们的生活带来的影响.三、教学重难点教学重点:安培力的计算公式,左手定则.教学难点:匀强磁场中安培力大小与哪些因素有关的探究中对安培力影响因素猜想的引导,及增加磁体是哪个因素发生变化等学生容易弄错问题是本节教学难点.四、教学媒体蹄形磁铁、金属铝箔桥、安培力测量仪,多媒体电脑.五、教学过程[引入]回顾初中学过知识和《海军时报》2月1日报道:美国海军试发电磁炮图片介绍及实验模拟电磁轨道炮发射过程引入课题.[结论]当通电导体附近有磁体时,通电导体会受到力的作用.从而建立磁场对电流的作用力——安培力概念.[说明]从学生兴趣情境中引入问题,比较符合高中学生认识过程,激发进一步学习的兴趣. 1、安培力方向[学生分组活动]会动的铝箔“天桥”实验准备:将一铝箔条折成天桥形状,用胶纸粘牢两端,使蹄形磁铁横跨过“天桥”.实验研究步骤:(1)闭合电键后注意观察磁场中的导线向哪个方向运动,同时思考安培力的方向如何.请同学们在图上快速标记一下.图1(2)保证电流方向不变,改变磁场方向1800,通电后观察现象,判断安培力的方向.图2(3)磁场方向不变,把电流极性换一下.通电后看安培力的方向.图3[教师结论]安培力的方向和磁场方向、电流方向有关系.安培力的方向既跟磁场方向垂直,又跟电流方向垂直,也就是说,安培力的方向总是垂直于磁感线和通电导线所在的平面.2、安培力大小[提出问题]安培力的大小与哪些因素有关?引导学生在上述实验的基础上提出猜想,安培力可能与通电导线的长度、电流以及磁场等因素有关.[学生猜想与讨论]讨论设计实验方案:同时多媒体展示实验器材,要求利用所给的器材,自主进行实验方案设计.[实验过程]记录并分析数据:教师出示安培力演示仪器.(如右图示)实验研究步骤:实验前先调整框架水平,指针指零.a.控制B、L不变时,通过改变滑动变阻器的阻值,使导线AB中电流I连续增大,看到指针偏角连续变大,说明安培力增大.A B A Bb .控制B 、I 不变时,怎样改变在磁场中....的长度L呢?(学生思考、老师启发)多个蹄形磁铁并排,改变蹄形磁铁个数,以改变在磁场中导线的长度.注意观察表针指示格数的变化,能得出什么结论?c .控制L 、I ,研究安培力的大小与磁场强弱的关系.怎样改变磁场的强弱呢?(学生思考、老师启发)通过改变导体相对磁铁的位置来改变磁场.左右移动磁铁,注意观察表针指示格数的变化,能得出什么结论?[教师归纳] 1、结论规范总结表述:2、方法点拨:“控制变量法”3、安培力BIL F =3、磁通量磁通量是磁感应强度B 与面积S 的乘积;也可以用穿过面积的磁感线条数表示.【教师提问】磁通量S B ⋅=φ中的S 是指线圈的面积吗?【学生讨论思考后回答】是【教师演示】其实式中的S 应该指的是线圈沿磁感线方向的投影面积.因此式子应该理解为⊥⋅=S B φ4、小结:{ 安培力的方向: 方法:左手定则 推论:安培力总是垂直于B 和I 决定的平面 安培力的大小:F=BILsin θ(θ为B 与I 的夹角。
东海中学教师备课用表
备课时间:年月日
教学过程
教学活动设计
学生活动设计
(含设计意图)
授课教师
二次备课
教学过程:
(一)复习引入
让学生回忆在在第二节中通电导线在磁场中受力大小与什么因素有关。
过渡:本节我们将对安培力做进一步的讨论。
(二)新课讲解-----
安培力:磁场对电流的作用力.
安培力是以安培的名字命名的,因为他研究磁场对电流的作用力有突出的贡献.
1.安培力的方向
【演示】。
(1)改变电流的方向,观察发生的现象.
[现象]导体向相反的方向运动.
(2)调换磁铁两极的位置来改变磁场方向,观察发生的现象.
[现象]导体又向相反的方向运动
[教师引导学生分析得出结论]
(1)安培力的方向和磁场方向、电流方向有关系.
(2)安培力的方向既跟磁场方向垂直,又跟电流方向垂直,也就是说,安培力的方向总是垂直于磁感线和通电导线所在的平面.(P96图3。
4-1)
如何判断安培力的方向呢?
人们通过大量的实验研究,总结出通电
导线受安培力方向和电流方向、磁场方向存
在着一个规律一一左手定则.
左手定则:伸开左手,使大拇指跟其余
四个手指垂直,并且跟手掌在同一个平面内,
把手放人磁场中,让磁感线垂直穿人手心,
并使伸开的四指指向电流方向,那么,拇指所指的方向,就是通电导线在磁场中的受力方向.(如图)。
【说明】左手定则是一个难点,涉及三个物理量的方向,涉及三维空间,而学生的空间想像力还不强,所以教师应引导学生如何将三维图形用二维图形表达(侧视图、俯视图和剖面图等等),还要引导学生如何将二维图形想像成三维图形。
---可将右图从侧视图、俯视图和剖面图一一引导学生展示。
*一般情形的安培力方向法则介绍…
结论:电流和磁场可以不垂直,但安培力必然和电流方向垂直,也和磁场方向垂直,用左手定则时,磁场不一定垂直穿过手心,只要不从手背传过就行。
*至于大小法则,如果电流和磁场不垂直,则将磁场进行分解,取垂直分量代入公式即可;从这个角度不难理解——如果电流和磁场平行,那么安培力是多少?[学生]为零。
练习:判断下图中导线A所受磁场力的方向.
答案:
(垂直于纸面向外)
【演示】平行通电直导线之间的的相互作用(P97图3。
4—3)。
引导学生区别安培定则和左手定则,并且用这两个定则去解释“平行通电导线之间的相互作用”这一演示实验,解释时应明白左边的通电导线受到的安培力是右边的通电导线所产生的磁场施加的,反之亦然。
2、安培力的大小
通电导线(电流为I、导线长为L)和磁场(B)方向垂直时,通电导线所受的安培力的大小:F = BIL(最大)
两种特例:即F = ILB(I⊥B)和F = 0(I∥B)。
一般情况:当磁感应强度B的方向与导线成θ角时,有F = ILBsin θ
【注意】在推导公式时,要让学生明确两点:一是矢量的正交分解体现两个分量与原来的矢量是等效替代的关系,二是从特殊到一般的归纳的思维方法。
(具体推导见P97)
还应该注意的是:尽管公式F=ILB是从公式B=F/IL变形而得的,但两者的物理意义却
有不同。
①公式B=F/IL是根据放置于给定磁场中的给定点上的检验电流(电流元)受力情况,来确定这一位置的磁场的性质,它对任何磁场中的任何点都是适用的。
②公式F=ILB则是在已知磁场性质的基础上,确定在给定位置上给定的一小段通电直导线的受力情况,在中学阶段,它只适用于匀强磁场。
教师应该给学生指出:物理公式在作数学的等价变形时,其物理意义和适用范围将会发生变化。
这是应用数
学知识解决物理问题时所要引起注意的问题,但却往往被人们所忽视。
应该提醒学生注意安培力与库仑力的区别。
电荷在电场中某一点受到的库仑力是一定的,方向与该点的电场方向要么相同,要么相反。
而电流在磁场中某处受到的磁场力,与电流在磁场中放置的方向有关,电流方向与磁场方向平行时,电流受的安培力最小,等于零;电流方向与磁场方向垂直时,电流受的安培力最大,等于BIL,一般情况下的安培力大于零,小于BIL,方向与磁场方向垂直。
3、磁通量
磁通量(Φ)
我们知道,磁场的强弱(即磁感应强度)可以用磁感线的疏密来表示。
如果一个面积为S的面垂直一个磁感应强度为B的匀强磁场放置,则穿过这个面的磁感线的条数就是确定的。
我们把B与S的乘积叫做穿过这个面的磁通量。
(1)定义:面积为S,垂直匀强磁场B放置,则B与S乘积,叫做穿过这个面的磁通量,用Φ表示.
(2)公式:Φ=B·S
(3)单位:韦伯(Wb) 1Wb=1T·m2
磁通量就是表示穿过这个面的磁感线条数。
例:如图所示,在条形磁铁中部垂直套有A、
B两个圆环,试分析穿过A环、B环的磁通量
谁大。
解:此题所给条件是非匀强磁场,不能用Φ
=B·S计算,只能比较穿过两环的磁感线净条数多少,来判断磁通量的大小。
条形磁铁的磁感线是从N极出发,经外空间磁场由S极进入,在磁铁内部的磁感线从S极向N极,又因磁感线是闭合的平滑曲线,所以条形磁铁内外磁感线条数一样多。
从下向上穿过A、B环的磁感线条一样多,而从上向下穿过A环的磁感线多于B环,则A环从下向上穿过的净磁感线少于B环,所以B环的磁通量大于A环磁通量。
备课组长(教研组长)签名:时间:年月日。